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ABSTRACT

Understanding and measuring the relative roles of different causal channels between commodity
prices and exchange rates has important implications in financial decision making, especially for
market participants with short horizons. From a macroeconomic perspective, this can also be useful
for interpreting exchange rate movements, financial market monitoring and monetary policy. Basic
economic reasoning on currency demand suggests that the currencies of countries whose exports
depend heavily on a particular commodity should be strongly influenced by its price, so commod-
ity price movements should lead (Granger-cause) exchange rate movements(macroeconomic/trade
mechanism). In contrast, the present value model of forward-looking exchange rates suggests re-
verse causation,i.e. exchange rates should Granger-cause commodity prices (expectations mech-
anism). We examine empirically the causal relationship between commodity prices and exchange
rates, using data on three commodities (crude oil, gold, copper) and three countries (Canada, Aus-
tralia, Chile), over the period 2000-2009. To go beyond pure significance tests of non-causality
and to provide a relatively complete picture of the links, measures of the strength of causality for
different horizons and directions are estimated and compared. Since low-frequency data may easily
fail to capture important features of the relevant causal links in volatile financial markets – such as
foreign exchange and commodity markets – high-frequency (daily and 5-minute) data are exploited.
Both unconditional and conditional (given general stock market conditions) causality measures are
considered, and allowance for “dollar effects” is made by considering non-U.S. dollar variables.
We identify clear causal patterns: (1) Granger causality between commodityprices and exchange
rates is visible in both directions; (2) it is stronger at short horizons, andbecomes weaker as the
horizon increases; (3) causality from commodity prices to exchange ratesis stronger than causality
in the reverse direction across multiple horizons: the ratios of causality measures in two different
directions can be quite high (for example, as high as 5 or 10 in favor of causation from commodity
prices to exchange rates), especially at short horizons; (4) eliminating dollar effects weakens causal-
ity from exchange rates to commodity prices, and reveals a more definite pattern where causality
from commodity prices to exchange rates dominates across multiple horizons. In contrast with ear-
lier results on the non-predictability of exchange rates, we find that the macroeconomic/trade-based
mechanism plays a central role in exchange rate dynamics, despite the financial features of these
markets.

Key words: multi-horizon causality; causality measures; commodity prices; exchange rates; stock
prices; high-frequency data; spurious causality; financial markets.
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1. Introduction

The dynamic relationship between commodity prices and exchange rates has attracted much atten-
tion from both researchers and practitioners. Two main explanations havebeen proposed. The first
one suggests that changes in a commodity price lead to changes in the exchange rate of the corre-
sponding commodity currency. This idea commonly appears in both the research literature [see, for
example, Chen and Rogoff (2003) and Chen (2004)] and press commentaries.1 The second expla-
nation stresses the financial and speculative features of foreign exchange markets: exchange rates
can help predict economic fundamentals including commodity prices; see, forexample, Meese and
Rogoff (1983), Engel and West (2005), Cheung, Chinn and Pascual (2005), Rogoff and Stavrakeva
(2008), Chen, Rogoff and Rossi (2010) and Rossi (2013). Following the first mechanism, commod-
ity prices should help predict exchange rate movements. According to the second one, the reverse
should happen. Thus, a central difference between these two alternative explanations lies in the
direction of causality in the sense of Wiener-Granger.

The first theory relies on macroeconomic and trade-theory arguments. For a small open econ-
omy whose exports depend heavily on a particular commodity (for example, gold for Australia,
crude oil for Canada, copper for Chile), an increase in the price of animportant export commodity
should produce an upward pressure on the demand for its currency, which leads to an appreciation
of the currency. For instance, while crude oil is the largest Canadian export, Canada’s total crude oil
production is a small share of world output. The price of oil is determined by global supply and de-
mand conditions to which Canada contributes only modestly, while a change in theprice of oil has a
large effect on the value of Canadian exports. This mechanism can be justified in sticky-price open
economy models with non-traded goods, a portfolio-balance model, and the term-of-trade hypothe-
sis; see Chen and Rogoff (2003) and Chen (2004). This type of explanation suggests that exchange
rate movements can be predicted by economic variables. However, statisticalevidence shows it is
generally difficult to forecast exchange rates, so economic models of exchange rate determination
do not fare well from the empirical viewpoint.2

Instead, according to the second theory, exchange rates are determined – like most asset prices –
by the net present value of fundamentals (including commodity prices), which implies that exchange
rates should lead and therefore Granger-cause commodity prices; see Obstfeld and Rogoff (1996),
Engel and West (2005), Chen et al. (2010) and Alquist, Kilian and Vigfusson (2012).3

In this paper, we examine empirically the causal relationship between commodity prices and

1For example, David Parkinson writes in the Globe and Mail (Report on Business, 10 April 2010, B14): “When
analyzing the loonie, always look at oil”; “loonie” is a colloquialism for the Canadian dollar, a reference to the image
of a loon on the coin. In Bloomberg Businessweek (April 18, 2013), Sebastian Boyd states: “Chilean Peso declines as
principal export copper reaches new low”. In the Wall Street Journal (July 5, 2013), Vincent Cignarella writes: “ . . . a
rise in the price of the precious metal would do wonders to boost the fortunes of the Australian dollar”. In Bloomberg
News (February 25, 2013), Mariko Ishikawa has an article with title “Australian dollar advances as gold prices increase”.

2For more general discussions of the theory and empirical evidence onexchange rate markets, the reader may consult
Levich (1985), Baillie and McMahon (1989), Frankel and Rose (1995), Froot and Rogoff (1995), Isard (1995), Obstfeld
and Rogoff (1996), Mark (2001), Sarno and Taylor (2002) and Kilian and Taylor (2003).

3For work on forecasting commodity prices (especially energy prices),see also Schwartz (1997), Schwartz and Smith
(2000), Pindyck (2001), Hamilton and Herrera (2004), Tabak and Cajueiro (2007), Hamilton (2009), Kilian (2009),
Bernard, Dufour, Khalaf and Kichian (2012), and the references therein.
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nominal exchange rates, using data on three commodities (crude oil, gold, copper) and three coun-
tries (Canada, Australia, Chile), over the period 2000-2009. We emphasize five issues which should
be taken into account in such a study.

First, predictability and dynamic responses may depend on the time horizon, so it is important
to assess the patterns of these links across different horizons. In particular, looking at multiple-
horizon causality does allow one to account for indirect causal links – which go through different
variables across time – and eventually eliminate spurious findings of causation; see Dufour and
Renault (1998).

Second, given that causal links may theoretically exist in all directions, it is of interest to de-
termine which links – in terms of direction and time horizon – matter most. This can be done
by associating measures with different causal links. More generally, significance tests (for non-
causality) are inappropriate for that purpose: it is well known that a large effect (from an economic
viewpoint) may not be statistically significant because the data do not allow oneto measure it pre-
cisely (e.g., due a multicollinearity or a small size), and an economically negligible effect maybe
statistically significant because the effect, while small, can be very preciselyestimated. It is much
more informative to parameterize the relevant effects, compute point estimatesfor these parameters,
and eventually confidence sets; see Dufour and Taamouti (2010) and Dufour, Garcia and Taamouti
(2012). Non-causality tests can provide evidence of the presence or absence of forecast improve-
ments available from inclusion of the past of other variables, but do not indicate the magnitudes of
forecast improvements.

Third, the proposed measures should be intuitive and easy to interpret without ahighly restric-
tive parametric model, possibly as a descriptive device. In particular, theyshould allow for a wide
spectrum of dynamic structures, such as relatively general VAR or VARMA models. For that pur-
pose, we will use here the approach developed in Dufour and Taamouti (2010) and Dufour et al.
(2012).

Fourth, it is well known that Granger causality is generally not invariant to aggregation: high-
frequency data may reveal patterns which are aggregated away in low-frequency data, and causality
in low-frequency data can also be spurious; see Tiao and Wei (1976),Wei (1982, 1990), Marcellino
(1999), Breitung and Swanson (2002), and Silvestrini and Veredas (2008). Indeed, as stressed in
Dufour and Renault (1998), the interpretation of Granger causality depends on the forecast horizon
and data frequency. Data on commodity prices and exchange rates are originally generated at very
high frequency. Quarterly data typically used in macroeconomic studies areobtained by aggre-
gating high-frequency data over time. Spurious causality can be induced when intervals between
microeconomic decisions of economic agents are finer than those between sample observations.

Fifth, commodity prices and exchange rates are set in highly active financial markets. Move-
ments in such markets can be quite fast or short-lived, so low-frequencydata may easily fail to
capture causal links. Indeed, the speculative nature of exchange rate markets along with “efficient
market” arguments suggest that exchange rates may be difficult to forecast, especially at low fre-
quencies. Understanding and measuring the relative roles of differentcausal channels between
commodity prices and exchange rates at high frequencies has important implications in financial
decision making, especially for market participants with short horizons. From a macroeconomic
perspective, this can also be useful for interpreting short-run movements of exchange rates, in view
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of monitoring financial markets and monetary policy. In this context, it is also crucial that forecast
horizons be taken into account, as well as the quantitative importance of whatever predictability
may exist.

No earlier study of the behavior of exchange rates meets these objectives. The closest papers in-
clude studies of the relationship between real exchange rates based on real commodity prices based
on low-frequency (e.g., quarterly) data; see Gruen and Wilkinson (1994), Amano and van Norden
(1995, 1998a), Amano and van Norden (1998b), Chen and Rogoff (2003), Cashina, Ceśpedesb and
Sahay (2004), Issa, Lafrance and Murray (2008). Significance tests of the predictive relationship
between nominal exchange rates and commodity prices (including tests of conventional Granger
non-causality) are also reported by Chen (2004), Chen et al. (2010), Alquist et al. (2012), and Fer-
raro, Rogoff and Rossi (2012). In all cases, the above studies remain limited to one horizon, without
causality measures.

In this paper, we present an empirical study which simultaneously addresses the issues raised
above. We examine the causal relationship between commodity prices and nominal exchange rates
for three commodity currencies (Canada, Australia, Chile) and three commodity spot prices (crude
oil, copper and gold), using daily data (and 5-minute data, for Canada). In view of the incomplete
nature of causality at only one horizon, we study and compare causality atdifferent horizons as
proposed in Dufour and Renault (1998) and Dufour, Pelletier and Renault (2006). Further, to avoid
the overly simplifying features of pure significance tests for non-causality, we compute measures at
many horizons because they allow one to assess in a much more precise way the underlying linkages
when causality at different horizons in different directions is present.The measures used are based
on the concepts and statistical methodology – including both point estimates (of causality measures)
and confidence intervals – described in Dufour and Taamouti (2010) for a general time-series frame-
work, and Dufour et al. (2012) in the context of high-frequency data(as in this paper). In particular,
the statistical setup we consider allows for general assumptions, such as stationary invertible vector
autoregressive moving average (VARMA) models. Both unconditional and conditional (given stock
price movements) measures are considered.

We use the price of a single dominant exporting commodity for each country instead of a
country-specific commodity index used in Chen et al. (2010), and we include an indicator of the
level of equity prices, the S&P500 index, in conditional causality examinations.As an index per-
taining to an important financial asset class which may have causal links with both exchange rates
and commodity prices, the S&P500 index is a potential vehicle for transmission ofindirect causality
between the variables of interest. Another reason to consider the S&P500 index is that the connec-
tion of stock prices to exchange rates and commodity prices has great interest for both financial
researchers and practitioners; see, for example, Kilian (2008) and Kilian and Park (2009)).

Further, it is well known that there can be causal effects of U.S. dollar-denominated exchange
rates on commodity prices denominated in U.S. dollars, due to changes in the value of the U.S.
dollar. We refer such effects as U.S. dollar-denomination effects or simply“dollar effects”. To
avoid attributing the causal effects to this source, we use two alternative currency benchmarks:
British Pound and Japanese Yen, as well as the effective rates of commodity currencies.

Overall, our results indicate clear causal patterns: (1) Granger causality between commodity
prices and exchange rates is visible in both directions; (2) it is stronger atshort horizons, and be-
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comes weaker as the horizon increases; (3) causality from commodity prices to exchange rates
(macroeconomic/trade mechanism) is stronger than causality in the reverse direction (expectations
mechanism) across multiple horizons; (4) the ratios of causality measures in twodifferent directions
can be quite high (for example, as high as 5 or 10 in favor of causation from commodity prices to
exchange rates), especially at short horizons; (5) eliminating dollar effects weakens causality from
exchange rates to commodity prices, and reveals a more definite pattern where causality from com-
modity prices to exchange rates is stronger than causality in the reverse direction, across multiple
horizons. In contrast with earlier results on the non-predictability of exchange rates, our results
suggest that the macroeconomic/trade-based mechanism plays a central role in exchange rate dy-
namics, despite the financial features of these markets. However, to “observe” the economic effects
of commodity prices on exchange rates, it is important to consider high data frequencies and to use
an appropriate causal methodology.

Section 2 introduces the framework we use, involving the statistical conceptsof multi-horizon
causality and measures. Section 3 gives a detailed description of data usedin this study and reports
and discusses the empirical results. Section 4 concludes.

2. Framework

The main objective of this paper is to examine high-frequency causality between commodity prices
and exchange rates using daily and intra-day data. In this section, we introduce the statistical con-
cepts of multi-horizon causality and causality measures that we use.

2.1. Causality at different horizons

Granger (1969) introduced the concept of causality in terms of predictability at horizon one of a
(vector) variableX from its own past, the past of another (vector) variableY , and possibly a vector
Z of auxiliary variables; this has come to be known as Granger causality. Thisconcept has become a
fundamental notion for studying dynamic relationships among time series. An important extension
was proposed by Dufour and Renault (1998) who generalized the notion of Granger causality by
considering linear causality at a given (arbitrary) horizonh and derived necessary and sufficient
conditions for non-causality between variables up to any given horizonh (1 ≤ h ≤ ∞), allowing
the possibility of indirect causality. This indirect causality in the presence ofauxiliary variables
can be used to distinguish short-run and long-run (non)causality: for example, althoughY does
not Granger-causeX at horizon one, it may nonetheless help to predictX several periods ahead
though transmission by a vectorZ of auxiliary variables. The importance of the distinction between
correlation and causality is also underscored when considering horizons longer than one period.

Dufour and Renault (1998) defined linear causality at any given horizon h ≥ 1 in terms of
orthogonality between subspaces of a Hilbert space of random variables with finite second moments.
We will adopt the notation used in Dufour and Taamouti (2010). We denote by L2 a Hilbert space
of real random variables with finite second moments. Define the “reference information set”I =
{I(t) : t ∈ Z, t > ω} and t < t ′ ⇒ I (t) ⊆ I (t ′) for all t > ω, whereI(t) is defined on Hilbert
subspace ofL2, ω ∈ Z∪{−∞} represents a “starting point”, andZ is the set of the integers. LetH
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be a (possibly empty) Hilbert subspace ofL2, which contains information common to allI (t) [e.g.,
the constant in a regression model], and assumeH ⊆ I(t). Consider three multivariate stochastic
processes:X = {X(t) : t ∈ Z, t > ω}, Y = {Y (t) : t ∈ Z, t > ω} andZ = {Z(t) : t ∈ Z, t > ω},
whereX (t) =

(

x1(t) , . . . ,xm1 (t)
)′

, Y (t) =
(

y1(t) , . . . ,ym2 (t)
)′

, Z (t) =
(

z1(t) , . . . ,zm3 (t)
)′

, with
numbers of componentsm1 ≥ 1, m2 ≥ 1, m3 ≥ 0, andxi (t), yi (t), zi (t) ∈ L2, for all i. Denote by
X(ω, t], Y (ω, t] andZ(ω, t] the Hilbert spaces spanned by the components of variablesX , Y andZ
respectively up to timet. Then information setsIX(t) andIXY (t) are defined asIX(t) = I(t)+X(ω, t]
andIXY (t) = I(t)+X(ω, t]+Y (ω, t], andZ(ω, t] is assumed to be included inI(t).

For any information setB(t) (some Hilbert subspace ofL2), given a positive integerh, we denote
by P [X(t +h) | B(t)] the best linear forecast ofX(t +h) based on the information setB(t),by

UL [X(t +h) | B(t)] = X(t +h)−P [X(t +h) | B(t)]

the corresponding linear forecast error, and by

Σ [X(t +h) | B(t)] = E
{

UL [X(t +h) | B(t)]U ′
L [X(t +h) | B(t)]

}

the variance-covariance matrix of the linear forecast error (or mean squared error, MSE). Thus we
have the following definition of non-causality at any given horizonh ≥ 1 [see Dufour and Renault
(1998) and Dufour and Taamouti (2010)].

Definition 2.1 NON-CAUSALITY AT HORIZON h. Y does not cause X at horizon h given I,
denoted Y 9

h
X | I, iff

P[X(t +h) | IX(t)] = P[X(t +h) | IXY (t)].

We can define non-causality fromX to Y at horizonh similarly. This definition concerns the
conditional non-causality with auxiliary variables, which may transmit indirectcausality between
variables at horizons higher than one, even if there is no direct causalityat horizon one. IfZ is
dropped from the information set (m3 = 0), then the above definition represents unconditional non-
causality. In the absence of auxiliary variables, unconditional non-causality at horizon one implies
non-causality at any horizonh (which can be unbounded); see Dufour and Renault (1998).

2.2. Measuring causality across horizons

Rejecting non-causality hypotheses in statistical tests implies that certain variables can help in fore-
casting others [Dufour et al. (2006)]. Of course, statistical significance depends on the data sets
and test power, and the outcomes of such tests do not represent the magnitude of causality. Geweke
(1982, 1984) interpreted causality measures as the proportional reduction in the forecast error vari-
ance of a variable available by taking into account the past of other variables. Dufour and Taamouti
(2010) make multi-horizon extensions of such measures in the context of a set of linear invertible
processes (including VAR, VMA, and VARMA). The latter authors note that “building causality
measures at different horizons, along with associated confidence intervals, can yield a much more
informative analysis of Granger causality than tests of non-causality.”

Following Dufour and Taamouti (2010), we measure causality at horizonh ≥ 1 as follows.
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Definition 2.2 CAUSALITY MEASURE AT HORIZON h. For h ≥ 1,

CL
(

Y →
h

X | I
)

= ln

[

det{Σ [X(t +h) | IX(t)]}
det{Σ [X(t +h) | IXY (t)]}

]

(2.1)

is the mean-square causality measure from Y to X at horizon h, given I.

A causality measure fromX to Y at horizonh is defined in a similar way. Form1 = m2 = 1, the
above definition reduces to

CL
(

Y →
h

X | I
)

= ln

[

σ2 [X(t +h) | IX(t)]
σ2 [X(t +h) | IXY (t)]

]

.

This definition allows for conditional causality with auxiliary variables. IfZ is empty(m3 = 0),
Definition 2.2 defines an unconditional causality measure. This causality measure is nonnegative,
and zero if and only if there is no causality at the horizon considered; the higher the value of
the measure, the stronger is the causal relationship. When non-causality tests are rejected in both
directions, causality may nonetheless be much stronger in one direction, the feature revealed by
causality measures. Furthermore, confidence intervals for causality measures can provide more
powerful tests for non-causality at any given horizon, and help determine how long the causal effects
will last.

2.3. Causality measures in VARMA models

We now describe parametric representations of causality measures in the context of linear invertible
VARMA models of finite order, which will be used in the empirical analyses below. For simplic-
ity, we assumeX(t), andY (t) are univariate processes (m1 = m2 = 1). The discretem×1 vector
process with zero meanW (t) = (X(t),Y (t),Z(t))′ is characterized by a stationary and invertible
VARMA( p,q) model,

W (t) =
p

∑
i=1

φ iW (t − i)+
q

∑
j=1

ϕ ju(t − j)+u(t) (2.2)

whereu(t) is a i.i.d. random variable withE[u(t)] = 0,E[u(t)u(s)] = Σu for t = s, and is 0 fort 6= s.
Hereafter, we callW (t) the unconstrained model. The information sets are defined as above.

To measure causality fromY to X at horizonh, we need to know the structure of the marginal
processW0(t) = (X(t),Z(t))′, which follows a stationary VARMA( ¯p ≤ mp, q̄ ≤ (m−1)p+q):

W0(t) =
p̄

∑
i=1

φ̄ iW0(t − i)+
q̄

∑
j=1

ϕ̄ je(t − j)+ e(t) (2.3)

whereE[e(t)] = 0, E[e(t)e(s)] = Σe for t = s, and 0 fort 6= s; see Lütkepohl (1993). Hereafter, we
call W0(t) the constrained model.
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Under stationarity,W (t) has a VMA(∞) representation,

W (t) =
∞

∑
j=0

ψ ju(t − j) (2.4)

whereψ j can be represented by the function ofφ i=1,...p andϕ j=1,...q. The linear forecast error of
W (t +h) and its variance-covariance matrix are given by

UL [W (t +h) | IW (t)] =
h−1

∑
j=0

ψ ju(t +h− j) , (2.5)

Σ [W (t +h) | IW (t)] =
h−1

∑
j=0

ψ jE
[

u(t +h− j)u′ (t +h− j)
]

ψ ′
j =

h−1

∑
j=0

ψ jΣuψ ′
j . (2.6)

Then the unconstrained MSE for the linear forecast ofX(t +h) is

σ2 [X (t +h) | IW (t)] =
h−1

∑
j=0

J1ψ jΣuψ ′
jJ

′
1 (2.7)

whereJ1 = [1 0 0]. Similarly, the constrained model (2.3) can be written as a VMA(∞) model,

W0(t) =
∞

∑
j=0

ψ̄ je(t − j) , (2.8)

and the forecast error for the linear forecast ofW0(t +h) and its variance-covariance matrix are then
given by:

UL [W0(t +h) | IW0 (t)] =
h−1

∑
j=0

ψ̄ je(t +h− j) , (2.9)

Σ [W0(t +h) | IW0 (t)] =
h−1

∑
j=0

ψ̄ jE
[

e(t +h− j)e′ (t +h− j)
]

ψ̄ ′
j =

h−1

∑
j=0

ψ̄ jΣeψ̄ ′
j . (2.10)

Thus the constrained MSE for the linear forecast ofX(t +h) is

σ2 [X (t +h) | IW0 (t)] =
h−1

∑
j=0

J0ψ̄ jΣeψ̄ ′
jJ

′
0 (2.11)

whereJ0 = [1 0]. Consequently, the causality measure fromY to X at horizonh can be represented
by

CL
(

Y →
h

X | I
)

= ln

[

σ2 [X (t +h) | IW0 (t)]
σ2 [X (t +h) | IW (t)]

]

= ln

[

∑h−1
j=0 J0ψ̄ jΣeψ̄ ′

jJ
′
0

∑h−1
j=0 J1ψ jΣuψ ′

jJ
′
1

]

. (2.12)

To estimate the causality measure consistently without using maximum likelihood or nonlinear
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least squares, which involve complicated nonlinear optimization and are therefore difficult to use
in the context of bootstrap inference procedures, we use the linear estimation approach proposed in
Dufour and Taamouti (2010).

Under the assumption thatW (t) is invertible, it can be written as an infinite autoregressive
process:

W (t) =
∞

∑
i=1

π iW (t − i)+u(t) . (2.13)

Given a realization{W (1), . . . ,W (T )}, we can approximate (2.13) by a finite-order VAR(k) model,
wherek depends on the sample sizeT :

W (t) =
k

∑
i=1

π ikW (t − i)+uk (t) . (2.14)

The least-squares estimators of the coefficients of the fitted VAR(k) model and variance-covariance
matrix of the error term are denoted asπ̂ ik andΣ̂u|k respectively. Under general conditions,W0(t)
has a VAR(∞) representation:

W0(t) =
∞

∑
i=1

π̄ iW0(t − i)+ e(t) . (2.15)

Model (2.15) can also be approximated by a a finite-order VAR(k) model, wherek depends on the
sample sizeT :

W0(t) =
k

∑
i=1

π̄ ikW0(t − i)+ ek (t) . (2.16)

The least-squares estimators of the coefficients of the fitted VAR(k) model and variance-covariance
matrix of the error term are denoted asπ̃ ik andΣ̃e|k respectively. Then an estimator of the causality
measure fromY to X at horizonh is given by

ĈL
(

Y →
h

X | I
)

= ln

[

∑h−1
j=0 J0ψ̃ jkΣ̃e|kψ̃ ′

jkJ′0

∑h−1
j=0 J1ψ̂ jkΣ̂u|kψ̂ ′

jkJ′1

]

(2.17)

whereψ̂ jk, the estimator ofψ j, can be calculated usinĝπ ik, andψ̃ jk can be obtained in a similar
way; see Dufour and Taamouti (2010), who also proved the consistency and asymptotic normality
of this estimator of the causality measure. That is,

T 1/2
[

ĈL
(

Y →
h

X | I
)

−CL
(

Y →
h

X | I
)

]

d
→ N

[

0, σ2
c (h)

]

whereσ2
c (h) = DCΩD′

C, DC = ∂CL
(

Y →
h

X | I
)

/∂θ ′, θ =
(

vec(π)′ , vech(Σu)
′)′, Ω is the asymp-

totic variance-covariance matrix ofθ̂ , vec denotes the column stacking operator, and vech is the
column stacking operator that stacks the elements on and below the diagonal only. In the empiri-
cal implementation below, we estimate the unconditional and conditional causality measures up to
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horizon 15, based on (2.17), where the value ofk is chosen according to the Akaike information
criterion (AIC) as suggested by Lewis and Reinsel (1985).

As noted in Dufour and Taamouti (2010), analytical differentiation of the causality measures
with respect toθ is very difficult, so a bootstrap approach is a better choice. We thereforeuse the
eight-step residual-based bootstrap method proposed in Dufour and Taamouti (2010) to compute
the confidence interval of the causality measure at given horizonh. The asymptotic validity of the
residual-based bootstrap̂C∗

L

(

Y →
h

X | I
)

is proven in proposition 8.2 in Dufour and Taamouti (2010):

T 1/2
[

Ĉ∗
L

(

Y →
h

X | I
)

−ĈL
(

Y →
h

X | I
)

]

d
→ N

[

0, σ2
c (h)

]

whereσ2
c (h) is defined as above.

3. Empirical results

In this section, we first describe data, and then report the empirical results of non-causality tests
and numerical measures of the magnitude of a causal effect at multiple horizons. Because our aim
is to identify general patterns rather than to examine a single specific case, we present results on
multiple currencies and methods of treating the data. Many of the results are given graphically in
order to synthesize a large body of evidence in a relatively convenient format. We first present the
detailed results, and then summaries of key observations. Accounting for dollar effects turns out to
be an important element in understanding the effects, and these results aretherefore collected and
discussed separately.

3.1. Data and methodology

We consider three commodity-exporting, small open economies with floating exchange rates:
Canada, Australia and Chile. We use data on nominal exchange rates, commodity spot prices and the
S&P 500 index at daily and 5-minute frequencies. At the daily frequency, we use the following data
over the period 2000-2009: nominal exchange rates expressed as a number of domestic currency
units per foreign currency (CAD/USD, CAD/GBP, AUD/USD, AUD/JPY, CLP/USD), effective ex-
change rates for the Canadian and Australian dollars, commodity spot prices in U.S. dollars (WTI
crude oil, copper and gold), and the S&P 500 index. The latter is an indicatorof the general level of
asset prices, which may have predictive power for both commodity prices and exchange rates. At
the 5-minute frequency, we examine only the case of the Canadian dollar over the five-year period
2005-2009. Data descriptions, notation and sources are displayed in Table 1.

As already noted, we use the price of a single dominant exporting commodity for each country
instead of the price of a country-specific commodity index. We focus on three typical pairs of com-
modity prices and exchange rates: Australian dollar and gold price, Canadian dollar and crude oil
price and Chilean peso and copper price, because Granger-causalitybetween these pairs of variables
has attracted much attention both from academics and practitioners.

We first perform standard augmented Dickey-Fuller tests on the logarithms of all series and
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Table 1: Data description

Daily Frequency: 2000−2009
Nominal Exchange Rates Commodity Prices Stock Index Price

AUD/USD,AUD/JPY,AUD (TWI) Gold price S&P500index price
CAD/USD,CAD/GBP,CAD (CERI) WT I crude oil price S&P500index price
CLP/USD Copper price S&P500index price

5-minute Frequency: 2005−2009
CAD/USD WT I crude oil price S&P500index price

Data sources: daily CAD/USD and AUD/USD exchange rates are from the FRED data base at the Federal Reserve Bank
of St. Louis [http://www.research.stlouisfed.org/fred2]; the daily CLP/USD exchange rate comes from Central Bank of
Chile [http://www.bcentral.cl/eng/]; daily CAD/GBP and CERI are from Bank of Canada; daily AUD/JPY and Australia
effective rate are from Bank of Australia; the daily WTI Crude oil price isfrom the Energy Information Administration
[http://www.eia.doe.gov]; the daily gold price is from The London Bullion Market Association [http://www.lbma.org.uk];
the daily copper price comes from the Chilean Copper Commission [http://www.cochilco.cl/english/index.asp]; the daily
S&P500 composite index can be obtained from Yahoo Finance [http://finance.yahoo.com]; Intra-day (5-minute) data
were obtained from the CQG data factory [http://www.cqg.com].

their first differences. The results (not reported) suggest that all variables in the level are non-
stationary, and that the corresponding first differences are all stationary. Therefore, all data series are
made stationary by taking the first difference following logarithmic transformations. We then model
the transformed data series in each country as stationary and invertible VARMA processes with
finite order.4 As discussed in Section 2, we use OLS to estimate a VAR(k) model to approximate
the VARMA model (both unconstrained and constrained) which is autoregressive with potentially
infinite order, where the value ofk is chosen according to the AIC. We first run Granger non-
causality tests only at horizon one. We then estimate causality measures up to horizon 15, based on
(2.17) and build bootstrap confidence intervals.

3.2. U.S. dollar-denominated exchange rates

We now report and discuss the empirical results of Granger non-causality tests at horizon one, and
multi-horizon causality measures for U.S. dollar-denominated exchange rates (i.e., exchange rates
that use the U.S. dollar as numeraire, so that for example the CAD/US is the exchange rate measure
taken for Canada).

The resultingp-values of unconditional and conditional Granger non-causality tests athorizon
one for these exchange rates appear in Table 2. We present a large set of results in order to uncover
broad patterns present in the data, and we summarize these patterns in the text. The results of these
horizon-one tests can be characterized as follows. In both unconditional and conditional tests, the
non-causality hypothesis is in general rejected in both directions between commodity prices and

4In unconditional cases, the model involves only two variables: exchange rate and commodity price. In conditional
cases, the model involves three variables: exchange rate, commodity price and S&P500 price.
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exchange rates at daily and 5-minute frequencies. Non-causality tests from the S&P 500 index to
exchange rates are strongly significant in all cases, but we cannot reject the non-causality hypothesis
in the reverse direction for Canadian and Chilean cases at the daily frequency. Causality between
the S&P 500 index and the crude oil price at the daily frequency exists in bothdirections. The price
of gold is found to Granger-cause the S&P 500 index but not vice versa,and causality is found from
the S&P 500 index to the price of copper, but not in the other direction.

As expected, the general level of asset prices (as captured by the S&P500) has predictive power
for both exchange rates and commodity prices. It is therefore a potential vehicle for examining
indirect causality. In the 5-minute Canadian data, we fail to reject non-causality from the crude
oil price to the S&P 500 price, but non-causality from the exchange rate to the S&P 500 price is
rejected. Contrasting with the daily-data results underscores the fact thatdifferent causality patterns
can be obtained by using data at different frequencies, since changing the data frequency implies
changing the information set used for prediction.

We find evidence of some degree of causal impact in all directions. Of course, this apparent
symmetry may mask substantial differences in the strengths of these effects;in some cases, causality
may be very weak even if non-causality is rejected. We now turn to measuresof the magnitudes of
these effects. To compare the causal relationships, we compute the causality measures based on the
methods described in Section 2. The results are reported primarily through graphics.

The unconditional causality measures are reported in Figures 1 and 2, and the conditional causal-
ity measures are reported in Figures 3 - 8, in each case up to a fifteen periods horizon. A causality
measure is statistically significant when the confidence interval does not include the value zero; for
example, from the top left panel of Figure 1, we can conclude that crudeoil has significant predic-
tive power for the CAD/USD exchange rate up to 3 days. In reading the figures, note that vertical
scales may differ; to facilitate comparisons we have therefore included a number of panels in which
effects in the two directions are recorded on a common scale.

We note a few broad patterns that are observable in the figures:(1) causality measures usually
have the highest value at horizon one and decrease with increasing prediction horizon, and tend
to converge toward zero with increasingly tight confidence intervals;(2) in cases where the non-
causality hypothesis is not rejected, we typically find the corresponding measures are low but still
statistically significant, which may indicate that causality measures provide a morepowerful way
to test Granger non-causality; in cases where non-causality is rejected inboth directions, causality
measures in the two directions can typically be distinguished to some extent.

To streamline the following explanations, we will use the following short forms:to express the
relationship that causality fromA to B is stronger (weaker) than causality fromB to A at horizonh,
we simply say that ‘causality fromA to B is stronger (weaker) at horizonh’. When we say, without
a specific horizon, that ‘multi-horizon causality fromA to B is stronger (weaker)’ this indicates that
causality fromA to B is stronger (weaker) than causality fromB to A, up to the horizon at which
both measures decrease to values very close to zero.

Figures 1 and 2 treat unconditional cases in which the top four panels represent causality mea-
sures with confidence intervals, and the bottom two panels are comparisonsof two directions of
causality. Figures 3 and 4 are conditional causality measures with confidence intervals, for Canadian
data at the daily and 5-minute frequencies respectively. Figure 5 is a comparison of two directions
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Table 2: Granger non-causality tests –CAD/USD, AUS/USD, CLP/USD
(Daily: 4/1/2000 – 30/12/2009, 5-minute: 3/1/2005 – 31/12/2009)

Panel A: Unconditional non-causality tests [ bivariate model (P,ex) ]
Canada Daily 5 minutes Australia Daily Chile Daily

Poil 9 CAD/USD 0.007 0.000 Pgold 9 AUD/USD 0.000 Pcopper 9 CLP/USD 0.000
CAD/USD 9 Poil 0.057 0.000 AUD/USD 9 Pgold 0.000 CLP/USD 9 Pcopper 0.001

Panel B: Conditional non-causality tests [ trivariate model (P,ex,SP) ]
Poil 9 CAD/USD 0.028 0.000 Pgold 9 AUD/USD 0.000 Pcopper 9 CLP/USD 0.000
CAD/USD 9 Poil 0.030 0.002 AUD/USD 9 Pgold 0.000 CLP/USD 9 Pcopper 0.001
SP 9 CAD/USD 0.000 0.000 SP 9 AUD/USD 0.000 SP 9 CLP/USD 0.000
CAD/USD 9 SP 0.489 0.000 AUD/USD 9 SP 0.000 CLP/USD 9 SP 0.179
SP 9 Poil 0.004 0.000 SP 9 Pgold 0.086 SP 9 Pcopper 0.000
Poil 9 SP 0.044 0.722 Pgold 9 SP 0.010 Pcopper 9 SP 0.399

The notationsP andSP represent the price of commodity and the price of S&P500 index respectively.
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in the pairs of causality relationships included in Figures 3 and 4. Figures 6 and 7 are conditional
causality measures with confidence intervals for the Australian and Chilean data respectively, and
Figure 8 is a comparison of two directions in the causality relationships includedin Figures 6 and 7.

We can summarize the results implied in Figures 1 - 8 as follows.

1. At the daily frequency, the bottom left panel of Figure 1 indicates that causality from the crude
oil price to the CAD/USD exchange rate is stronger at horizon one, but beyond horizon one,
estimated causality in the reverse direction becomes stronger. Including the S&P 500 index
slightly weakens causality from the crude oil price to the CAD/USD exchangerate at horizon
one (the ratio is near 1.35 in favour of the commodity to exchange rate link), asshown in the
top left panel of Figure 5, but otherwise changes little. At the 5-minute frequency, causality
from the crude oil price to CAD/USD is much stronger at horizon one (the ratio exceeds 3.0
in favour of the commodity to exchange rate link), beyond which causality in both directions
becomes very weak (see the bottom right panel of Figure 1). The fourthpanel of Figure
5 shows that conditional results display causality patterns similar to those in unconditional
results.

2. For daily Australian data, causality from the AUD/USD to the gold price is stronger at horizon
one (almost twice as high according to our causality measure), beyond which the dominant
direction of causality alternates (see the bottom left panel of Figure 2). Incomparison, the
top left panel of Figure 8 shows that including the S&P 500 index helps to identify causality
from the gold price to the AUD/USD exchange rate.

3. For daily Chilean data, multi-horizon causality from the copper price to the CLP/USD ex-
change rate is much stronger (by a factor of 10), and conditional resultsdisplay similar
causality patterns (see the bottom right panel of Figure 2 and the right-middlepanel of Figure
8).

4. From Figures 5 and 8, multi-horizon causality from the S&P 500 to exchange rates is gener-
ally found to be stronger both at daily and 5-minute frequencies; multi-horizoncausality from
the gold price to the S&P 500 is stronger, while multi-horizon causality from the copper price
to the S&P 500 is weaker; multi-horizon causality from the crude oil price to the S&P 500 is
weaker for 5-minute data and stronger from horizon two for daily data.

Globally, these results suggest stronger causation from commodity to currency rather than vice
versa, but the results are by no means unambiguous. We now consider whether eliminating dollar
effects can clarify the overall pattern.

3.3. Non-U.S. dollar-denominated exchange rates

The exchange rates and commodity prices used above are denominated in USdollars, so our results
may be affected by this choice. For example, the sizable causality measures noted above from
CAD/USD to the crude oil price and from AUD/USD to the gold price may be partially due to such
a U.S. dollar denomination effect or dollar effect. To avoid attributing causal effects to this source,
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Table 3: Granger non-causality tests –CAD/GBP, CAD(CERI)
(Daily: 4/1/2000 – 30/12/2009)

Panel A: Unconditional non-causality tests [ bivariate model (P,ex) ]
Poil 9 CAD/GBP 0.026 Poil 9 CAD(CERI) 0.005
CAD/GBP 9 Poil 0.174 CERI 9 Poil 0.337

Panel B: Conditional non-causality tests [ trivariate model (P,ex,SP) ]
Poil 9 CAD/GBP 0.091 Poil 9 CAD(CERI) 0.008
CAD/GBP 9 Poil 0.159 CAD(CERI) 9 Poil 0.195
SP 9 CAD/GBP 0.000 SP 9 CAD(CERI) 0.000
CAD/GBP 9 SP 0.255 CAD(CERI) 9 SP 0.162
SP 9 Poil 0.033 SP 9 Poil 0.027
Poil 9 SP 0.027 Poil 9 SP 0.016

we repeat the above analysis using alternative currency benchmarks:for Canada the CAD/GBP and
the Canadian effective rate (CERI); for Australia AUD/JPY and the Australian effective rate (TWI).
The corresponding results for non-causality tests and causality measures are displayed in Tables
3 - 4 and Figures 9 - 16. Once again, we present numerous results in order to help discern typical
patterns. From these results, we find that eliminating the dollar effects leads todetection of a clearer
causal direction from commodity prices to exchange rates across all horizons, both in conditional
and conditional analyses.

Consider first non-causality tests at horizon one: in Table 2, causality between exchange rates
with the US dollar numeraire and commodity prices is generally bi-directional, whereasp-values in
the non-dollar-denominated cases of Tables 3 and 4 imply a clear causal direction from commodity
prices to exchange rates.

Next we examine the multi-horizon measures displayed in Figures 9 - 16. Figures 9 and 10
report unconditional analyses in which the top four panels represent causality measures with confi-
dence intervals, and the bottom two panels are comparisons of two directionsin a pair of causality
relationships. Figures 11 and 12 depict conditional causality measures withconfidence intervals
for the CAD/GBP and Canadian effective rate (CERI) exchange rates respectively. Figure 13 is a
comparison of the two directions of causality included in Figures 11 and 12. Figures 14 and are
conditional causality measures with confidence intervals for the AUD/JPY and Australian TWI ex-
change rates respectively. Figure 16 is the comparison of the directions of causality for the cases
included in Figures 14 and 15. We stress the following observations.

1. In contrast with the bottom left panel of Figure 1 (where causality fromthe crude oil price to
the CAD/USD is stronger at horizon one by factors up to 3, but beyond horizon one causality
in the reverse direction becomes stronger), the analogous results in the bottom panels of
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Table 4: Granger non-causality tests –AUD/JPY, AUD(TWI)
(Daily: 4/1/2000 – 30/12/2009)

Panel A: Unconditional non-causality tests [ bivariate model (P,ex) ]
Pgold 9 AUD/JPY 0.008 Pgold 9 AUD (TWI) 0.000
AUD/JPY 9 Pgold 0.785 AUD (TWI) 9 Pgold 0.440

Panel B: Conditional non-causality tests [ trivariate model (P,ex,SP) ]
Pgold 9 AUD/JPY 0.000 Pgold 9 AUD (TWI) 0.000
AUD/JPY 9 Pgold 0.755 AUD (TWI) 9 Pgold 0.607
SP 9 AUD/JPY 0.000 SP 9 AUD (TWI) 0.000
AUD/JPY 9 SP 0.053 AUD (TWI) 9 SP 0.158
SP 9 Pgold 0.033 SP 9 Pgold 0.000
Pgold 9 SP 0.413 Pgold 9 SP 0.349

Figure 9 show that multi-horizon causality from the crude oil price to the CAD/GBP and
CERI is much stronger. Conditional results show a similar causality pattern.

2. Compared with the bottom left panel of Figure 6 (in which the dominant direction of causal-
ity alternates across 15 horizons), the bottom panels of Figure 10 illustrate that multi-horizon
causality from the gold price to the AUD/JPY and Australian TWI is much stronger. Con-
ditional results again show a similar causality pattern. In addition, from Figures 13 and 16,
we observe that causality from the S&P 500 to all four exchange rates thatwe consider here
is much stronger, especially at horizon one; multi-horizon causality from theoil price to the
S&P 500 is stronger, but causality from the gold price to the S&P 500 is weakerat horizon
one.

In general, eliminating dollar effects leads to a clearer pattern of multi-horizoncausality direc-
tion running from commodity prices to exchange rates at the daily frequency.The results are robust
to consideration of conditional causality patterns using the S&P 500 as an auxiliary variable.

4. Conclusion

Both popular commentary and economic reasoning based on demand for currencies in small open
economies suggest that causality should run from commodity prices to exchange rates, but the
present value model of forward-looking exchange rates implies that exchange rates should Granger-
cause commodity prices. The debate on the direction of causality between commodity prices and ex-
change rates is still open. In order to investigate this topic further, we haveexamined high-frequency
causal relationships between exchange rates of three typical commodity economies (Canada, Aus-
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tralia, and Chile) and the prices of their corresponding dominant exporting commodities (crude oil,
gold, and copper). We use daily and 5-minute data, which is of great interest to financial market
participants who have short decision intervals, and also reduces time-aggregation effects. In addi-
tion, we have applied the concept of multi-horizon causality measures to compare the strength of
causal relationships, to provide more powerful non-causality tests, andto determine how long the
causal effects will last.

In contrast with previous studies, our results suggest unconditional and conditional causality
running from commodity prices to exchange rates is stronger than that in the opposite direction
across multiple horizons, after removing potential dollar effects. These results suggest that the
macroeconomic/trade-based mechanism mentioned in the introduction plays a central role in ex-
change rate dynamics, despite the financial features of these markets. To“see” these effects in the
data, it is however important to consider a sufficiently high data frequencyand to use an appropriate
causal methodology. The results also underscore the facts that the interpretation of causality de-
pends on time units and observation intervals (data frequency), and that causality measures present
a more informative analysis of Granger causality than tests of non-causalityalone.

High-frequency data are potentially very fruitful in causality studies, allowing us to distinguish
with high resolution between immediate and lagged effects corresponding with different agents’
interests. However, there remain further avenues to investigate. For example, in our causality mea-
sures with 5-minute data, we estimate the VAR model at this frequency and the causality measures
lasting up to 13 periods, that is, only about one hour. If we were to allow longer periods for the
effects to develop we would need a large number of lags in the VAR model, sacrificing estimation
efficiency. One possible method of handling this difficulty is to use mixed-data sampling (MIDAS)
and mixed-frequency VAR (MF- VAR) approaches [Ghysels, Santa-Clara and Valkanov (2004),
Ghysels, Sinko and Valkanov (2007), Ghysels, Hill and Motegi (2013)and Kuzin, Marcellino and
Schumacher (2010)]. Furthermore, it is interesting to consider out-of-sample tests for Granger
causality [Inoue and Kilian (2004) and Chen (2005)]. Another worthwhile extension would be to
examine second-order causality between commodity prices and exchange rates [Granger, Robins
and Engle (1986), Comte and Lieberman (2000), Hafner (2009), and Dufour and Zhang (2012)].
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Figure 1. Unconditional causality measures between CAD/USD and oil price
(Daily: 4/1/2000 – 30/12/2009, 5-minute: 3/1/2005 – 31/12/2009)
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Figure 2. Unconditional causality measures between AUD/USD and gold price; between
CLP/USD and copper price (Daily: 4/1/2000 – 30/12/2009)
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Figure 3. Conditional causality measures between CAD/USD, oil price and S&P500 price
(Daily: 4/1/2000 – 30/12/2009)
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Figure 4. Conditional causality measures between CAD/USD, oil price and S&P500 price
(5-minute: 3/1/2005 – 31/12/2009)
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Figure 5. Comparison of two directions of causality between CAD/USD, oil price and S&P500
price

(Daily: 4/1/2000 – 30/12/2009, 5-minute: 3/1/2005 – 31/12/2009)
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Figure 6. Conditional causality measures between AUD/USD, gold price andS&P500 price
(Daily: 4/1/2000 – 30/12/2009)
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Figure 7. Conditional causality measures between CLP/USD, copper priceand S&P500 price
(Daily: 4/1/2000 – 30/12/2009)
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Figure 8. Comparison of two directions of causality between AUD/USD, gold price and S&P500
price; between CLP/USD, copper price and S&P500 price (Daily: 4/1/2000– 30/12/2009)
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Figure 9. Unconditional causality measures between CAD/GBP and oil price; between CERI and
oil price (Daily: 4/1/2000 – 30/12/2009)

30



Figure 10. Unconditional causality measures between AUD/JPY and gold price; between AUD
(TWI) and gold price (Daily: 4/1/2000 – 30/12/2009)
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Figure 11. Conditional causality measures between CAD/GBP, oil price andS&P500 price
(Daily: 4/1/2000 – 30/12/2009)
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Figure 12. Conditional causality measures between CERI, oil price and S&P500 price
(Daily: 4/1/2000 – 30/12/2009)
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Figure 13. Comparison of two directions of causality between CAD/GBP, oil price and S&P500
price; between CERI, oil price and S&P500 price (Daily: 4/1/2000 – 30/12/2009)
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Figure 14. Conditional causality measures between AUD/JPY, gold price and S&P500 price
(Daily: 4/1/2000 – 30/12/2009)
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Figure 15. Conditional causality measures between AUD (TWI), gold priceand S&P500 price
(Daily: 4/1/2000 – 30/12/2009)
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Figure 16. Comparison of two directions of causality between AUD/JPY, goldprice and S&P500
price; between AUD (TWI), gold price and S&P500 price (Daily: 4/1/2000 –30/12/2009)
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