Jean-Marie Dufour February 18, 2019

McGill University ECON 763 Financial econometrics Mid-term exam

No documentation allowed Time allowed: 1.5 hour

- 25 points 1. Answer by TRUE, FALSE or UNCERTAIN to each one of the following statements. Justify briefly your answer. (Maximum: one page per question.)
 - (a) If a random variable has finite second moments, it has finite moments at all higher orders.
 - (b) Any stationary process of order 5 is also stationary of order 2.
 - (c) Any strictly stationary process is in L_2 .
 - (d) The Wold theorem holds for finite-order moving average processes but not autoregressive processes.
 - (e) Non-invertible moving processes have no covariance generating function.
- 50 points 2. Consider the following models:

$$X_t = 10 + 0.7 X_{t-1} - 0.2 X_{t-2} + u_t \tag{1}$$

where $\{u_t : t \in \mathbb{Z}\}\$ is an *i.i.d.* N(0,1) sequence. For each one of these models, answer the following questions.

- (a) Is this model stationary? Why?
- (b) Is this model invertible? Why?
- (c) Compute:
 - i. $E(X_t)$; ii. $\gamma(k)$, k = 1, ..., 8; iii. $\rho(k)$, k = 1, 2, ..., 8.

- (d) Graph $\rho(k)$, k = 1, 2, ..., 8.
- (e) Find the coefficients of u_t , u_{t-1} , u_{t-2} , u_{t-3} and u_{t-4} in the moving average representation of X_t .
- (f) Find the autocovariance generating function of X_t .
- (g) Compute the first two partial autocorrelations of X_t .
- (h) If $X_{10} = 11$, compute the best linear forecast of X_{11} based on X_{10} (only). Justify your answer.
- (i) If $X_8 = 12$, $X_9 = 9$ and $X_{10} = 11$, compute the best linear forecast of X_{11} and X_{12} based on the past X_t up to time 10. Justify your answer.
- 3. Let X_1, X_2, \ldots, X_T be a time series. 25 points
 - (a) Define:
 - i. the sample autocorrelations for this series;
 - ii. the partial autocorrelations for this series.
 - (b) Discuss the asymptotic distributions of these two sets of autocorrelations in the following cases:
 - i. under the hypothesis that X_1, X_2, \ldots, X_T are independent and identically distributed (i.i.d.);
 - ii. under the hypothesis that the process follows a moving average of finite order.
 - (c) Propose a method for testing the hypothesis that X_1, X_2, \ldots, X_T are independent and identically distributed (i.i.d.) without any assumption on the existence of moments for X_1, X_2, \ldots, X_T .