Jean-Marie Dufour March 11, 2014

McGill University ECN 706 Special topics in econometrics Mid-term exam

No documentation allowed Time allowed: 1.5 hour

- 30 points 1. Provide brief answers to the following questions (maximum of 1 page per question).
 - (a) Explain the difference between the "level" of a test and its "size".
 - (b) Explain the difference between the "level" of a confidence set and its "size".
 - (c) Discuss the link between tests and confidence sets: how confidence sets can be derived from tests, and vice-versa.
- 40 points 2. Consider the following simplified equilibrium model:

$$D_t = \alpha + 2p_t + u_{1t},$$

 $S_t = c + u_{2t},$
 $Q_t = D_t = S_t, \quad t = 1, ..., T$

where D_t is the demand for a product, S_t the supply for the same product, and Q_t the quantity produced and sold. We suppose that the vectors $(u_{1t}, u_{2t})', t = 1, ..., T$, are independent and $N[0, I_2]$.

- (a) Find the reduced form of this model.
- (b) For which parameters is the vector $Q = (Q_1, ..., Q_T)'$ exogenous? Justify your answer.
- (c) For which parameters is the vector $p = (p_1, \ldots, p_T)'$ exogenous? Justify your answer.
- (d) Are the variables Q_t and p_t simultaneous?

30 points 3. Consider the linear regression model

$$y = X\beta + u \tag{0.1}$$

where y is a $T \times 1$ vector of observations on a dependent variable, X is a $T \times k$ fixed matrix of explanatory variables (observed), $\beta = (\beta_1, \dots, \beta_k)'$, and $u = (u_1, \dots, u_T)'$ is a $T \times 1$ vector of unobserved error terms. Suppose the elements of u are independent and identically distributed according to a $\sigma t(1)$ distribution, where t(1) represents a Student t distribution with 1 degree of freedom and σ is an unknown constant.

- (a) Propose a method for testing the hypothesis $H_0: \beta_1 = 1$ at level $\alpha = 0.05$ in the context of this model such the size of the test is exactly equal to $\alpha = 0.05$.
- (b) Propose a test for detecting serial dependence between the errors u_1, \ldots, u_T such the size of the test is exactly equal to $\alpha = 0.05$.