McGill University ECN 706 Special topics in econometrics Final exam

No documentation allowed Time allowed: 3 hours

10 points

1. Let $\ell(Y; \theta)$ be the likelihood function for the sample $Y = (Y_1, \dots, Y_n)'$. Show that

$$I(\theta) = E\left[-\frac{\partial^2 \log \ell(Y;\theta)}{\partial \theta \partial \theta'}\right].$$

20 points

2. Consider the following assumptions:

H1: the variables Y_1, \ldots, Y_n are independent and follow the same distribution with density $f(y; \theta), \theta \in \Theta \subseteq \mathbb{R}^p$;

H2: the interior of Θ is non-empty, and θ_0 belongs to the interior of Θ ;

H3: the true unknown value θ_0 is identifiable;

H4: the log-likelihood

$$L_n(y; \theta) = \sum_{i=1}^n \log [f(y_i; \theta)]$$
 is continuous in θ ;

H5: $\mathsf{E}_{\theta_0}[\log f(Y_i; \theta)]$ is finite;

H6: the log-likelihood is such that $\frac{1}{n}L_n(y;\theta)$ converges almost surely to $\mathsf{E}_{\theta_0}[\log(Y_i;\theta)]$ uniformly in $\theta \in \Theta$;

H7: the log-likelihood is twice continuously differentiable in open neighborhood of θ_0 ;

H8: $I_1(\theta_0) = \mathsf{E}_{\theta_0} \left[-\frac{\partial^2 \log f(Y;\theta)}{\partial \theta \partial \theta'} \right]$ is finite and invertible.

If $\hat{\theta}_n$ is consistent sequence of local maxima, show that the asymptotic distribution of $\sqrt{n}(\hat{\theta}_n - \theta_0)$ is $N[0, I_1(\theta_0)^{-1}]$.

20 points

3. State and prove the Neyman-Pearson theorem.

10 points

- 4. Define the following notions:
 - (a) unbiased test;
 - (b) α -similar test;
 - (c) test with Neyman α -structure.

10 points

Demonstrate the following relationship between identifiability and unbiased estimation:

if a function $g(\theta)$ of a parameter θ is not identifiable, then there is no unbiased estimator of $g(\theta)$.

30 points

6. Consider the standard simultaneous equations model:

$$y = Y\beta + X_1\gamma + u, \qquad (1)$$

$$Y = X_1 \Pi_1 + X_2 \Pi_2 + V, (2)$$

where y and Y are $T \times 1$ and $T \times G$ matrices of endogenous variables, X_1 and X_2 are $T \times k_1$ and $T \times k_2$ matrices of exogenous variables, β and γ are $G \times 1$ and $k_1 \times 1$ vectors of unknown coefficients, Π_1 and Π_2 are $k_1 \times G$ and $k_2 \times G$ matrices of unknown coefficients, $u = (u_1, \dots, u_T)'$ is a $T \times 1$ vector of structural disturbances, and $V = [V_1, \dots, V_T]'$ is a $T \times G$ matrix of reduced-form disturbances,

$$X = [X_1, X_2]$$
 is a full-column rank $T \times k$ matrix (3)

where $k = k_1 + k_2$. and

$$u$$
 and X are independent; (4)

$$u \sim N[0, \sigma_u^2 I_T]. \tag{5}$$

- (a) When is the parameter β identified? Explain your answer.
- (b) When is the parameter β weakly identified? Explain your answer.
- (c) Suppose we wish to test the hypothesis

$$H_0(\beta_0): \beta = \beta_0. \tag{6}$$

- i. Describe the standard Wald-type test for $H_0(\beta_0)$ based on two-stage-least-least squares, and describe its properties.
- ii. Describe an identification-robust procedure for testing $H_0(\beta_0)$.
- iii. Discuss the properties of the latter procedure if the model for Y is in fact

$$Y = X_1 \Pi_1 + X_2 \Pi_2 + X_3 \Pi_3 + V \tag{7}$$

where X_3 is a $T \times k_3$ matrix of fixed explanatory variables.