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1. Statistical models

1.1 Definition STATISTICAL MODEL. A statistical model is a pair (Z, P) where Z is
a set of possible observations and P a nonempty family of probability measures which
assign probabilities to subsets of Z. When the probability measures in P are all defined on
the same c-algebra of events Az in Z, we shall also refer to the triplet (Z, Az, P) as a
statistical model.

1.2 Definition DOMINATED MODEL. A statistical model (Z, Az, P) is dominated if all
the probability measures in P have a density with respect to the same measure j, on Z. i
is called the dominating measure and we say that (Z, P) is u-dominated.

1.3 Definition HOMOGENEOUS MODEL. A statistical model (£, Az, P) is homoge-
neous if it is dominated and the dominating measure (. can be chosen so that the densities
are all strictly positive.

1.4 Definition PARAMETRIC MODEL. A statistical model (Z, P) is said to be
parametrized by the elements of a nonempty set © if the set P of probability measures
has the form

P={P:0cO}.

If the set O is a subset of RP or we can define a one-to-one transformation between © and
the elements of a subset of RP, we say that (Z, P) is a parametric model. Otherwise, the
model (Z, P) is said to be nonparametric.

1.5 Definition FUNCTIONAL PARAMETER. A functional parameter on a statistical model
(Z, P) is an application
g:P—06

which assigns to each element P € P a parameter § = g(P) € ©, where © is a nonempty
set (the parameter space).

Functional parameters allow one to associate parameters with the distributions of para-
metric or nonparametric models. The mean, variance, median, etc., of a probability distri-
bution may all be interpreted as functional parameters.

2. Identification
Let (£, Az, P) astatistical model such that P = {F, : § € O} .

2.1 Definition IDENTIFICATION OF A PARAMETER VALUE. We say that a parameter
value §; € O is identifiable if there is no other value 05 € © such that Py, = P,.



2.2 Definition IDENTIFICATION OF A MODEL. We say that the model (Z, Az, P) is
identifiable if all the elements of © are identifiable.

2.3 Definition IDENTIFICATION OF A PARAMETRIC FUNCTION. Letvy : 8 — W be a
function of §. We say that the function 1) () is identifiable if

Y (01) #(02) = Py, # Py, ,V0,,0, € ©

or, equivalently,
Pgl = P92 :>’¢<(91) :w(eg) ,V91,92 €6 .

2.4 Definition LOCAL IDENTIFICATION. Suppose the set © has a set of neighborhoods
defined on it (a topology). Then we say that a parameter value 6, € O is locally identifiable
if there is a neighborhood V' (6) of 0, such that

GQGV(Hl) and€2#91:>P917£P92.

3. Likelihood and score functions

3.1 Definition LIKELIHOOD FUNCTION. Let (Z, P) be a statistical model which satis-
fies the following assumptions:

(A1) (Z, P) is a u-dominated model;
(A2) P={F:0c0O CR},
(A3) L(z;0), z € Z, is the density function (with respect to 1) associated with P.

The density function L (z;0) viewed as a function of 6 is called the likelihood function of
model (Z, P). The symbol g (+) refers to the expected value with respect to 0 (provided it
exists) :
l;?[h(Z)] = / h(z)dPy(z) = / h(z)L(z;0)du(z) .
zZ zZ

The vector Z often has the form
Z=(v],. .Y

where Y; € R™ is an “individual” observation vector and § = (01, 6,,...,6,) € ©. Usu-
ally, the density L (z; @) is written in the form

L(z0) =[] f(2:0) = L, (2:0) (3.1)



where f; (z;0) is a density for an “individual observation”. f; (z; ) usually has one of the
following forms :

fi(2;0) = f(y;0) , yo € R™ (3.2)

fe(z:0) = f(ye | 21;0) (3.3)

where z; is a k x 1 vector of conditioning variables (“explanatory variables”) and f (v, ;.)
is the density function of y; (given x; ) as a function of the parameter vector 6, or

Li(230) = [ (ye | Ye—1, 245 0) (3.4)

where 4;—1 = (Yo, Y1, - - -, y,—1) is a vector of past values of 3 and #, is a vector of “initial
conditions”.

3.2 Definition SCORE FUNCTION. Under the assumption (Al) to (A3), suppose also
that:

(A4) O isan open set in R?;
(A5)  OL(z;0) /00 exists,Vz € Z V0 € 6
(A6) L(z;0)>0,Vze€ Z Ve o,

(A7) [ AL (0] du(z) = & | [ L(=:0)du(2)].

Then the function

S(z;&)z%[lnL(z;@)] e, zeZ,

is called the score function associated with the likelihood L (z;0) .

3.3 Proposition MEAN OF A SCORE. Under the assumptions (Al) to (A7), we have :

ng;en=/Zs<z;e>L<z;e>du<z>=o.

3.4 Definition INFORMATION MATRIX. In addition to (A1) to (A7), suppose also that:

(A8)  S(Z;0) has finite second moments with respect to Py, V6 € O.



Then, the covariance matrix of S (Z ;0),

10) = VlS(2:6)=E[5(Z:0)5(Z:0)]
— [ SE0SE0 LE0)
is called the Fisher information matrix associated with L (z;0) .

3.5 Proposition INFORMATION MATRIX IDENTITY. Under the assumptions (Al) to
(A8), suppose also that:

(A9) PLED) exists, Wz € Z Y0 € 6;

0006’
(A10) VOeoO,
9L (= 0) 2
G20 g (z) = L(z .
L%wjmaawﬁl<wmmﬂ
fhen 8 InL(Z;0)]
n ;
1(9)_5[_W_ eo.

4. Efficiency bounds

4.1 Definition REGULAR ESTIMATOR. Under the assumptions (Al) to (A5), an estima-
tor T' (Z) of some function v () € RY is regular if it satisfies the following properties:

(a) T (Z) has finite second moments;
(b) fz T (2) L(z;60)du(z) is differentiable with respect to 0;
(¢) %fz T(2)L(z;0)du(z) = fz T (2) & [L(z;0)]du(z), forall6 € 6.

4.2 Theorem FRECHET-DARMOIS-CRAMER-RAO BOUND. Let the assumptions (Al)
to (A8) hold, let 1) (0) € R? be a differentiable function of 8, and suppose that

(A11)  the information matrix I (0) is positive definite, V0 € O.
Ifl;;[T (Z)] = (0),V0 € O, then the difference
Vo [T (Z)]—P(0)1(6)" P(8)

is positive semi-definite for all § € ©, where P (0) = 0v (0) /06’



4.3 Remark If ) () = 6, this means that Vj [T (Z)] — I (§)~" is positive semi-definite.
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