Statistical models and likelihood functions *

Jean-Marie Dufour † McGill University

First version: February 1998 This version: January 12, 2021, 5:00pm

^{*}This work was supported by the William Dow Chair in Political Economy (McGill University), the Bank of Canada (Research Fellowship), the Toulouse School of Economics (Pierre-de-Fermat Chair of excellence), the Universitad Carlos III de Madrid (Banco Santander de Madrid Chair of excellence), a Guggenheim Fellowship, a Konrad-Adenauer Fellowship (Alexander-von-Humboldt Foundation, Germany), the Canadian Network of Centres of Excellence [program on *Mathematics of Information Technology and Complex Systems* (MITACS)], the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, and the Fonds de recherche sur la société et la culture (Québec).2

[†] William Dow Professor of Economics, McGill University, Centre interuniversitaire de recherche en analyse des organisations (CIRANO), and Centre interuniversitaire de recherche en économie quantitative (CIREQ). Mailing address: Department of Economics, McGill University, Leacock Building, Room 414, 855 Sherbrooke Street West, Montréal, Québec H3A 2T7, Canada. TEL: (1) 514 398 6071; FAX: (1) 514 398 4800; e-mail: jean-marie.dufour@mcgill.ca. Web page: http://www.jeanmariedufour.com

Contents

Lis	t of Definitions, Propositions and Theorems	ii
1.	Statistical models	1
2.	Identification	1
3.	Likelihood and score functions	2
4.	Efficiency bounds	4

List of Definitions, Assumptions, Propositions and Theorems

1.1	Definition: Statistical model	1
1.2	Definition: Dominated model	1
1.3	Definition: Homogeneous model	1
1.4	Definition: Parametric model	1
1.5	Definition: Functional parameter	1
2.1	Definition: Identification of a parameter value	1
2.2	Definition: Identification of a model	2
2.3	Definition: Identification of a parametric function	2
2.4	Definition: Local identification	2
3.1	Definition: Likelihood function	2
3.2	Definition: Score function	3
3.3	Proposition: Mean of a score	3
3.4	Proposition: Information matrix	3
3.5	Proposition: Information matrix identity	4
4.1	Definition: Regular estimator	4
4.2	Theorem : Fréchet-Darmois-Cramer-Rao bound	4

1. Statistical models

- **1.1 Definition** STATISTICAL MODEL. A statistical model is a pair $(\mathcal{Z}, \mathcal{P})$ where \mathcal{Z} is a set of possible observations and \mathcal{P} a nonempty family of probability measures which assign probabilities to subsets of \mathcal{Z} . When the probability measures in \mathcal{P} are all defined on the same σ -algebra of events $\mathcal{A}_{\mathcal{Z}}$ in \mathcal{Z} , we shall also refer to the triplet $(\mathcal{Z}, \mathcal{A}_{\mathcal{Z}}, \mathcal{P})$ as a statistical model.
- **1.2 Definition** DOMINATED MODEL. A statistical model $(\mathcal{Z}, \mathcal{A}_{\mathcal{Z}}, \mathcal{P})$ is dominated if all the probability measures in \mathcal{P} have a density with respect to the same measure μ on \mathcal{Z} . μ is called the dominating measure and we say that $(\mathcal{Z}, \mathcal{P})$ is μ -dominated.
- **1.3 Definition** HOMOGENEOUS MODEL. A statistical model $(\mathcal{Z}, \mathcal{A}_{\mathcal{Z}}, \mathcal{P})$ is homogeneous if it is dominated and the dominating measure μ can be chosen so that the densities are all strictly positive.
- **1.4 Definition** Parametric Model. A statistical model $(\mathcal{Z}, \mathcal{P})$ is said to be parametrized by the elements of a nonempty set Θ if the set \mathcal{P} of probability measures has the form

$$\mathcal{P} = \{ P_{\theta} : \theta \in \Theta \} .$$

If the set Θ is a subset of \mathbb{R}^p or we can define a one-to-one transformation between Θ and the elements of a subset of \mathbb{R}^p , we say that $(\mathcal{Z}, \mathcal{P})$ is a parametric model. Otherwise, the model $(\mathcal{Z}, \mathcal{P})$ is said to be nonparametric.

1.5 Definition FUNCTIONAL PARAMETER. A functional parameter on a statistical model $(\mathcal{Z}, \mathcal{P})$ is an application

$$g: \mathcal{P} \to \Theta$$

which assigns to each element $P \in \mathcal{P}$ a parameter $\theta = g(P) \in \Theta$, where Θ is a nonempty set (the parameter space).

Functional parameters allow one to associate parameters with the distributions of parametric or nonparametric models. The mean, variance, median, etc., of a probability distribution may all be interpreted as functional parameters.

2. Identification

Let $(\mathcal{Z}, \mathcal{A}_{\mathcal{Z}}, \mathcal{P})$ a statistical model such that $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$.

2.1 Definition IDENTIFICATION OF A PARAMETER VALUE. We say that a parameter value $\theta_1 \in \Theta$ is identifiable if there is no other value $\theta_2 \in \Theta$ such that $P_{\theta_1} = P_{\theta_2}$.

- **2.2 Definition** IDENTIFICATION OF A MODEL. We say that the model $(\mathcal{Z}, \mathcal{A}_{\mathcal{Z}}, \mathcal{P})$ is identifiable if all the elements of Θ are identifiable.
- **2.3 Definition** IDENTIFICATION OF A PARAMETRIC FUNCTION. Let $\psi:\theta\to\Psi$ be a function of θ . We say that the function $\psi(\theta)$ is identifiable if

$$\psi(\theta_1) \neq \psi(\theta_2) \Rightarrow P_{\theta_1} \neq P_{\theta_2}, \forall \theta_1, \theta_2 \in \Theta$$

or, equivalently,

$$P_{\theta_1} = P_{\theta_2} \Rightarrow \psi(\theta_1) = \psi(\theta_2), \forall \theta_1, \theta_2 \in \Theta$$
.

2.4 Definition LOCAL IDENTIFICATION. Suppose the set Θ has a set of neighborhoods defined on it (a topology). Then we say that a parameter value $\theta_1 \in \Theta$ is locally identifiable if there is a neighborhood $V(\theta_1)$ of θ_1 such that

$$\theta_2 \in V(\theta_1)$$
 and $\theta_2 \neq \theta_1 \Rightarrow P_{\theta_1} \neq P_{\theta_2}$.

3. Likelihood and score functions

- **3.1 Definition** LIKELIHOOD FUNCTION. Let $(\mathcal{Z}, \mathcal{P})$ be a statistical model which satisfies the following assumptions:
- (A1) $(\mathcal{Z}, \mathcal{P})$ is a μ -dominated model;
- (A2) $\mathcal{P} = \{P_{\theta} : \theta \in \Theta \subseteq \mathbb{R}^p\};$
- (A3) $L(z;\theta), z \in \mathcal{Z}$, is the density function (with respect to μ) associated with P_{θ} .

The density function $L(z;\theta)$ viewed as a function of θ is called the likelihood function of model $(\mathcal{Z}, \mathcal{P})$. The symbol $E(\cdot)$ refers to the expected value with respect to θ (provided it exists):

$$E_{\theta}[h(Z)] = \int_{\mathcal{Z}} h(z) dP_{\theta}(z) = \int_{\mathcal{Z}} h(z) L(z;\theta) d\mu(z) .$$

The vector Z often has the form

$$Z = (Y_1', Y_2', \dots, Y_n')'$$

where $Y_t \in \mathbb{R}^m$ is an "individual" observation vector and $\theta = (\theta_1, \theta_2, \dots, \theta_p)' \in \Theta$. Usually, the density $L(z; \theta)$ is written in the form

$$L(z;\theta) = \prod_{t=1}^{n} f_t(z;\theta) \equiv L_n(z;\theta)$$
(3.1)

where $f_t(z;\theta)$ is a density for an "individual observation". $f_t(z;\theta)$ usually has one of the following forms :

$$f_t(z;\theta) = f(y_t;\theta), \ y_t \in \mathbb{R}^m$$
 (3.2)

$$f_t(z;\theta) = f(y_t \mid x_t;\theta) \tag{3.3}$$

where x_t is a $k \times 1$ vector of conditioning variables ("explanatory variables") and $f(y_t;.)$ is the density function of y_t (given x_t) as a function of the parameter vector θ , or

$$L_t(z;\theta) = f(y_t \mid \bar{y}_{t-1}, x_t; \theta)$$
(3.4)

where $\bar{y}_{t-1} = (\bar{y}_0, y_1, \dots, y_{t-1})'$ is a vector of past values of y and \bar{y}_0 is a vector of "initial conditions".

- **3.2 Definition** Score function. Under the assumption (A1) to (A3), suppose also that:
- (**A4**) Θ is an open set in \mathbb{R}^p ;
- (A5) $\partial L(z;\theta)/\partial \theta$ exists, $\forall z \in \mathcal{Z}, \forall \theta \in \Theta$;
- $(\mathbf{A6}) \qquad L\left(z\,;\theta\right)>0\;, \forall z\in\mathcal{Z}\;, \forall \theta\in\Theta;$
- $(\mathbf{A7}) \qquad \int_{\mathcal{Z}} \frac{\partial}{\partial \theta} \left[L\left(z\,;\theta\right) \right] d\mu\left(z\right) = \frac{\partial}{\partial \theta} \left[\int_{\mathcal{Z}} L\left(z\,;\theta\right) d\mu\left(z\right) \right].$

Then the function

$$S\left(z;\theta\right)=rac{\partial}{\partial\theta}\left[\ln L\left(z;\theta
ight)
ight]\;,\theta\in\Theta\;,\;z\in\mathcal{Z}$$
 ,

is called the score function associated with the likelihood $L\left(z\,;\theta\right)$.

3.3 Proposition MEAN OF A SCORE. Under the assumptions (A1) to (A7), we have :

$$E_{\theta}[S(Z;\theta)] = \int_{\mathcal{Z}} S(z;\theta) L(z;\theta) d\mu(z) = 0.$$

- **3.4 Definition** Information matrix. In addition to (A1) to (A7), suppose also that:
- (A8) $S(Z;\theta)$ has finite second moments with respect to $P_{\theta}, \forall \theta \in \Theta$.

Then, the covariance matrix of $S(Z;\theta)$,

$$I(\theta) = V_{\theta} [S(Z;\theta)] = E_{\theta} [S(Z;\theta) S(Z;\theta)']$$
$$= \int_{Z} S(z;\theta) S(z;\theta)' L(z;\theta) d\mu(z)$$

is called the Fisher information matrix associated with $L(z;\theta)$.

- **3.5 Proposition** INFORMATION MATRIX IDENTITY. Under the assumptions (A1) to (A8), suppose also that:
- (**A9**) $\frac{\partial^2 L(z;\theta)}{\partial \theta \partial \theta'}$ exists, $\forall z \in \mathcal{Z}$, $\forall \theta \in \Theta$;
- (A10) $\forall \theta \in \Theta$,

$$\int_{\mathcal{Z}} \frac{\partial^{2}L\left(z;\theta\right)}{\partial\theta_{i}\partial\theta_{j}} d\mu\left(z\right) = \frac{\partial^{2}}{\partial\theta_{i}\partial\theta_{j}} \left[\int_{\mathcal{Z}} L\left(z;\theta\right) d\mu\left(z\right) \right] \; .$$

Then

$$I(\theta) = E \left[-\frac{\partial^2 \ln L(Z;\theta)}{\partial \theta \partial \theta'} \right], \forall \theta \in \Theta.$$

4. Efficiency bounds

- **4.1 Definition** REGULAR ESTIMATOR. Under the assumptions (A1) to (A5), an estimator T(Z) of some function $\psi(\theta) \in \mathbb{R}^q$ is regular if it satisfies the following properties:
- (a) T(Z) has finite second moments;
- (b) $\int_{z} T(z) L(z;\theta) d\mu(z) \text{ is differentiable with respect to } \theta;$
- (c) $\frac{\partial}{\partial \theta} \int_{\mathcal{Z}} T(z) L(z;\theta) d\mu(z) = \int_{\mathcal{Z}} T(z) \frac{\partial}{\partial \theta} [L(z;\theta)] d\mu(z)$, for all $\theta \in \Theta$.
- **4.2 Theorem** FRÉCHET-DARMOIS-CRAMER-RAO BOUND. Let the assumptions (A1) to (A8) hold, let $\psi(\theta) \in \mathbb{R}^q$ be a differentiable function of θ , and suppose that
- (A11) the information matrix $I(\theta)$ is positive definite, $\forall \theta \in \Theta$.

If $E[T(Z)] = \psi(\theta)$, $\forall \theta \in \Theta$, then the difference

$$V_{\theta} [T(Z)] - P(\theta) I(\theta)^{-1} P(\theta)'$$

is positive semi-definite for all $\theta \in \Theta$, where $P\left(\theta\right) = \partial\psi\left(\theta\right)/\partial\theta'$.

4.3 Remark If $\psi\left(\theta\right)=\theta$, this means that $V_{\theta}\left[T\left(Z\right)\right]-I\left(\theta\right)^{-1}$ is positive semi-definite.

References

GOURIÉROUX, C., AND A. MONFORT (1989): Statistique et modèles économétriques, Volumes 1 et 2. Economica, Paris.

LEHMANN, E. L. (1983): Theory of Point Estimation. John Wiley & Sons, New York.

——— (1986): Testing Statistical Hypotheses. John Wiley & Sons, New York, 2nd edn.