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1. Statistical models

1.1 Definition STATISTICAL MODEL. A statistical
model is a pair (Z, P) where Z is a set of possible
observations and ‘P a nonempty family of probability
measures which assign probabilities to subsets of Z.
When the probability measures in P are all defined
on the same o-algebra of events Az in Z, we shall
also refer to the triplet (Z, Az, P) as a statistical
model.

1.2 Definition DOMINATED MODEL. A statistical
model (Z, Az, P) is dominated if all the probabil-
ity measures in P have a density with respect to the
same measure [, on Z. [ is called the dominating
measure and we say that (Z, P) is u-dominated.

1.3 Definition HOMOGENEOUS MODEL. A sta-
tistical model (Z, Az, P) is homogeneous if it is
dominated and the dominating measure [ can be
chosen so that the densities are all strictly positive.

1.4 Definition PARAMETRIC MODEL. A statistical
model (Z, P) is said to be parametrized by the ele-
ments of a nonempty set O if the set P of probability



measures has the form
P = {Pg 0 e 8} :

If the set @ is a subset of RP or we can define a one-
to-one transformation between © and the elements
of a subset of R, we say that (Z, P) is a parametric
model. Otherwise, the model (Z, P) is said to be
nonparametric.

1.5 Definition FUNCTIONAL PARAMETER. A
functional parameter on a statistical model (Z, P)
1s an application

g:P—06

which assigns to each element P € P a parameter
0 = g(P) € O, where © is a nonempty set (the
parameter space).

Functional parameters allow one to associate pa-
rameters with the distributions of parametric or non-
parametric models. The mean, variance, median,
etc., of a probability distribution may all be inter-
preted as functional parameters.



2. Identification

Let (Z, Az, P) a statistical model such that P =
{Pg 0 e @}

2.1 Definition IDENTIFICATION OF A PARAMETER
VALUE. We say that a parameter value 6, € O is

identifiable if there is no other value 6, € © such
that Pgl = PQQ.

2.2 Definition IDENTIFICATION OF A MODEL. We
say that the model (Z, Az, P) is identifiable if all
the elements of © are identifiable.

2.3 Definition IDENTIFICATION OF A PARAMET-
RIC FUNCTION. Let? : 6 — ¥ be a function of 6.
We say that the tunction v (6) is identifiable if

(0 ((91) £ 1) (92> = Pgl = P92 V0,0, € O
or, equivalently,
Pgl — P92 = ’QD ((91) = ’QD ((92) ,V91,¢92 €06 .

2.4 Definition LOCAL IDENTIFICATION. Suppose
the set © has a set of neighborhoods defined on it (a
topology). Then we say that a parameter value 0, €

3



© is locally identifiable if there is a neighborhood
V (61) of 6, such that

0, € V((91> and 6, # 0, = Pgl 7é P92 .
3. Likelihood and score functions

3.1 Definition LIKELIHOOD FUNCTION. Let
(Z, P) be a statistical model which satisfies the fol-
lowing assumptions:

(A1) (2, P) is a u-dominated model;
(A2) P={P:0c06 CR};

(A3) L(z:;0), z € Z, is the density function
(with respect to 1) associated with Py.

The density tunction L (z; 0) viewed as a function of
6 is called the likelihood function of model (Z, P).
The symbol % (+) refers to the expected value with

respect to 0 (provided it exists) :

E[h<Z>]:/h(z)dpe(2>:/h<Z)L<Z;9)dMZ) .

0 Z Z

The vector Z often has the form
Z= (Y Yi,....Y)
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where Y; € R™ 1s an “individual” observation vector
and 0 = (01,0,...,0,) € O. Usually, the density
L (z; 6) is written in the form

L(z;0) = ﬁ fi(z;0) = Ly, (2;0) (3.1)
t=1

where f; (z;60) is a density for an “individual obser-
vation”. f; (z;6) usually has one of the following
forms :

fi(2:0) = f(ye;0) , v € R™ (3.2)

fi(2:0) = f(yt | z;0) (3.3)
where z; 1s a £ x 1 vector of conditioning variables
(“explanatory variables”) and f (y;;.) is the density
function of y; (given x; ) as a function of the param-
eter vector 6, or

Li(z:0) = f (g | Y1, 243 0) (3.4)

where 7,1 = (Jo,Y1,...,%—1) is a vector of past
values of y and 7 1s a vector of “initial conditions”.



3.2 Definition SCORE FUNCTION. Under the as-
sumption (Al) to (A3), suppose also that:

(A4) O is an open set in R?;

(AD)  OL(z;0) /00 exists,Vz € Z V0 € O;

(A6)  L(z:;0)>0,Vze Z,V0 € O;

(AT) [, 5L (2:0)]du(z) =
alf Le0du)].

Then the function

S(z;@):%[lnL(z;H)] 0eO,z2eZ,

is called the score function associated with the like-
lihood L (z;0) .

3.3 Proposition MEAN OF A SCORE. Under the
assumptions (Al) to (A7), we have :

gwuﬂ»aéwawummwuwﬂ.

3.4 Definition INFORMATION MATRIX. In addition
to (Al) to (A7), suppose also that:



(A8) S (Z:0) has finite second moments with re-
spect to Py, V0 € 6.

Then, the covariance matrix of S (Z ;0) ,

1(0) = Vo[S(Z:0)] = E[S(Z:0)S(Z;0)]

— [ S(0)S G0 L:0)du(:)

Z

is called the Fisher information matrix associated
with L (2 ; 9) .

3.5 Proposition INFORMATION MATRIX IDEN-
TITY. Under the assumptions (A1) to (A8), suppose

also that:
(A9) ¢ a[é(azg,e) exists,Vz € Z V0 € O;

(A10) VO €0,
/Za;L@Sé]%“ (2) = ae?;ej UZMZ;H) & (Z)] |

0°InL(Z:0)
0000’

Then

1(9):57[—

] VO € O .



4. Efficiency bounds

4.1 Definition REGULAR ESTIMATOR. Under the
assumptions (Al) to (AS), an estimator T (Z) of
some function 1 () € RY is regular if it satisfies the
following properties:

(a) T (Z) has finite second moments;

(b) J,T(2)L(z;0)du(z) is differentiable
with respect to 0

(¢) 5 J,T(2)L(2:0)dp(2) =
fz T (z) % L (z;0)]du(z), foralld € 6.

4.2 Theorem FRECHET-DARMOIS-CRAMER-RAO

BOUND. Let the assumptions (Al) to (A8) hold,
let ¢ (0) € R? be a differentiable function of 6, and

suppose that

(A11)  the information matrix I (0) is positive defi-
nite, V0 € 6.

Iffg[T (Z)] =1 (0),V0 € O, then the difference
V[T (2)] = P(0)1(8)" P(6)

is positive semi-definite for all @ € ©, where P (6) =
o (0) /080"



43 Remark If ¢ (#) = 6, this means that
Vol (Z)] — 1 (9)_1 is positive semi-definite.
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