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1. Monotonic functions

1.1 In this section, we review some properties of monotonic functions, which are important to
study distribution and quantile functions.

1.1. Definitions

1.2 Definition MONOTONIC FUNCTION. Let D a non-empty subset of R, f : D → E, where E is
a non-empty subset of R = R∪{−∞, +∞}, and let I be a non-empty subset of D.

(a) f is nondecreasing on I iff

x1 < x2 ⇒ f (x1) ≤ f (x2) , ∀x1,x2 ∈ I .

(b) f is nonincreasing on I iff

x1 < x2 ⇒ f (x1) ≥ f (x2) , ∀x1,x2 ∈ I .

(c) f is strictly increasing on I iff

x1 < x2 ⇒ f (x1) < f (x2) , ∀x1, x2 ∈ I .

(d) f is strictly decreasing on I iff

x1 < x2 ⇒ f (x1) > f (x2) , ∀x1, x2 ∈ I .

(e) f is monotonic on I iff f is nondecreasing, nonincreasing, increasing or decreasing.

(f) f is strictly monotonic on I iff f is strictly increasing or decreasing.

1.3 Definition MONOTONICITY AT A POINT. Let D a non-empty subset of R, f : D → E, where
E is a non-empty subset of R = R∪{−∞, +∞}, and let x ∈ D.

(a) f is nondecreasing at x iff there is an open neighborhood I of x such that

x1 < x ⇒ f (x1) ≤ f (x) , ∀x1 ∈ I ∩D ,

and x < x2 ⇒ f (x) ≤ f (x2) , ∀x2 ∈ I ∩D ;

(b) f is nonincreasing at x iff there is an open neighborhood I of x such that

x1 < x ⇒ f (x1) ≥ f (x) , ∀x1 ∈ I ∩D ,

and x < x2 ⇒ f (x) ≥ f (x2) , ∀x2 ∈ I ∩D ;
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(c) f is strictly increasing at x iff there is an open neighborhood I of x such that

x1 < x ⇒ f (x1) < f (x) , ∀x1 ∈ I ∩D ,

and x < x2 ⇒ f (x) < f (x2) , ∀x2 ∈ I ∩D ;

(d) f is strictly decreasing on I iff there is an open neighborhood I of x such that

x1 < x ⇒ f (x1) > f (x) , ∀x1 ∈ I ∩D ,

and x < x2 ⇒ f (x) > f (x2) , ∀x2 ∈ I ∩D .

(e) f is monotonic at x iff f is nondecreasing, nonincreasing, increasing or decreasing at x.

(f) f is strictly monotonic at x iff f is strictly increasing or decreasing at x.

1.4 Remark It is clear that:

(a) an increasing function is also nondecreasing;

(b) a decreasing function is also nonincreasing;

(c) if f is nondecreasing (alt., strictly increasing), the function

g(x) = − f (x)

is nonincreasing (alt., strictly decreasing) on I, and the function

h(x) = − f (−x)

is nondecreasing on I1 = {x : −x ∈ I}..

1.2. Continuity properties of monotonic functions

1.5 Proposition LIMITS OF MONOTONIC FUNCTIONS. Let I = (a, b) ⊆ R, where −∞ ≤ a < b ≤
∞, and f : I → R be a nondecreasing function on I. Then the function f has the following properties.

(a) For each x ∈ (a, b) , set

f (x+) = lim
δ↓0

{
inf

x<y<x+δ
f (y)

}
, f

(
x+

)
= lim

δ↓0

{
sup

x<y<x+δ

f (y)

}
,

f (x−) = lim
δ↓0

{
inf

x−δ<y<x
f (y)

}
, f

(
x−

)
= lim

δ↓0

{
sup

x−δ<y<x

f (y)

}
.
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Then, the four limits f (x+) , f (x+) , f (x−) and f (x−) are finite and, for any δ > 0 such that
[x−δ , x+δ ] ⊆ (a, b) ,

f (x−δ ) ≤ f (x−) ≤ f
(
x−

)
≤ f (x) ≤ f (x+) ≤ f

(
x+

)
≤ f (x+δ ) .

(b) For each x ∈ (a, b) , we have

f (x+) = f
(
x+

)
, f (x−) = f

(
x−

)
,

and the function f (x) has finite unilateral limits:

f (x+) ≡ lim
y↓x

f (y) = f (x+) = f
(
x+

)
, f (x−) ≡ lim

y↑x
f (y) = f (x−) = f

(
x−

)
.

(c) For each x ∈ (a, b) ,

sup
a<y<x

f (y) = f (x−) ≤ f (x) ≤ f (x+) = inf
x<y<b

f (y) .

(d) If a < x < y < b, then
f (x+) ≤ f (y−) .

(e) If a = −∞, the function f (x) has a limit in the extended real numbers R = R∪{−∞, +∞} as
x →−∞,

−∞ ≤ f (−∞) ≡ lim
x→−∞

f (x) < ∞

and, if b = ∞, the function f (x) has a limit in R as x → ∞ :

−∞ < f (+∞) ≡ lim
x→∞

f (x) ≤ ∞ .

1.6 Theorem CONTINUITY OF MONOTONIC FUNCTIONS. Let I = (a, b) ⊆ R, where −∞ ≤ a <
b ≤ ∞, and f : I → R be a nondecreasing function on I. Then the function f has the following
properties.

(a) For each x ∈ (a, b) , f is continuous at x iff

f (x−) = f (x+) .

(b) The only possible kind of discontinuity of f on (a, b) is a jump.

(c) The set of points of (a, b) at which f is discontinuous is countable (possibly empty).

(d) The function
fR (x) = f (x+) , x ∈ (a, b)
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is right continuous at every point of (a, b) , i.e.,

lim
y↓x

fR (y) = fR (x) , ∀x ∈ (a, b) .

(e) The function
fL (x) = f (x−)

is left continuous at every point of (a, b) , i.e.,

lim
y↑x

fL (y) = fL (x) , ∀x ∈ (a, b) .

1.7 Theorem CHARACTERIZATION OF THE CONTINUITY OF MONOTONIC FUNCTIONS. Let
f : D → R a monotonic function, where D is a non-empty subset of R and I a non-empty subset of
D. Then

f is continuous on I iff f (I) is an interval.

1.8 Definition HOMEOMORPHISM. Let I and J be two subsets of R, and f : I → J. We say that f

is an homeomorphism iff f : I → J is a bijection such that f and f−1 are continuous.

1.9 Theorem MONOTONE INVERSE FUNCTION THEOREM. Let I be an interval in R, and f : I →
R. If f is continuous and strictly monotonic, then J = f (I) is an interval and the function f : I → J

is an homeomorphism.

1.10 Theorem STRICT MONOTONICITY AND HOMEOMORPHISMS BETWEEN INTERVALS. Let I

and J be intervals in R and f : I → J.

(a) If f is an homeomorphism, then f is strictly monotonic.

(b) f is an homeomorphism ⇔ f is continuous and strictly monotonic
⇔ f−1 : J → I exists and is an homeomorphism
⇔ f−1 : J → I exists, and f−1 is a continuous strictly monotonic.

1.11 Lemma CHARACTERIZATION OF RIGHT (LEFT) CONTINUOUS FUNCTIONS BY DENSE

SETS. Let f1 and f2 be two real-valued functions defined on the interval (a, b) such that the
functions f1 and f2 are either both right continuous or both left continuous at each point x ∈ (a, b) ,
and let D be a dense subset of (a, b) . If

f1 (x) = f2 (x) , ∀x ∈ D ,

then
f1 (x) = f2 (x) , ∀x ∈ (a, b) .
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1.12 Theorem CHARACTERIZATION OF MONOTONIC FUNCTIONS BY DENSE SETS. Let f1 and
f2 be two monotonic nondecreasing functions on (a, b) , let D be a dense subset of (a, b) , and
suppose

f1 (x) = f2 (x) , ∀x ∈ D .

(a) Then f1 and f2 have the same points of discontinuity, they coincide everywhere in (a, b) , except
possibly at points of discontinuity, and

f1 (x+)− f1 (x−) = f2 (x+)− f2 (x−) , ∀x ∈ (a, b) .

(b) If furthermore f1 and f2 are both left continuous (or right continuous) at every point x ∈ (a, b),
they coincide everywhere on (a, b) , i.e.,

f1 (x) = f2 (x) , ∀x ∈ (a, b) .

1.3. Total variation

1.13 Lemma For any x ∈ R,

max{x, 0} =
1
2
(|x|+ x) = I(x ≥ 0)x = I(x ≥ 0) |x| , (1.1)

max{−x, 0} =
1
2
(|x|− x) = −I(x ≤ 0)x = I(x ≤ 0) |x| , (1.2)

min{x, 0} = −max{−x, 0} =
1
2
(x−|x|) = I(x ≤ 0)x = −I(x ≤ 0) |x| , (1.3)

min{−x, 0} = −max{x, 0} = −
1
2
(|x|+ x) = −I(x ≥ 0)x = −I(x ≤ 0) |x| . (1.4)

1.14 Lemma For any x1, x2 ∈ R,

min{x1, 0}+min{x2, 0} ≤ min{x1 + x2, 0}

≤ max{x1 + x2, 0} ≤ max{x1, 0}+max{x2, 0} , (1.5)

min{x1, 0}−max{x2, 0} ≤ min{x1 − x2, 0} (1.6)

≤ max{x1 − x2, 0} ≤ max{x1, 0}−min{x2, 0} . (1.7)

1.15 Lemma For any x1, x2 ∈ R,

max{x1 − x2, 0} ≤ x1 ≤ max{x1, x2} if x1 ≥ 0 and x2 ≥ 0
max{x1 − x2, 0} ≥ x1 ≥ min{x1, x2} otherwise,

(1.8)

min{x1 − x2, 0} ≥ x1 ≥ min{x1, x2} if x1 ≤ 0 and x2 ≤ 0
min{x1 − x2, 0} ≤ x1 ≤ max{x1, x2} otherwise.

(1.9)
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Since
min{x1 − x2, 0} ≤ max{x1 − x2, 0} , (1.10)

we can write:

x1 ≤ min{x1 − x2, 0} ≤ max{x1 − x2, 0} if x1 ≤ 0 and x2 ≤ 0 ,
min{x1 − x2, 0} ≤ x1 ≤ max{x1 − x2, 0} if x1 ≤ 0 and x2 ≥ 0 ,
min{x1 − x2, 0} ≤ x1 ≤ max{x1 − x2, 0} if x1 ≥ 0 and x2 ≤ 0 ,
min{x1 − x2, 0} ≤ max{x1 − x2, 0} ≤ x1 if x1 ≥ 0 and x2 ≥ 0 .

(1.11)

1.16 Definition Let f : [a, b] → R. The total variation of f over [a, b], denoted by V b
a ( f ), is

V b
a ( f ) = sup

P[a,b]

n

∑
k=1

| f (xk)− f (xk)| (1.12)

where P[a, b] is the set of all partitions of [a, b] with n ≥ 1 points of subdivision x0, x1, . . . , xn such
that n ≥ 1 and

a = x0 < x1 < · · · < xn = b . (1.13)

1.17 Definition Let f : [a, b] → R. The positive variation of f over [a, b] is

Pb
a ( f ) := sup

P[a,b]

n

∑
k=1

[ f (xk)− f (xk−1)]
+ (1.14)

and the negative variation of f over [a, b] is

Nb
a f := sup

P[a,b]

n

∑
k=1

[ f (xk)− f (xk−1)]
− (1.15)

where x+ := I(x ≥ 0) |x| and x− := I(x ≤ 0) |x| .

1.18 Definition Let f : I → R and [a, b] ⊆ I. We say that f is of bounded variation on [a, b] iff
V b

a ( f ) < ∞.

1.19 Proposition Let f : [a, b] → R, and α ∈ R. Then

V b
a (α) = Pb

a (α) = Nb
a (α) = 0 , (1.16)

V b
a ( f +α) = V b

a ( f ) , Pb
a ( f +α) = Pb

a ( f ) , Nb
a ( f +α) = Nb

a ( f ), (1.17)

V b
a ( f ) = 0 ⇔ f is constant over [a, b] . (1.18)

1.20 Proposition BOUNDED VARIATION OF MONOTONIC FUNCTIONS. Let f : [a, b]→R, α ∈R.
If f is nondecreasing on [a, b], then

V b
a ( f ) = Pb

a ( f ) = f (b)− f (a) , (1.19)
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Nb
a f = 0 , (1.20)

V b
a (α f ) = α V b

a ( f ) , for α ≥ 0 , (1.21)

and f is of bounded variation on [a, b]. If f is nonincreasing on [a, b], then

V b
a ( f ) = Nb

a f = f (a)− f (b) , (1.22)

Pb
a ( f ) = 0 , (1.23)

V b
a (α f ) = α V b

a ( f ) , for α ≥ 0 , (1.24)

and f is of bounded variation on [a, b].

1.21 Proposition Let f : [a, b] → R, and g : [a, b] → R. If f and g are both nondecreasing or
nonincreasing on [a, b], then

V b
a ( f +g) = V b

a ( f )+V b
a (g) , (1.25)

V b
a ( f +g) = V b

a ( f ) ⇔ g is constant over [a, b] . (1.26)

1.22 Proposition CANONICAL DECOMPOSITION OF TOTAL VARIATION. Let f : [a, b] → R . If
f is of bounded variation on [a, b], then

V b
a ( f ) = Pb

a ( f )+Nb
a f (1.27)

and
f (b)− f (a) = Pb

a ( f )−Nb
a ( f ). (1.28)

1.23 Theorem Let f : [a, b] → R and c ∈ [a, b]. If a ≤ b ≤ c, then

V b
a ( f ) = V c

a f +V b
c f . (1.29)

1.24 Theorem Let f : [a, b] → R, g : [a, b] → R, and α ∈ R. Then

V b
a (α f ) = |α|V b

a ( f ) , (1.30)

and
V b

a ( f +g) ≤V b
a ( f )+V b

a (g) , (1.31)

where we set |α|V b
a ( f ) = 0 if α = 0 and V b

a ( f ) = +∞ .

1.25 Definition Let f : [a, b] → R be a function of bounded variation on [a, b]. Then the function

Vf (x) := V x
a f , x ∈ [a, b] , (1.32)

is called the total variation function of f ,

Pf (x) := Px
a f , x ∈ [a, b] , (1.33)
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is called the positive variation function of f , and

N f (x) := Nx
a f , x ∈ [a, b] , (1.34)

is called the negative variation function of f .

1.26 Theorem MONOTONICITY OF VARIATION FUNCTIONS. Let f : [a, b] → R be a function of
bounded variation on [a, b].

(a) If x1, x2 ∈ [a, b] and x1 ≤ x2, then

| f (x2)− f (x1)| ≤V x2
x1

( f ) , (1.35)

max{ f (x2)− f (x1), 0} ≤ Px2
x1

( f ) , (1.36)

max{ f (x1)− f (x2), 0} ≤ Nx2
x1

( f ) . (1.37)

(b) The functions Vf (x), Pf (x) and N f (x) are nondecreasing on [a, b].

1.27 Theorem Let f : [a, b] → R be a function of bounded variation on [a, b]. If f (x) is continuous
from the left at x0, then Vf (x) is continuous from the left at x0.

1.28 Proposition LIMITS OF VARIATION FUNCTIONS. Let f : [a, b]→R be a function of bounded
variation on [a, b]. Then,

Pf (x+)−Pf (x) =
1
2
{| f (x+)− f (x)|+[ f (x+)− f (x)]} = max{ f (x+)− f (x), 0} , (1.38)

N f (x+)−N f (x) =
1
2
{| f (x+)− f (x)|− [ f (x+)− f (x)]} = max{ f (x)− f (x+), 0} , (1.39)

Vf (x+)−Vf (x) = | f (x+)− f (x)| , (1.40)

Pf (x)−Pf (x−) =
1
2
{| f (x)− f (x−)|+[ f (x)− f (x−)]} = max{ f (x)− f (x−), 0} , (1.41)

N f (x)−N f (x−) =
1
2
{| f (x)− f (x−)|− [ f (x)− f (x−)]} = max{ f (x−)− f (x), 0} , (1.42)

Vf (x)−Vf (x−) = | f (x)− f (x−)| . (1.43)

1.29 Theorem Let f : [a, b] → R be a function of bounded variation on [a, b] and x0 ∈ [a, b].

(a) If f (x) is right-continuous at x0, then Pf (x), N f (x) and Vf (x) are right-continuous at x0.

(b) If f (x) is left-continuous at x0, then Pf (x), N f (x) and Vf (x) are left-continuous at x0.

(c) f (x) is continuous at x0 ⇔ Vf (x) is continuous at x0

⇔ Pf (x) and N f (x) are continuous at x0 .
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1.30 Theorem Let f : [a, b] → R be a function of bounded variation on [a, b]. Then, for any x ∈
[a, b],

Vf (x) = Pf (x)+N f (x) , (1.44)

and
f (x)− f (a) = Pf (x)−N f (x) . (1.45)

1.31 Theorem MONOTONE REPRESENTATION OF FUNCTIONS OF BOUNDED VARIATION. Let
f : [a, b] → R be a function of bounded variation on [a, b]. Then f can be represented as the differ-
ence between two nondecreasing functions on [a, b]. In particular, we have:

f (x) = [ f (a)+Pf (x)]−N f (x)

= [ f (a)+Vf (x)]−U f (x) (1.46)

where U f (x) := 2N f (x), and the functions f (a) + Pf (x), f (a) +Vf (x), N f (x) and U f (x) are all
nondecreasing on [a, b].

1.32 Corollary MONOTONE CHARACTERIZATION OF FUNCTIONS OF BOUNDED VARIATION.
Let f : [a, b]→ R. Then f is of bounded variation on [a, b] if and only if it is the difference between
two nondecreasing functions on [a, b].

1.33 Remark The decomposition of a function of bounded variation as the difference of two non-
decreasing functions is not unique. For example, if

f (x) = f1(x)− f2(x) (1.47)

where f1(x) and f2(x) are nondecreasing, then for any nondecreasing function g(x),

f (x) = [ f1(x)+g(x)]− [ f2(x)+g(x)] (1.48)

where f1(x)+g(x) and f2(x)+g(x) are nondecreasing.

1.34 Theorem MINIMAL PROPERTY OF POSITIVE-NEGATIVE DECOMPOSITION OF FUNCTIONS

OF BOUNDED VARIATION. Let f : [a, b] → R be a function of bounded variation on [a, b]. If
g+ : [a, b] → R and g− : [a, b] → R are nondecreasing functions on [a, b] such that

f (x) = f (a)+g+(x)−g−(x) ∀x ∈ [a, b] , (1.49)

then
Pf (x) ≤ g+(x)−g+(a) ∀x ∈ [a, b] , (1.50)

N f (x) ≤ g−(x)−g−(a) ∀x ∈ [a, b] . (1.51)

If we note that
Pf (a) = N f (a) = Vf (a) = 0 , (1.52)

it is natural to impose the same restriction g+(a) = g−(a) = 0. This yields the following result.
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1.35 Theorem OPTIMALITY OF CANONICAL MONOTONE REPRESENTATIONS OF FUNCTIONS

OF BOUNDED VARIATION. Let f : [a, b] → R be a function of bounded variation on [a, b]. If
g+ : [a, b] → R and g− : [a, b] → R are nondecreasing functions on [a, b] such that

f (x) = f (a)+g+(x)−g−(x) ∀x ∈ [a, b] , (1.53)

and
g+(a) = g−(a) = 0 (1.54)

then
Pf (x) ≤ g+(x) ≤Vf (x) ∀x ∈ [a, b] , (1.55)

N f (x) ≤ g−(x) ≤ 2N f (x) ∀x ∈ [a, b] . (1.56)

1.36 Lemma Let F be a family of functions f : I → R where I is some set, and f1, f2 ∈ F . If

f1(x) ≤ f (x) , ∀x ∈ I , ∀ f ∈ F , (1.57)

and
f2(x) ≤ f (x) , ∀x ∈ I , ∀ f ∈ F , (1.58)

then
f1(x) = f2(x) , ∀x ∈ I . (1.59)

The above lemma is a unicity property: it means that only one element f1 of F can satisfy the
inequality (1.57).

1.37 Theorem CANONICAL MONOTONE REPRESENTATIONS OF FUNCTIONS OF BOUNDED

VARIATION. Let f : [a, b] → R be a function of bounded variation on [a, b], and MI the set of
the nondecreasing functions g : [a, b] → R such that g(a) = 0. Then,

(a) there is a unique pair of nondecreasing functions f +, f− ∈ MI such that

f (x) = f (a)+ f +(x)− f−(x) ∀x ∈ [a, b] , (1.60)

and

{ f (x) = f (a)+g1(x)−g2(x) ∀x ∈ [a, b]}

⇒ {[ f +(x) ≤ g1(x) and f−(x) ≤ g1(x)] ∀x ∈ [a, b]} (1.61)

for all g1, g2 ∈ MI ; further,

f +(x) = Pf (x) and f−(x) = N f (x) ∀x ∈ [a, b] ; (1.62)

(b) there is a unique pair of nondecreasing functions v f , u f ∈ MI such that

f (x) = f (a)+ v f (x)−u f (x) ∀x ∈ [a, b] , (1.63)
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and

{ f (x) = f (a)+g1(x)−g2(x) ∀x ∈ [a, b]}

⇒ {[g1(x) ≤ v f (x) and g2(x) ≤ u f (x)] ∀x ∈ [a, b]} (1.64)

for all g1, g2 ∈ MI ; further,

v f (x) = Vf (x) = Pf (x)+N f (x) and u f (x) = 2N f (x) ∀x ∈ [a, b] . (1.65)

1.4. Absolute continuity

1.38 Theorem MONOTONE REPRESENTATION OF ABSOLUTELY CONTINUOUS FUNCTIONS.
Let f : [a, b] → R . If is absolutely continuous on [a, b], then:

(a) f is of bounded variation on [a, b];

(b) f can be represented as the difference between two absolutely continuous nondecreasing func-
tions on [a, b].

1.5. Differentiation and integration of monotonic functions

In this subsection, [a, b] represents a closed interval of the real numbers: [a, b] ⊆ R, where a ∈ R

and b ∈ R.

1.39 Theorem BOUNDEDNESS AND INTEGRABILITY OF MONOTONIC FUNCTIONS. Let f :
[a, b] → R. If f is nondecreasing on [a, b], then f is measurable, bounded, and integrable on [a, b].

1.40 Theorem CONTINUOUS-JUMP DECOMPOSITION OF LEFT-CONTINOUS NONDECREASING

FUNCTION. Let f : [a, b] → R. If f is nondecreasing and continuous from the left on [a, b], then f

is the sum of a continuous function and a left-continuous jump function.

1.41 Theorem DIFFERENTIABILITY OF MONOTONIC FUNCTIONS. Let f : [a, b] → R be a non-
decreasing function on [a, b]. Then f is differentiable almost everywhere on [a, b].

1.42 Corollary DIFFERENTIABILITY OF FUNCTIONS OF BOUNDED VARIATION. Let be f :
[a, b] → R be a function of bounded variation on [a, b]. Then f is differentiable almost everywhere
on [a, b].

1.43 Theorem DIFFERENTIABILITY AND ABSOLUTE CONTINUITY OF DEFINITE INTEGRALS.
Let be f : [a, b] → R. Suppose f is integrable on [a, b] and let

F(x) =

x∫

a

f (x)dx . (1.66)

Then:
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(a) F(x) is differentiable and
F ′(x) = f (x) (1.67)

for almost all x ∈ [a, b] ;

(b) F(x) is absolutely continuous on [a, b];

(c) if f (x) is continuous at x0 ∈ (a, b), then F(x) is differentiable at x0 and

F ′(x0) = f (x0) . (1.68)

1.44 Theorem INTEGRABILITY OF MONOTONIC FUNCTIONS. Let F : [a, b] → R be a nonde-
creasing function on [a, b]. Then the derivative F ′(x) is integrable on [a, b] and

b∫

a

F ′(x)dx ≤ F(b)−F(a) . (1.69)

1.45 Theorem FUNDAMENTAL THEOREM OF CALCULUS FOR ABSOLUTELY CONTINUOUS

FUNCTIONS (LEBESGUE). Let F : [a, b] → R be a nondecreasing function on [a, b]. If F(x) is
absolutely continuous on [a, b], then the derivative F ′(x) exists for almost all x ∈ [a, b], and

x∫

a

F ′(x)dx = F(x)−F(a) . (1.70)

1.46 Corollary CHARACTERIZATION OF ABSOLUTELY CONTINUOUS FUNCTIONS. Let F :
[a, b] → R be a nondecreasing function on [a, b]. The formula

x∫

a

F ′(x)dx = F(x)−F(a) (1.71)

holds for all x ∈ [a, b] if and only if F(x) is absolutely continuous on [a, b].

2. Generalized inverse of a monotonic function

2.1 Definition GENERALIZED INVERSE OF A NONDECREASING RIGHT-CONTINUOUS FUNC-
TION. Let f be a real-valued, nondecreasing, right continuous function defined on the open interval
(a, b) where −∞ ≤ a < b ≤ ∞. Then the generalized inverse of f is defined by

f ∗(y) = inf{x ∈ (a, b) : f (x) ≥ y} (2.1)

for −∞ < y < ∞ (with the convention inf( /0) = b). Further, we define f−1 as the restriction of f ∗ to
the interval (inf( f ) , sup( f )) ≡ (inf{ f (x) : x ∈ (a, b)}, sup{ f (x) : x ∈ (a, b)}) :

f−1(y) = f ∗(y) for inf( f ) < y < sup( f ) . (2.2)
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2.2 Definition GENERALIZED INVERSE OF A NONDECREASING LEFT-CONTINUOUS FUNCTION.
Let f be a real-valued, nondecreasing, left continuous function defined on the open interval (a, b)

where −∞ ≤ a < b ≤ ∞. Then the generalized inverse of f is defined by

f ∗∗(y) = sup{x ∈ (a, b) : f (x) ≤ y} (2.3)

for −∞ < y < ∞ (with the convention sup( /0) = a).

2.3 Proposition GENERALIZED INVERSE BASIC EQUIVALENCE (RIGHT-CONTINUOUS FUNC-
TION). Let f be a real-valued, nondecreasing, right continuous function defined on the open
interval (a, b) where −∞ ≤ a < b ≤ ∞. Then, for x ∈ (a, b) and for every real y,

y ≤ f (x) ⇔ f ∗(y) ≤ x , (2.4)

y > f (x) ⇔ f ∗(y) > x , (2.5)

f [ f ∗(y)] ≥ y . (2.6)

2.4 Proposition GENERALIZED INVERSE BASIC EQUIVALENCE (LEFT-CONTINUOUS FUNC-
TION). Let f be a real-valued, nondecreasing, left continuous function defined on the open interval
(a, b) where −∞ ≤ a < b ≤ ∞. Then, for x ∈ (a, b) and for every real y,

y ≤ f (x) ⇔ f ∗∗(y) ≤ x . (2.7)

2.5 Proposition CONTINUITY OF THE INVERSE OF A NONDECREASING RIGHT-CONTINUOUS

FUNCTION. Let f be a real-valued, nondecreasing, right continuous function defined on the open
interval (a, b) where −∞ ≤ a < b ≤ ∞, and set

a( f ) = inf{x ∈ (a, b) : f (x) > inf( f )} , b( f ) = sup{x ∈ (a, b) : f (x) < sup( f )} . (2.8)

Then, f ∗ is nondecreasing and left continuous. Moreover

lim
y→−∞

f ∗(y) = a , lim
y→∞

f ∗(y) = b (2.9)

and
lim

y→inf( f )
f−1(y) = a( f ) , lim

y→sup( f )
f−1(y) = b( f ) . (2.10)

3. Distribution functions

3.1 Definition DISTRIBUTION AND SURVIVAL FUNCTIONS OF A RANDOM VARIABLE. Let X

be a real-valued random variable. The distribution function of X is the function F(x) defined by

F(x) = P[X ≤ x] , x ∈ R , (3.1)
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and its survival function is the function G(x) defined by

G(x) = P[X ≥ x] , x ∈ R . (3.2)

3.2 Proposition PROPERTIES OF DISTRIBUTION FUNCTIONS. Let X be a real-valued random
variable with distribution function F(x) = P[X ≤ x]. Then

(a) F(x) is nondecreasing;

(b) F(x) is right-continuous;

(c) F(x) → 0 as x →−∞ ;

(d) F(x) → 1 as x → ∞ ;

(e) P[X = x] = F(x)−F(x−) ;

(f) for any x ∈ R and q ∈ (0, 1),

{P[X ≤ x] ≥ q and P[X ≥ x] ≥ 1−q}⇐⇒ {P[X < x] ≤ q and P[X > x] ≤ 1−q} .

3.3 Remark In view of Proposition 3.2, the domain of a distribution function F(x) can be extended
to R R̄ = R∪{−∞}∪{∞}, the extended real numbers, by setting

F(−∞) = 0 and F(∞) = 1 . (3.3)

3.4 Proposition PROPERTIES OF SURVIVAL FUNCTIONS. Let X be a real-valued random variable
with survival function G(x) = P[X ≥ x]. Then

(a) G(x) is nonincreasing;

(b) G(x) is left-continuous;

(c) G(x) → 1 as x →−∞ ;

(d) G(x) → 0 as x → ∞ ;

(e) P[X = x] = G(x)−G(x+) ;

(f) G(x) = 1−F (x)+P [S = x] .

4. Quantile functions

4.1 Definition QUANTILE FUNCTION. Let F(x) be a distribution function. The quantile function
associated with F is the generalized inverse of F , i.e.

F−1(q) ≡ F−(q) = inf{x : F(x) ≥ q} , 0 < q < 1 . (4.1)
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4.2 Remark F−1(q) may also be defined for q = 0 and q = 1 , if we allow F−1(0) = −∞ and
F−1(1) = +∞. More precisely,

F−1(0) = −∞ ⇔ F(x) > 0 , ∀x ∈ R , (4.2)

F−1(1) = ∞ ⇔ F(x) < 1 , ∀x ∈ R . (4.3)

If F−1(0) = m where m is a finite real number, this means X has a finite lower bound (almost surely),
i.e.

P[X < m] = 0 and P[X ≥ x] > 0 for all x > m . (4.4)

If F−1(1) = M where M is a finite real number, this means X has a finite upper bound (almost
surely), i.e.

P[X > M] = 0 and P[X ≥ x] > 0 for all x < M . (4.5)

In general, irrespective whether F−1(0) and F−1(1) are finite, we can write:

P[X < F−1(0)] = 0 and P[X ≥ x] > 0 for all x > F−1(0) , (4.6)

P[X > F−1(1)] = 0 and P[X ≥ x] > 0 for all x < F−1(1) . (4.7)

4.3 Theorem PROPERTIES OF QUANTILE FUNCTIONS. Let F(x) be a distribution function. Then
the following properties hold:

(a) for each q ∈ (0, 1), there is a unique real number a such that a = F−1(q);

(b) a = F−1(q) iff the two following conditions hold:

(1) F(a) ≥ q;

(2) x < a ⇒ F(x) < q;

(c) F−1(q) = inf{x : P[X < x] ≤ q ≤ P[X ≤ x]} , 0 < q < 1 ;

(d) F−1(q) = sup{x : F(x) < q} , 0 < q < 1 ;

(e) F−1(q) is nondecreasing and left continuous;

(f) F(x) ≥ q ⇔ x ≥ F−1(q) , for all x ∈ R and q ∈ (0, 1) ;

(g) F(x) < q ⇔ x < F−1(q) , for all x ∈ R and q ∈ (0, 1) ;

(h) F [F−1(q)−] ≤ q ≤ F [F−1(q)] , for all q ∈ (0, 1) ;

(i) F−1[F(x)] ≤ x ≤ F−1[F(x)+] , for all x ∈ R ;

(j) if F is continuous at x = F−1(q), then F [F−1(q)] = q ;

(k) if F−1 is continuous at q = F(x), then F−1[F(x)] = x ;
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(l) for q ∈ (0, 1) , F [F−1(q)] = q ⇔ q ∈ F [R] ;

(m) F [F−1(q)] = q for all q ∈ (0, 1) ⇔ (0, 1) ⊆ F [R]
⇔ F is continuous
⇔ F−1 is strictly increasing ;

(n) for any x ∈ R, F−1[F(x)] = x ⇔ F(x− ε) < F(x) for all ε > 0;

(o) for any x ∈ R, P[X = x] > 0⇒ F−1[F(x)] = x;

(p) F−1[F(x)] = x for all x ∈ R ⇔ F is strictly increasing
⇔ F−1 is continuous ;

(q) F is continuous and strictly increasing ⇔ F−1 is continuous and strictly increasing ;

(r) F−1 ◦F ◦F−1 = F−1 or, equivalently,

F−1 (
F

[
F−1 (q)

])
= F−1(q) , for all q ∈ (0, 1) ;

(s) F ◦F−1 ◦F = F or, equivalently,

F
(
F−1 [F (x)]

)
= F(x) , for all x ∈ R .

4.4 Theorem CHARACTERIZATION OF DISTRIBUTIONS BY QUANTILE FUNCTIONS. If G(x) is a
real-valued nondecreasing left continuous function with domain (0, 1), there is a unique distribution
function F such that G = F−1 .

4.5 Theorem DIFFERENTIATION OF QUANTILE FUNCTIONS. Let F(x) be a distribution function.
If F has a positive continuous f (x) density f in a neighborhood of F−1(q0), where 0 < q0 < 1, then
the derivative dF−1(q)/dq exists at q = q0 and

dF−1(q)

dq

∣∣∣∣
q0

=
1

f (F−1(q0))
. (4.8)

4.6 Proposition Let X be a real-valued random variable with distribution function F(x) = P[X ≤ x]
and survival function G(x) = P[X ≥ x] . Then, for any q ∈ (0, 1),

(a) P[X ≤ F−1(q)] ≥ q and P[X ≥ F−1(q)] ≥ 1−q ;

(b) P[X < F−1(q)] ≤ q and P[X > F−1(q)] ≤ 1−q .

5. Quantile sets and generalized quantile functions

5.1 Notation X is a random variable with distribution function FX(x) = P[X ≤ x]. R̄ = R∪{−∞}∪
{∞} is the set of the extended real numbers.
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5.2 Definition QUANTILE OF RANDOM VARIABLE. A quantile of order q (or a q-quantile) of the
random variable X is any number mq ∈ R̄ such that P[X ≤ mq] ≥ q and P[X ≥ mq] ≥ 1− q, where
0 ≤ q ≤ 1. In particular, m0.5 is a median of X , m0.25 is a first (or lower) quartile of X , and m0.75 is
a third (or upper) quartile of X .

5.3 Remark For q = 0, mq = −∞ always satisfies the quantile condition. If there is a finite number
dL such that P[X ≤ dL] = 0, then any x such that x ≤ dL is a quantile of order 0. Similarly, for
q = 1, mq = ∞ always satisfies the quantile condition. If there is a finite number dU such that
P[X ≤ dU ] = U, then any x such that x ≥ dU is a quantile of order 1.

6. Distribution and quantile transformations

6.1 Notation U(0, 1) a uniform random variable on the interval (0, 1).

6.2 Theorem QUANTILES OF TRANSFORMED RANDOM VARIABLES. Let X be a real-valued
random variable with distribution function FX(x) = P[X ≤ x]. If g(x), x ∈ R, is a nondecreasing left
continuous function, then

F−1
g(X)(q) = g

(
F−1

X (q)
)

, for all 0 < q < 1 , (6.1)

where Fg(X)(x) = P[g(X) ≤ x] and F−1
g(X)(q) = inf{x : Fg(X)(x) ≥ q}.

6.3 Corollary QUANTILES OF A LINEAR TRANSFORMATION. Let X be a real-valued random
variable with distribution function FX(x) = P[X ≤ x], and let a and b be two real constants. If a > 0,
then F−1

aX+b(q) = aF−1
X (q)+b , for 0 < q < 1 .

6.4 Theorem TRANSFORMATION BY A DISTRIBUTION FUNCTION. Let X be a real-valued
random variable with distribution function FX(x) = P[X ≤ x], F0(x) a distribution function, and
U = F0(X). Then, for all u ∈ (0, 1),

U ≤ u ⇔ F0(X) ≤ u ⇔ X ≤ F−1
0 (u) (6.2)

and
P[U ≤ u] = P[X ≤ F−1

0 (u)] = FX [F−1
0 (u)] . (6.3)

6.5 Definition RELATIVE DISTRIBUTION. Let X be a real-valued random variable with distribu-
tion function FX(x) = P[X ≤ x], and F0(x) a distribution function. The distribution of U = F0(X) is
called the relative distribution of X with respect to F0.

6.6 Proposition QUANTILES OF THE RELATIVE DISTRIBUTION TRANSFORMATION. Let X be a
real-valued random variable, F0(x) and F1(x) two distribution functions, and U = F0(X). Then

F−1
F−1

1 (U)
= F−1

1

(
F−1

U

)
. (6.4)
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6.7 Theorem PROPERTIES OF QUANTILE TRANSFORMATION. Let F(x) be a distribution func-
tion, and U a random variable with distribution F0(x) such that F0(0) = 0 and F0(1) = 1. If
X = F−1(U), then, for all x ∈ R,

X ≤ x ⇔ F−1(U) ≤ x ⇔U ≤ F(x) (6.5)

or, equivalently,
1{X ≤ x} = 1{F−1(U) ≤ x} = 1{U ≤ F(x)} , (6.6)

and
P[X ≤ x] = P[F−1(U) ≤ x] = P[U ≤ F(x)] = F0 (F(x)) ; (6.7)

further,
1{X < x} = 1{F−1(U) < x} = 1{U ≤ F(x−)} with probability 1 (6.8)

and
P[X < x] = P[F−1(U) < x] = P[U ≤ F(x−)] . (6.9)

In particular, if U follows a uniform distribution on the interval (0, 1), i.e. U ∼U(0, 1), the distri-
bution function of F−1(U) is F :

P[F−1(U) ≤ x] = P[X ≤ x] = P[U ≤ F(x)] = F(x) , ∀x ∈ R. (6.10)

6.8 Corollary QUANTILE TRANSFORMATION OF U [0,1] VARIABLE. Let F(x) be a distribution
function, Ū ∼U [0, 1] and X̄ = F−1(Ū). Then,

P[X̄ = −∞] = P[X̄ = ∞] = 0 , (6.11)

P[X̄ ≤ x] = F(x) , ∀x ∈ R. (6.12)

6.9 Theorem PROPERTIES OF DISTRIBUTION TRANSFORMATION. Let X be a real-valued ran-
dom variable with distribution function F(x) = P[X ≤ x]. Then the following properties hold:

(a) P[F(X) ≤ u] ≤ u , for all u ∈ [0, 1] ;

(b) P[F(X) ≤ u] = u ⇔ u ∈ cl{F(R)},
where cl{F(R)} is the closure of the range of F ;

(c) P[F(X) ≤ F(x)] = P[X ≤ x] = F(x) , for all x ∈ R ;

(d) F(X) ∼U(0, 1) ⇔ F is continuous;

(e) for all x, 1{F(X) ≤ F(x)} = 1{X ≤ x} with probability 1;

(f) F−1 (F (X)) = X with probability 1.
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6.10 Theorem QUANTILES AND P-VALUES. Let X be a real-valued random variable with distri-
bution function F(x) = P[X ≤ x] and survival function G(x) = P[X ≥ x] . Then, for any x ∈ R,

G(x) = P[G(X) ≥ G(x)]

= P
[
X ≥ F−1((F (x)− pF(x))+

)]

= P
[
X ≥ F−1((1−G(x))+

)]
(6.13)

where pF(x) = P[X = x] = F(x)−F(x−).

7. Relation between moments and quantiles

7.1 Notation X is a random variable with distribution function FX(x) = P[X ≤ x]. We denote by X+

and X− the positive and negative parts of X :

X+ = max(X , 0) , X− = −min(X , 0) = max(−X , 0) , (7.1)

so that

X+ X− = 0 , (7.2)

X = X+−X− , (7.3)

|X | = X+ +X− = X +2X− . (7.4)

7.2 Lemma For any positive integer p, we have:

X p = X
p
+ +(−1)pX

p
− , (7.5)

|X |p = X
p
+ +X

p
− . (7.6)

7.3 Proposition SYMMETRY OF HALF-MOMENTS ABOUT THE MEAN. If E
(
|X |2

)
< ∞, we have:

E([X −E(X)]+) = E([X −E(X)]−) =
1
2

E(|X −E(X)|) . (7.7)

7.4 Proposition HALF-MOMENT VARIANCE DECOMPOSITION. If E
(
|X |2

)
< ∞, we have:

E
(
X+ X−

)
= E{[X −E(X)]+[X −E(X)]−} = 0 , (7.8)

C
(
X+, X−

)
= −E(X+)E(X−) , (7.9)

C
(
[X −E(X)]+, [X −E(X)]−

)
= −E{[X −E(X)]+}E{[X −E(X)]−} , (7.10)

E
(
X2) = E

(
X2

+

)
+E

(
X2
−

)
, (7.11)

V(X) = E
{
[X −E(X)]2+

}
+E

{
[X −E(X)]2−

}
. (7.12)
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7.5 Theorem QUANTILE REPRESENTATION OF THE MEAN. If E(|X |) < ∞, we have:

E(X) =
∫ 1

0
F−1

X (u)du =
∫ 1

0
F+

X (u)du . (7.13)

7.6 Lemma EXPANSION OF THE EXPECTED ABSOLUTE DEVIATION. For any m and c,

E(|X − c|) = E(|X −m|)+(c−m) [P(X ≤ m)−P(X > m)]

+2
∫

(m, c)

(c− x)dFX(x) , if m ≤ c ,

= E(|X −m|)+(m− c) [P(X ≥ m)−P(X < m)]

+2
∫

(c,m)

(x− c)dFX(x) , if m > c .

7.7 Proposition TAIL AREA DECOMPOSITION OF THE MEAN. If E(|X |) < ∞, the following
identities hold:

E(X+) =
∫ ∞

0
xdFX(x) =

∫ ∞

0
[1−FX(x)]dx , (7.14)

E(X−) = −
∫ 0

−∞
xdFX(x) =

∫ 0

−∞
FX(x)dx

=
∫ ∞

0
FX(−x)dx , (7.15)

E(X) =
∫ ∞

0
[1−FX(x)]dx−

∫ 0

−∞
FX(x)dx

=
∫ ∞

0
[1−FX(x)−FX(−x)]dx , (7.16)

E(|X |) =
∫ ∞

0
[1−FX(x)]dx+

∫ 0

−∞
FX(x)dx

=
∫ ∞

0
[1−FX(x)+FX(−x)]dx

= E(X)+2
∫ 0

−∞
FX(x)dx . (7.17)

7.8 Corollary TAIL AREA DECOMPOSITION OF THE DIFFERENCE BETWEEN TWO MEANS. Let
Y be a random variable with distribution function FY (x) = P[Y ≤ x]. If E(|X |) < ∞ and E(|Y |) < ∞,
then

E(Y )−E(X) =
∫ ∞

−∞
[FX(x)−FY (x)] dx . (7.18)
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7.9 Corollary GENERALIZED TAIL AREA DECOMPOSITION OF THE MEAN. If E(|X |) < ∞, the
following identities hold, for any c :

E[(X − c)+] =
∫ ∞

c
xdFX(x) =

∫ ∞

c
[1−FX(x)]dx

=
∫ ∞

0
[1−FX(c+ x)]dx , (7.19)

E[(X − c)−] = −
∫ c

−∞
xdFX(x) =

∫ c

−∞
FX(x)dx

=
∫ ∞

−c
FX(−x)dx =

∫ ∞

0
FX(c− x)dx , (7.20)

E(X − c) =
∫ ∞

c
[1−FX(x)]dx−

∫ c

−∞
FX(x)dx

=
∫ ∞

0
[1−FX(c+ x)−FX(c− x)]dx , (7.21)

E(|X − c|) =
∫ ∞

c
[1−FX(x)]dx+

∫ c

−∞
FX(x)dx

=
∫ ∞

0
[1−FX(c+ x)+FX(c− x)]dx

= E(X)+2
∫ 0

−∞
FX(c+ x)dx− c

= E(X)+2
∫ c

−∞
FX(x)dx− c . (7.22)

7.10 Theorem OPTIMALITY OF MEDIANS FOR ABSOLUTE ERROR. Let m be any median of X ,
i.e. P(X ≤ m) ≥ 0.5 and P(X ≥ m) ≥ 0.5. Then,

E(|X −m|) ≤ E(|X − c|) for any c . (7.23)

7.11 Corollary Let m1 and m2 be two medians of X . Then

E(|X −m1|) = E(|X −m2|) (7.24)

and the function E(|X − c|) has a minimal value with respect to c given by E(|X −m1|) .

7.12 Corollary Let m be any median of X . Then

E(|X −m|) = E
(∣∣X −F−1

X (0.5)
∣∣) ≤ E(|X − c|) for any c . (7.25)
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7.13 Corollary Let m be any median of X . Then,

E(|X −m|) ≤ E(|X −µX |) ≤ σX . (7.26)

7.14 Theorem OPTIMALITY OF QUANTILES. Let

L(c) = a(X − c)+ +b(X − c)− (7.27)

where a > 0 and b > 0, let q = a/(a+b) and let mq be any quantile of order q of X . Then,

E[L(mq)] = E[L(F−1
X (q))] ≤ E[L(c)] for any c . (7.28)

7.15 Theorem CONCENTRATION CONDITION FOR VARIANCE DOMINANCE. Let X and Y be
two random variables with finite means µX and µY and finite variances σ2

X and σ2
Y . If

P
[
|X −µX | ≤ x

]
≥ P

[
|Y −µY | ≤ x

]
for all x, (7.29)

then σ2
X ≤ σ2

Y .

7.16 Theorem MEAN-QUANTILE INEQUALITY. Let mq a quantile of order q of the random vari-
able X . Then, if E(|X |) < ∞,

E(X)−σX [(1−q)/q]1/2 ≤ E(X |X ≤ mq) ≤ mq

≤ E(X |X ≥ mq) ≤ E(X)+σX [q/(1−q)]1/2 (7.30)

where σX =
[
E(X −EX)2

]1/2
, and

∣∣mq −E(X)
∣∣ ≤ σX max

{
[(1−q)/q]1/2, [q/(1−q)]1/2

}
. (7.31)

7.17 Corollary MEAN-MEDIAN INEQUALITY. Let m be any median of X . Then, if E(|X |) < ∞,

|m−E(X)| ≤ σX . (7.32)

7.18 Theorem SYMMETRIZATION INEQUALITIES. Let X1 and X2 two i.i.d. random variables, let
m be any median of X , and set X̃ = X1 −X2 Then, for any ε and a,

P [X −m ≥ ε] ≤ 2P
[
X̃ ≥ ε

]
(7.33)

and
P
[
|X −m| ≥ ε

]
≤ 2P

[
|X̃ | ≥ ε

]
≤ 4P

[
|X −a| ≥ ε/2

]
. (7.34)

7.19 Theorem RANGE-STANDARD DEVIATION INEQUALITY. If Qmin and Qmax are two real
numbers such that P[Qmin ≤ X ≤ Qmax] = 1, then

E(|X −µX |) ≤ σX ≤ [Qmax −Qmin]/2 . (7.35)
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7.20 Theorem RANGE-MEAN ABSOLUTE DEVIATION INEQUALITY. If Qmin and Qmax are two
real numbers such that P[Qmin ≤ X ≤ Qmax] = 1 and if m is a median of X , then

E(|X −m|) ≤ E(|X −µX |) ≤ [Qmax −Qmin]/2 . (7.36)

8. Multivariate generalizations

8.1 Notation CONDITIONAL DISTRIBUTION FUNCTIONS. Let X = (X1, . . . , Xk)
′ a k×1 random

vector in R
k. Then we denote as follows the following set of conditional distribution functions:

F1|·(x1) = F1(x1) = P[X1 ≤ x1] , (8.1)

F2|·(x2|x1) = P[X2 ≤ x2 |X1 = x1] ,

...

Fk|·(xk |x1, . . . , xk−1) = P[Xk ≤ xk |X1 = x1, . . . , Xk−1 = xk−1] .

Further, we define the following transformations of X1, . . . , Xk :

Z1 = F1(X1) , (8.2)

Z2 = F2|·(X2 |X1) ,

...

Zk = Fk|·(Xk |X1, . . . , Xk−1) .

8.2 Theorem TRANSFORMATION TO i.i.d. U(0,1) VARIABLES (ROSENBLATT). Let X =
(X1, . . . , Xk)

′ be a k × 1 random vector in R
k with an absolutely continuous distribution function

F(x1, . . . , xk) = P[X1 ≤ x1, . . . , Xk ≤ xk] . Then the random variables Z1, . . . , Zk are independent
and identically distributed according to a U(0, 1) distribution.
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9. Proofs and additional references

1.5 - 1.6 Rudin (1976), Chapter 4, pp. 95-97, and Chung (1974), Section 1.1. For (a)-(b), see
Phillips (1984), Sections 9.1 (p. 243) and 9.3 (p. 253).

1.7 - 1.10 Ramis, Deschamps, and Odoux (1982), Section 4.3.2, p.121.
1.11 Chung (1974), Section 1.1, p. 4.
1.20 Kolmogorov and Fomin (1975), Section 32.
1.22 Royden (1968, Chapter 5, Section 2, Lemma 3).
1.26 Protter and Morrey (1991, Chapter 12, Theorem 12.8), Kolmogorov and Fomin (1975,

Section 32, Theorem 3).
1.28 Devinatz (1968, Chapter 5, Theorem 5.5.4).
1.31 Kolmogorov and Fomin (1975, Section 32, Theorem 4), Royden (1968, Chapter 5, Sec-

tion 2, Theorem 4).
1.32 The equivalence follows from the combination of Theorems 1.20 and 1.31.
1.34 Devinatz (1968, Chapter 5, Theorem 5.5.3).
1.38 Kolmogorov and Fomin (1975), Section 33.2 (Theorems 2 and 4).
1.39 Kolmogorov and Fomin (1975), Section 31.1, Theorem 1.
1.40 Kolmogorov and Fomin (1975), Section 31.1, Theorem 5.
1.41 Haaser and Sullivan (1991), Section 9.3; Riesz and Sz.-Nagy (1955/1990), Chapter 1;

Kolmogorov and Fomin (1975), Section 31.2, Theorem 1.
1.42 Kolmogorov and Fomin (1975), Section 32 (Corollary 1).
1.43 Kolmogorov and Fomin (1975), Section 31.3 (Theorems 7 and 8), and Section 33.2 (The-

orem 5). For (c), see Ross (1980), Chapter 6, Theorem 34.3.
1.44 Kolmogorov and Fomin (1975), Section 33.1 (Theorem 1).
1.45 Kolmogorov and Fomin (1975), Section 33.2 (Theorem 6).
1.46 Kolmogorov and Fomin (1975), Section 33.2 (Remark to Theorem 6).
2.3 (2.4) is proved by Reiss (1989, Appendix 1, Lemma A.1.1). (2.5) and (2.6) are also given

by Gleser (1985, Lemma 1, p. 957).
2.4 Reiss (1989), Appendix 1, Lemma A.1.3.
2.5 Reiss (1989), Appendix 1, Lemma A.1.2.
3.2 (f) Lehmann and Casella (1998), Problem 1.7 (for the case q = 1/2).
4.3 (b) is mentioned by Hosseini (2009, 2010). (c) is mentioned by Reiss (1989, Lemma

1.5.4). For (d), see Williams (1991, Section 3.12 (p. 34).). (o) is stated by Hosseini (2009, 2010).
6.2 Parzen (1980) and Shorack and Wellner (1986, page 9, Exercise 3) state this result without

proof. For a proof, see Hosseini (2009, 2010).
6.6 This follows directly from the observation that the quantile function F−1

1 (q) is nondecreasing
and left continuous.

6.4–6.5 For discussion of relative distributions, see Handcock and Morris (1999) and Thas
(2010).

6.9 (a)-(b) Shorack and Wellner (1986), Chapter 1, Proposition 2.
?? See Reiss (1989, Lemma 1.5.4). The property (??) is also stated (without proof) by Green-

wood and Nikulin (1996, p. 44).
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7.5 See the literature on Lorenz curves: Arnold and Villaseñor (1987), Shaked and Shantiku-
mar (1994, equation (2.A.17) and Theorem 3.C.4).

7.6 This result is stated by Gnedenko (1969, Section 30, page 194) for the case where
P(X ≤ m) = P(X > m) and by Lehmann and Casella (1998, Chapter 1, Problem 1.8, p. 62) for
the case where F+

X (0.5) < c with P(X ≤ m) ≥ 0.5 and P(X ≥ m) ≥ 0.5. We give here a complete
proof.

PROOF Let m ≤ c. We can write :

E(|X −m|) =
∫

(−∞,m]

(m− x) dFX(x)+
∫

(m,c]

(x−m)dFX(x)+
∫

(c,∞)

(x−m) dFX(x) , (9.1)

E(|X − c|) =
∫

(−∞,m]

(c− x) dFX(x)+
∫

(m,c]

(c− x)dFX(x)+
∫

(c,∞)

(x− c) dFX(x) . (9.2)

Subtracting (9.1) from (9.2), we get :

E(|X − c|) − E(|X −m|)

=
∫

(−∞,m]

(c−m) dFX(x)+
∫

(m,c]

(c+m−2x)dFX(x)

+
∫

(c,∞)

(m− c) dFX(x)

= (c−m)
{
P [X ≤ m]−P [X > c]

}

+(c+m)P [m < X ≤ c]−2
∫

(m,c]

xdFX(x)

= (c−m)
{
P [X ≤ m]−P [X > m]+P [m < X ≤ c]

}

+(c+m)P [m < X ≤ c]−2
∫

(m,c]

xdFX(x)

= (c−m)
{
P [X ≤ m]−P [X > m]

}

+2cP [m < X ≤ c]−2
∫

(m,c]

xdFX(x)

= (c−m)
{
P [X ≤ m]−P [X > m]

}
+2

∫

(m,c]

(c− x) dFX(x) ≥ 0 .

Now, let c < m. We can write:

E(|X −m|) =
∫

(−∞,c)

(m− x)dFX (x)+
∫

[c,m)

(m− x)dFX (x)+
∫

[m,∞)

(x−m)dFX(x) , (9.3)
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E(|X − c|) =
∫

(−∞,c)

(c− x)dFX (x)+
∫

[c,m)

(x− c)dFX (x)+
∫

[m,∞)

(x− c)dFX(x) . (9.4)

Subtracting (9.3) from (9.4), we get:

E(|X − c|) − E(|X −m|)

=
∫

(−∞,c)

(c−m) dFX(x)+
∫

[c,m)

(2x− c−m)dFX(x)+
∫

[m,∞)

(m− c) dFX(x)

= (c−m)
{
P [X < c]−P [X ≥ m]

}
− (c+m)P [c ≤ X < m]+2

∫

[c,m)

xdFX(x)

= (c−m)
{
P [X < m]−P [c ≤ X < m]−P [X ≥ m]

}

−(c+m)P [c ≤ X < m]+2
∫

[c,m)

xdFX(x)

= (m− c)
{
P [X ≥ m]−P [X < m]

}
−2c P [c ≤ X < m]+2

∫

[c,m)

xdFX(x)

= (m− c)
{
P [X ≥ m]−P [X < m]

}
+2

∫

[c,m)

(x− c) dFX(x) ≥ 0 .

7.7 PROOF By definition, we have:

E(X+) =
∫ ∞

0
xdFX (x) , E(X−) =

∫ 0

−∞
xdFX (x) .

Consider now the differentials:

d [xFX (x)] = xdFX (x)+FX (x) dx , (9.5)

d [x(1−FX (x))] = −xdFX (x)+ [1−FX (x)] dx . (9.6)

Integrating (9.5) and (9.6) over the interval (a, b] when −∞ < a < b < ∞,we get:

∫ b

a
d [xFX (x)] = bFX (b)−aFX (a)

=
∫ b

a
xdFX (x)+

∫ b

a
FX (x) dx , (9.7)

∫ b

a
d [x(1−FX (x))] = b(1−FX (b))−a(1−FX (a))

= −
∫ b

a
xdFX (x)+

∫ b

a
[1−FX (x)] dx . (9.8)
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Since
lim

a→−∞
aFX (a) = lim

b→∞
b [1−FX (b)] = 0 ,

we get, on taking b = 0 and letting a →−∞ in (9.7),

E(X−) =
∫ 0

−∞
xdFX (x) = −

∫ 0

−∞
FX (x) dx ,

and, on taking a = 0 and letting b →−∞ in (9.8),

E(X+) =
∫ ∞

0
xdFX (x) =

∫ ∞

0
[1−FX (x)] dx .

The results for E(X) and E(|X |) follow the latter and the expression X = X+ −X− and |X | = X+ −
X−.

7.3 This identity has been observed by Gilat and Hill (1993).
7.8 See Rao (1973, Section 2b.2, page 95).
7.9 Some of the these identities are used by van Zwet (1979).
7.10 See Ferguson (1967, Section 1.8, Problem 2, page 51), Gnedenko (1969, Section 30,

page 194) and Lehmann and Casella (1998, Chapter 1, Problem 1.8, p. 62).
7.14 See Ferguson (1967, Section 1.8, Problem 2, page 51) and Gilat and Hill (1993).
7.15 See Rao (1973, Section 2b.2, page 96).
7.16 See Mallows and Richter (1969, Section 4) and Dharmadhikari (1991). The outer in-

equalities in (7.31) have also been obtained by Moriguti (1953). The symmetric inequality (7.31)
follows in a straightforward way from (7.31). It is also mentioned by O’Cinneide (1990); for an
alternative derivation, see David (1991).

7.18 See Loève (1977, Section 18.1, p. 257).
7.19 For the case of a discrete distribution, this inequality was given by Thompson (1935),

without proof, and by Guterman (1962) and Sher (1979) with simple proofs. See also Page and
Murty (1982, 1983).

PROOF If d = |Qmax −Qmin| = +∞, the result holds trivially. Let d < +∞, which means that Qmax

and Qmin are both finite. Setting ν = [Qmin + Qmax]/2, we see that |X −ν| ≤ d/2 with probability
one. Using the fact that the mean µX minimizes E[(X − c)2] with respect to c, it follows that

σ2
X = E[(X −µX)2] ≤ E[(X −ν)2] ≤ d2/4 (9.9)

and σX ≤ [Qmax −Qmin]/2.

7.20 This result has not apparently been stated elsewhere.

PROOF If d = |Qmax −Qmin| = +∞, the result holds trivially. Let d < +∞, which means that Qmax

and Qmin are both finite. Setting ν = [Qmin + Qmax]/2, we see that |X −ν| ≤ d/2 with probability
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one. Using the fact that the median m minimizes E[|X − c|] with respect to c, it follows that

E(|X −m|) ≤ E(|X −µX |) ≤ E(|X −ν |) ≤ d/2 . (9.10)

8.2 See Rosenblatt (1952).
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