Jean-Marie Dufour January 2025 Compiled: January 27, 2025

ECONOMETRICS 1 EXERCISES 2

Covariances and covariance matrices

- 1. Respond by TRUE, FALSE or UNCERTAIN to each one of the following statements and explain your answer (Maximum: 1 page per statement)
 - (a) If a random variable X has zero variance, it is unpredictable.
 - (b) If the correlation between two random variables *X* and *Y* is one, this means that one of them has variance zero.
 - (c) If *X* is a random variable with zero variance, then its covariance with any other random variable *Y* cannot be negative.
 - (d) If *X* is a random variable with variance equal to zero, then its correlation with any other random variable *Y* must be positive.
 - (e) If *X* is a random variable with variance one, then its correlation with any other random variable *Y* must be positive.
- 2. Let *X* and *Y* be two random variables with finite variances $\mathbb{V}(X)$ and $\mathbb{V}(Y)$. Prove the following inequality:

$$C(X,Y)^2 \le V(X)V(Y).$$
⁽¹⁾

- 3. Let $\mathbf{X} = (X_1, \dots, X_k)'$ a $k \times 1$ random vector, α a scalar, **a** and **b** fixed $k \times 1$ vectors, and *A* a fixed $g \times k$ matrix. Then, provided the moments considered are finite, show that the following properties hold:
 - (a) $\mathsf{E}(\mathbf{X} + \mathbf{a}) = \mathsf{E}(\mathbf{X}) + \mathbf{a}$;
 - (b) $E(\alpha X) = \alpha E(X)$;
 - (c) $\mathsf{E}(\mathbf{a}'\mathbf{X}) = \mathbf{a}'\mathsf{E}(\mathbf{X})$, $\mathsf{E}(A\mathbf{X}) = A\mathsf{E}(\mathbf{X})$;
 - (d) $V(\mathbf{X} + \mathbf{a}) = V(\mathbf{X})$;
 - (e) $V(\alpha \mathbf{X}) = \alpha^2 V(\mathbf{X})$;
 - (f) $V(\mathbf{a}'\mathbf{X}) = \mathbf{a}'V(\mathbf{X})\mathbf{a}$, $V(A\mathbf{X}) = AV(\mathbf{X})A'$;
 - $(g) \ \mathsf{C}\left(a' \mathbf{X}, b' \mathbf{X}\right) = a' \mathsf{V}\left(\mathbf{X}\right) b = b' \mathsf{V}\left(\mathbf{X}\right) a \,.$
- 4. Let $\mathbf{X} = (X_1, \dots, X_k)'$ be a random vector with finite second moments and let $\Sigma = V(\mathbf{X})$ be its covariance matrix. Prove the following properties.

- (a) $\Sigma' = \Sigma$.
- (b) Σ is a positive semidefinite matrix.