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1. Classification of specification errors

The classical linear model is defined by the following assumptions.

1.1 Assumption y = Xβ + ε
where y is a T ×1 vector of observations on a dependent variable ,

X is a T × k matrix of observations on explanatory variables,

β is a k×1 vector of fixed parameters,

ε is a T ×1 vector of random disturbances.

1.2 Assumption E(ε) = 0 .

1.3 Assumption E
(

εε ′
)

= σ2IT .

1.4 Assumption X is fixed (non-stochastic).

1.5 Assumption rank(X) = k < T .

To these, the assumption of error normality is often added.

1.6 Assumption ε follows a multinormal distribution.

An important problem in econometrics consists in studying what happens when one or several

of these assumptions fail. Important failures include the following ones.

1. Incorrect regression – The linear regression model entails that

E(y) = Xβ = x1β 1 + x2β 2 + · · ·+ xkβ k . (1.1)

Here we suppose that:

a) x1, x2, . . . , xk are the correct explanatory variables;

b) the relationship is linear.

Suppose now we estimate

y = Zγ + ε (1.2)

instead of (1.1). What are the consequences on estimation and statistical inference?

2. The error vector ε does not have mean zero:

E(ε) 6= 0 . (1.3)

3. Incorrect covariance matrix – The covariance matrix of ε is not equal to σ2IT :

E
[

εε ′
]

= Ω (1.4)

where Ω is a positive semidefinite matrix.
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4. Non-normality – The error vector ε does not follow a multinormal distribution.

5. Multicollinearity – The matrix X does not have full column rank:

rank(X) < k . (1.5)

6. Stochastic regressors – The matrix X is not fixed.

2. Incorrect regression function

2.1. The problem of incorrect regression function

Let us suppose the “true model” is:

y = Xβ + ε (2.1)

where the assumptions of the classical linear model (1.1) - (1.5) are satisfied. However, we estimate

instead the model

y = Zγ + ε (2.2)

where Z is a T ×G fixed matrix. Then the least squares estimator of γ is:

γ̂ =
(

Z′Z
)−1

Z′y

= (Z′Z)−1Z′(Xβ + ε)

= (Z′Z)−1Z′Xβ +(Z′Z)−1Z′ε (2.3)

and the expected value of γ̂ is

E(γ̂) = (Z′Z)−1ZXβ = Pβ (2.4)

where P = (Z′Z)−1Z′X . In general,

E(γ̂) 6= β (2.5)

so that γ̂ is not an unbiased estimator of β . Usual tests and confidence intervals are not valid.

2.2. Estimation of regression coefficients

2.2.1. The case of one missing explanatory variable

We will now study the case where a variable has been left out of the regression. Let

X =
[

X1

...xk

]

(2.1)

and

y = X1β 1 + xkβ k + ε (2.2)
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where X1 is a T × (k−1) fixed matrix and xk is a T ×1 fixed vector. Instead of (2.2), we estimate:

y = X1γ + ε . (2.3)

This corresponds to the case where Z = X1 and

P = (X ′
1X1)

−1X ′
1X

= (X ′
1X1)

−1X ′
1

[

X1

...xk

]

=
[(

X ′
1X1

)−1
X ′

1X1

...
(

X ′
1X1

)−1
X ′

1xk

]

=
[

Ik−1

... δ̂ k

]

(2.4)

where

δ̂ k = (X ′
1X1)

−1X ′
1xk . (2.5)

Note δ̂ k is the regression coefficient vector obtained by regressing xk on X1 :

(xk −X1δ̂ k)
′
(xk −X1δ̂ k) = min

δ k

(xk −X1δ k)
′
(xk −X1δ k) (2.6)

so X1δ̂ k provides the best linear approximation (in the least square sense) of the missing variable xk

based on the non-missing variables X1. Thus

E(γ̂) = Pβ (2.7)

=

[

Ik−1

...xk

](

β 1

β k

)

(2.8)

= β 1 + δ̂ kβ k (2.9)

so the bias of γ̂
E(γ̂)−β 1 = δ̂ kβ k (2.10)

is determined by β k and δ̂ k. We see easily that γ̂ is unbiased for β 1 in two cases:

1. xk does not belong to the regression: β k = 0 ;

2. xk is orthogonal with all the other regressors (every column of X1): X ′
1xk = 0.

It is also interesting to look at the effect of excluding a regressor on

ŷ = X1γ̂ (2.11)

which can be interpreted as an estimator of estimator of E(y), the mean of y. We have:

E(ŷ) = X1E(γ̂) = X1

[

β 1 + δ̂ kβ k

]

= X1β 1 +(X1δ̂ k)β k. (2.12)
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Since E(y) = X1β 1 + xkβ k , it is clear that E(ŷ) 6= E(y) even if X ′
1xk = 0, unless very special condi-

tions hold. We have:

E(ŷ) = E(y) ⇔ (X1δ̂ k)β k (2.13)

⇔ X1δ̂ k = xk or β k = 0 . (2.14)

In other words, E(ŷ) = E(y) if and only if β k = 0 (xk is not a missing explanatory variable) or xk is

linear combination of the columns of X1 (xk is a redundant explanatory variable).

Even if γ̂ is a biased estimator of β 1, it is possible that the mean squared error (MSE) of γ̂ be

smaller than the MSE of estimator β̂ 1 based on the complete model (2.2). The MSE of γ̂ is

E
[

(γ̂ −β 1)(γ̂ −β 1)
′ ]

= V(γ̂)+ [E(γ̂)−β 1] [E(γ̂)−β 1]
′

= σ2(X ′
1X1)

−1 +(δ̂ kβ k)(δ̂ kβ k)
′

= σ2(X ′
1X1)

−1 +β 2
k δ̂ kδ̂

′

k (2.15)

while the MSE of β̂ 1 is

E
[

(β̂ 1 −β 1)(β̂ 1 −β 1)
′]

= V(β̂ 1)+
[

E(β̂ 1)−β 1

][

E(β̂ 1)−β 1

]′

= V(β̂ 1) = σ2(X ′
1M2X1)

−1 (2.16)

where we use the fact that E(β̂ 1) = β 1 and M2 = IT − xk(x
′

kxk)x
′

k. In general, either of these mean

squared errors can be the smallest. More precisely, on observing that

X ′
1X1 −X ′

1M2X1 = X ′
1(I −M2)X1

= X ′
1(I −M2)

′
(I −M2)X1

= [(I −M2)X1]
′
[(I −M2)X1] (2.17)

is a positive semidefinite matrix, this entails that

(X ′
1M2X1)

−1 − (X ′
1X1)

−1 is a positive semidefinite matrix (2.18)

so that

V(β̂ 1)−E
[

(β̂ 1 −β 1)(β̂ 1 −β 1)
′]

=
[

σ2(X ′
1M2X1)

−1 −σ2(X ′
1X1)

−1
]

−β 2
k δ̂ kδ̂

′

k (2.19)

is the difference between two positive semidefinite matrices, which may be positive semidefinite,

negative semidefinite, or not definite at all.

2.2.2. Estimation of the mean from a misspecified regression model

Consider now the general case where Z is different X :

E(γ̂) = (Z′Z)−1ZXβ = Pβ (2.20)
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where

P = (Z′Z)−1Z′X

= (Z′Z)−1Z′ [x1, . . . , xk]

= [
(

Z′Z
)−1

Z′x1, . . . , (Z
′Z)−1Z′xk]

=
[

δ̂ 1, . . . , δ̂ k

]

(2.21)

and

δ̂ i =
(

Z′Z
)−1

Z′xi , i = 1, . . . , k . (2.22)

The fitted values for the misspecified models

ŷ = Zγ̂ (2.23)

can be interpreted as estimators of E(y), and

E(ŷ) = ZE(γ̂) = Z
[

δ̂ 1, . . . , δ k

]

β

=
[

Zδ̂ 1, . . . , Zδ̂ k

]

β

= [x̂1, . . . , x̂k]β = X̂β

= Z(Z′Z)−1Z′Xβ (2.24)

where x̂i = Zδ̂ i is a linear approximation of xi based on Z. In general E(ŷ) 6= E(y), but its MSE can

be smaller than the one of X β̂ based on the correctly specified model (2.2).

2.3. Estimation of the error variance

It is of interest to compare the estimators of the error variance derived from the misspecified and

correctly specified models. The “unbiased” estimator of σ2 based on model (2.2) is

s2
Z = y′MZy�(T −G) (2.25)

where MZ = IT −Z(Z′Z)−1Z′.Using

y = Xβ + ε (2.26)

we see that

y′MZy = (Xβ + ε)
′
MZ(Xβ + ε)

= β ′
X ′MZXβ + ε ′MZε +2β ′

X ′MZε (2.27)

hence

E(y′MZy) = β ′
X ′MZXβ +E(ε ′MZε)

= β ′
X ′MZXβ +E

[

tr(ε ′MZε)
]
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= β ′
X ′MZXβ +E

[

tr(MZεε ′)
]

= β ′
X ′MZXβ + tr[MZE(εε ′)]

= β ′
X ′MZXβ +σ2tr(MZ)

= β ′
X ′MZXβ +σ2(T −G) (2.28)

and

E(s2
Z) = σ2 +

1

T −G
β ′

X ′MZXβ ≥ σ2 = E(s2
X) (2.29)

where

s2
X =

1

T − k
y′MX y . (2.30)

If we compare two linear regression models, one of which is the correct one, the expected value

of the “unbiased estimator” of the error variance is never the largest for the correct model. This

provides a justification for selecting the model which yields the smallest estimated error variance

(or the largest R̄2).

3. Error mean different from zero

In the model

y = Xβ + ε (3.31)

consider now the case where the assumption E(ε) is relaxed:

E(ε) = ξ , (3.32)

V(ε) = σ2IT = E
[

(ε −ξ )(ε −ξ )′
]

. (3.33)

Then

E(β̂ ) = E[β +(X ′X)−1X ′ε]

= β +(X ′X)−1X ′ξ (3.34)

and we see that β̂ is not anymore an unbiased estimator (unless X ′ξ = 0).
Suppose now that the model contains a constant term, i.e.

X = [iT , x2, . . . , xk] (3.35)

where iT = (1, 1, . . . , 1)
′
, and the components of ε all have the same mean µ :

ξ = µiT . (3.36)

We can then set the mean to zero by defining

v = ε −µiT (3.37)
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so that E(v) = 0, and rewrite the model as follows:

y = iT β 1 + x2β 2 + · · ·+ xkβ k + ε

= iT β 1 + x2β 2 + · · ·+ xkβ k + µiT + v

= iT β̄ 1 + x2β 2 + · · ·+ xkβ k + v (3.38)

where β̄ 1 = β 1 + µ. In this reparameterized model, the non-zero mean problem has disappeared.

The only difference with the standard case is that the interpretation of the constant term has been

modified.

This type of reformulation is not typically possible when if the model does not have a constant.

This suggests it is usually a bad idea not to include a constant in a linear regression (unless very

theoretical reasons are available).

4. Incorrect error covariance matrix

The assumption

E
(

εε ′
)

= σ2IT (4.39)

is typically quite restrictive and is not satisfied in many econometric models. Suppose instead that

V(ε) = Ω (4.40)

where Ω is a positive definite matrix.

It is then easy to see that the estimator β̂ remains unbiased:

E(β̂ ) = E[β +(X ′X)−1X ′ε]

= β +(X ′X)−1X ′
E(ε) = β . (4.41)

However, the covariance matrix of β̂ is modified:

V(β̂ ) = E
[(

X ′X
)−1

X ′εε ′X(X ′X)−1
]

=
(

X ′X
)−1

X ′
E(εε ′)X(X ′X)−1

= (X ′X)−1X ′ΩX(X ′X)−1 6= σ2(X ′X)−1
. (4.42)

This entails that β̂ is not anymore the best linear unbiased estimator of β . Further, usual formulas

for computing standard errors and tests are not valid anymore.

5. Stochastic regressors

The assumption that X is fixed is also quite restrictive and implausible in most econometric regres-

sions. However, if ε is independent of X , most results obtained from the classical linear model
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remain valid. This comes form the fact these hold conditionally on X .We have in this case

E(ε |X) = E(ε) = 0 , (5.43)

V(ε |X) = V(ε) = σ2IT (5.44)

hence

E(β̂ ) = β +E
[

(X ′X)−1X ′ε
]

= β +E
[

E
[

(X ′X)−1X ′ε |X
]]

= β +E
[

(X ′X)−1X ′
E(ε |X)

]

=β . (5.45)

Similarly usual tests and confidence intervals remain valid (under the assumption of Gaussian er-

rors).

However, if

E(ε |X) 6= 0 (5.46)

we can only write

E(β̂ ) = β +E
[

(X ′X)−1X ′ε
]

= β +E
[

E
[

(X ′X)−1X ′ε |X
]]

= β +E
[

(X ′X)−1X ′
E(ε |X)

]

(5.47)

and β̂ is typically biased. The Gauss-Markov theorem as well as usual tests and confidence intervals

are not typically valid.
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