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1. Generating functions and spectral density

Generating functions constitute a convenient technique for representing and determining the auto-
covariance structure of a stationary process.

Definition 1.1 GENERATING FUNCTION. Let (a;:k=0, 1,2,...)and (by:k=...,—1,0,1,...)

two sequences of complex numbers. Let D(a) C C the set of points z € C at which the series ¥ agzk
k=0

converges, and D(b) C C the set of points z for which where the series Y byzk converges. Then

the functions . e
a(z) = Zakzk,zeD(a) (1.1)
k=0
and -
b(z)= Y biz',z€ D(b) (1.2)
k=—o0

are called the generating functions of the sequences ay and by, respectively.

Proposition 1.1 CONVERGENCE ANNULUS OF A GENERATING FUNCTION. Let (ay : k € Z) be
a sequence of complex numbers. Then the generating function

a(z) = z izt (1.3)
k=—00
converges for Ry < |z| < Ry where
R = limsup|a_¢|'*, (1.4)
k—00
R, = 1/ [Iimsup]ak\l/k] , (1.5)
k—00

and diverges for |z| < Ry or |z| > Ry. If R, < Ry, a(z) converges nowhere and, if R| = Ry, a(z)
diverges everywhere except possibly, for |z| = Ry = Ry. Further, when Ry < Ry, the coefficients ay
are uniquely defined, and

1 a(z) dz
=— | ——— k=0,4+1,£2,... 1.6
ag ZTTiZ(z—ZO)kH ) ) ) ) ( )

where C={z€C:|z—z|=R}and Ry <R<R;.

Proposition 1.2 SUMS AND PRODUCTS OF GENERATING FUNCTIONS. Let (a;:k € Z) and (b €
Z) two sequences of complex numbers such that the generating functions a(z) and b(z) converge for
R < |z| < Ry, where 0 < R} < Ry < . Then,



1. the generating function of the sum c, = ax+ by is c(z) = a(z) + b(z);

2. ifthe product sequence
dy = z ajbi_; (1.7)

d(z) =a(z)b(z). (1.8)

Further, the series c(z) and d(z) converge for Ry < |z| < R;.

We will be especially interested by generating functions of autocovariances Y, and autocorrela-
tions p, of a second-order stationary process X;:

00

@)=Y v (1.9)

k=—o00

p.(2) =5 Pt =Vi(2)/ Vo (1.10)

k=—o00

We see immediately that the generating function with a white noise {u, : t € Z} ~ WN(0, 0?) is
constant::

Vu(2) = 0%, p,(z) = 1. (1.11)

Proposition 1.3 CONVERGENCE OF AUTOCOVARIANCE GENERATING FUNCTIONS. Let Y, k€
Z, the autocovariances of a second-order stationary process X;, and P, k € Z, the corresponding
autocorrelations.

1. IfR=limsup|p,|'/* < 1, the generating functions y,(z) and p (z) converge for R < |z| < 1/R.

k—o0

2. If R =1, the functions y,(z) and p,(z) diverge everywhere, except possibly on the circle
|z| = 1.

[ee]
3. If 3 |pil < oo, the functions y,(z) and p,(z) converge absolutely and uniformly on the circle
k=0
|z| = 1.
Proposition 1.4 IDENTIFIABILITY OF AUTOCOVARIANCES AND AUTOCORRELATIONS BY GEN-

ERATING FUNCTIONS. Let Y, and p,, k € Z, autocovariance and autocorrelation sequences such
that

vz = 5 vd= Y v (1.12)

k=—o00 k=—o00

pz) = 5 p2 = > p,Z~ (1.13)

k=—o00 k=—o00



where the series considered converge for R < |z| < 1/R, where R > 0. Then y, =Y, and p, = p}
foranyke”Z.

Proposition 1.5 GENERATING FUNCTION OF THE AUTOCOVARIANCES OF A MA (%) PROCESS.
Let {X, : t € Z} a second-order stationary process such that

X=3 W (1.14)

J=—®

where {u; :t € Z} ~ WN(0,0?). If the series

W)=y (1.15)

Jj=—00
and Y(z~") converge absolutely, then
Vi) = (@), (1.16)

Corollary 1.6 GENERATING FUNCTION OF THE AUTOCOVARIANCES OF AN ARMA PROCESS.
Let {X, : t € Z} a second-order stationary and causal ARMA(p,q) process, such that

¢(B)X, = 1+ 6(B)u (1.17)
where {u, :t € 7} ~ WN(0,02), ¢ (z) = l—¢z——¢,22and 0(z) =1—01z—---— 0,27 Then

the generating function of the autocovariances of X; is

(1.18)

for R <|z| < 1/R, where
0 < R =max{|G1],|Gal,....|G,} < 1 (1.19)

and G;',G,", ..., G;l are the roots of the polynomial ¢ (z).

Pl’OpOSitiOIl 1.7 GENERATING FUNCTION OF THE AUTOCOVARIANCES OF A FILTERED PRO-
CESS. Let {X;:t € Z} a second-order stationary process and

Y=Y X jteZ, (1.20)

where (cj: j € Z) is a sequence of real constants such that 'y |c;| < oo. If the series Y,(z) and

‘/:700



c(z) = 3 cjz/ converge absolutely, then
j:—oo

V,(2) = c(2)cz" )y, (). (1.21)

Definition 1.2 SPECTRAL DENSITY. Let X; a second-order stationary process such that the
generating function of the autocovariances Y,(z) converge for |z| = 1. The spectral density of the
process X; is the function

fHlw) = o yo—i—ZZykcos(wk)]
= 2y;)T+ Zykcos wk) (1.22)

where the coefficients Y, are the autocovariances of the process X;. The function f,(w) is defined

for all the values of w such that the series 'y Y, cos(wk) converges.
k=1

Remark 1.1 If the series ¥ Y, cos(wk) converges, it is immediate that y,(e~'®’) converge and
k=1

R BRCR
fi(w) = ﬁyx(e @) = 3T z Ve ¥ (1.23)
k=—00

where i = v/—1.

Proposition 1.8 CONVERGENCE AND PROPERTIES OF THE SPECTRAL DENSITY. Lety,, k€ Z,

[0e]
be an autocovariance function such that 'y |y;| < o . Then
k=0

1. the series
Yo
21

flw) ==+ — Z Y cos(wk) (1.24)

converges absolutely and uniformly in @ ;

N

the function f,(w) is continuous ;

fe(w+2m) = fu(w) and f,(—w) = fi(w), V0 ;
Vi= ["fi(w)cos(wk)dw, Yk ;

NS

i

fx(w) >0



Proposition 1.9 SPECTRAL DENSITIES OF SPECIAL PROCESSES. Let {X;:t € Z} be a second-
order stationary process with autocovariances Y, k € Z.

I IfX,=u+ 3 L,Ujut,jwhere{ut:ZEZ}NWN(O,UZ)and > ;| <o, then
j=—0 j=—o

2 . 2 ‘
(@) = @ )ple ™) = 2 |p(e ). (1.29)
2. If $(B)X, = [t + O(B)uy ,where ¢(B) =1—¢B—---— ¢ B, 6(B)=1-6,B—---— §,B
and {u, :t € Z} ~ WN(0, 0?), then
o2 |6(e@) 2
flw) =~ 5 (@) (1.26)

[ee] [oe]
3. IfY, = Y cjX,—jwhere (c;: j € Z) is a sequence of real constants such that 'y |cj| <o,
j:—oo j:—oo

and if 'S |Y,| < oo, then
k=0

fy(@) = ()] (). (1.27)

2. Inverse autocorrelations

Definition 2.1 INVERSE AUTOCORRELATIONS. Let f,(w) the spectral density of a second-order

stationary process {X; 1t € Z}. If the function 1/ f,(w) is also a spectral density, the autocovari-
(

ances yxl) (k), k € Z, associated with the inverse spectrum inverse 1/ f(w) are called the inverse
autocovariances of the process X, i.e.

Y (k) = /nf (lw) cos(wk)dw, k€ 7. 2.1)

The inverse autocovariances satisfy the equation

1

1 2 1 | @
fw) ﬁk;wyy) (k) cos(wk) = 5— v (0)+ Ekzlv,(f) cos(wk). (2.2)

The inverse autocorrelations are

P (k) =y (k) /viD(0),k e Z. 2.3)

A sufficient condition for the function 1/ f;(w) to be a spectral density is that the function 1/ f;(w)
be continuous on the interval — 7T < w < 17, which entails that f,(w) > 0, V.



If the process X; is a second-order stationary ARMA(p, q) process such that

¢,(B)Xi = 0+ 0,(B)u (2.4)
where ¢ ,(B) =1—¢,B —---— ¢ B and 6,(B) = 1—6,B —--- — §,B? are polynomials whose
roots are all outside the unit circle and {u, : t € Z} ~ WN(0, g2), then

0> |64 () ’
flw)=— |2 2.5)
¢, ()
1 2|9, ()
=22 (2.6)
felw) 02| 0,(e®)
The inverse autocovariances yff) (k) are the autocovariances associated with the model
0,(B)X; = +9,(B)v, (2.7)

where {v; :1 € Z} ~WN(0, 1/0?) and U is some constant. Consequently, the inverse autocorrela-
tions of an ARMA(p, q) process behave like the autocorrelations of an ARMA(q, p). For an process
AR(p) process,

pW (k) =0, for k> p. (2.8)

For a MA(q) process, the inverse partial autocorrelations (i.e. the partial autocorrelations associated
with the inverse autocorrelations) are equal to zero for k > g. These properties can be used for
identifying the order of a process.

3. Multiplicity of representations

3.1. Backward representation ARMA models

By the backward Wold theorem, we know that any strictly indeterministic second-order stationary
process X; : t € Z} can be written in the form

Xi=p+ Y Wiy (3.1)
PRS

where i, is a white noise such that E(X;_;i;) =0, Vj > 1 . In particular, if

¢,(B)(X: — 1) = 04(B)u (3.2)



where the polynomials ¢ ,(B) =1—¢,B —---— ¢ ,B” and 0,(B) =1—6,B —--- — §,B% have all
their roots outside the unit circle and {u, : t € Z} ~ WN(0, 0?), the spectral density of X; is

ogt|oe (eiw)
flw) = 1= (3.3)
2m| ¢, (e'@)
Consider the process
¢ (Bfl) 00
=P (X _y)= (X i —U). 34
t 6,(B1) (X — ) ]ZOCJ( r+j— M) 34
By Proposition 1.9, the spectral density of ¥; is
V)
9, () g’
w) = ‘ W)= — 3.5
f;’( ) eq (e"*’) fx( ) 27.[ ( )
and thus {Y; : t € Z} ~ WN(0, 0?). If we define i, = Y;, we see that
9,(B)
X —u)=ig .
eq(Bil) ( t I"l) Uy (3 6)
or
¢,(B~)X = i+ 6,(B )i, (3.7
and
Xi—¢ X1 —— ¢pXt+p =H+i;— Ol — - — Oyl 14 (3-8)
where (1—¢;—---—¢ p) U= 1. We call (3.6) or (3.8) the backward representation of the X; process.
3.2. Multiple moving-average representations
Let {X;} ~ ARIMA(p, d, q) . Then
W; = (1—B)X; ~ ARMA(p,q). (3.9)
If we suppose that E(W,) = 0, W, satisfies an equation of the form
¢ ,(B)W; = 0,4(B)u, (3.10)
or 6, ()
W, =1 = Y(B)u. 3.11
t ¢p(B) u = Y(B)u, ( )



To determine an appropriate ARMA model, one typically estimates the autocorrelations p,. The
latter are uniquely determined by the generating function of the autocovariances:

2 ~1 2
Y.(z)=0Yz)Y(z ' )=0 — (3.12)
&= oM =g
It .
0,(2)=1-61z —---—0,27=(1—Hyz)--- (1 —Hyz) = ﬂl(l —Hjz), (3.13)
]:
then
(z) o A(-Hz)(1-Hz") (3.14)
z) = —Hiz)(1-Hjz ). .
W, @, st T
However
(1-Hiz)1—Hiz"") = 1—-Hpz—Hjz '+H;=H;(1-H;'z—H;'z"'+H;?)
_ 2 —1 —1_—1
= H;j(1-H; z)(1-H; z) (3.15)
hence
W 0, ()6, ()
j=1"’ A -1 —1 -1 2 Y412) 5,z
(z) = n{1l—-H; z)(1-H; z ' |=0"—"F+——"F—% (3.16)
1=, g, 4 1) () =g
where . .
=2 _ 2 2 _ -1
0°"=0 le1Hj’ G’q(z)—jzl(l—Hj z). (3.17)
¥,(z) in (3.16) can be viewed as the generating function of a process of the form
q
¢ ,(B)W: = 6,(B)i = [[1 (1~ H} Bl (3.18)
while y,(z) in (3.14) is the generating function of
q
¢ ,(B)W, = 6,(B)u, = [jl;ll(l —H;B)u,. (3.19)

The processes (3.18) and (3.19) have the same autocovariance function and thus cannot be distin-
guished by looking at their seconds moments.

Example 3.1 Identification of an ARMA(1, 1) model
(1—0.5B)W, = (1 —0.2B)(1+0.1B)u, (3.20)

(1—0.5B)W, = (1—5B)(1+ 10B)z, (3.21)



have the same autocorrelation function.

In general, the models

q
8, (B)W; = [n ( —Hf‘B)] (3.22)
all have the same autocovariance function (and are thus indistinguishable). Since it is easier with an

invertible model, we select
. H; ifH;<1
H { H' ifH> 1 (323)

where |H;| < 1, in order to have an invertible model.

3.3. Redundant parameters

Suppose ¢ ,(B) and 8,(B) have a common factor, say G(B):

¢p(B) = G(B)qbpl (B), 64(B)=G(B)8,(B). (3.24)

Consider the models
¢ ,(B)W, 04(B)u; (3.25)
¢p1 (B)W: = 64, (B)us. (3.26)

The MA () representations of these two models are

W, = g(Bu, (3.27)
where 6,(B) 6, (B)G(B) 6, (B)
_ 9 _aq _ Yq —
VB =5 ) "9, (B)GH 8, B 1B (3:28)
Wi = @, (B)us. (3.29)

(3.25) and (3.26) have the same MA (o) representation, hence the same autocovariance generating
functions:

Vi(2) = WY@ = o’y (P, (7). (3.30)

It is not possible to distinguish a series generated by (3.25) form one produced with (3.26). Among
these two models, we will select the simpler one, i.e. (3.26). Further, if we tried to estimate (3.25)
rather than (3.26), we would meet singularity problems (in the covariance matrix of the estimators).

4. Proofs and references

A general overview of the technique of generating functions is available in Wilf (1994).
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