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1. Estimator consistency
Letys,VYo,...be a sequence of observations and

éT — éT(yla y27'°'?yT) (11)

an estimator for & x 1 parameter vectd. We say thaB is consistent (or weakly
consistent) for 8 when

O+ T_p> 0. (1.2)
This is also written: i
plimBt =6. (1.3)
T—oo
This means that i
lim P [||6r - 6[| > £] =0, Ve > 0 (1.4)

where||-|| represents the Euclidean distance.
We say thatf is stronglyconsistent consistent (or weakly consistent) for 6
when

~

0r 2> 0, (1.5)

T—o
l.e., when
p [TlianeT - 9} —1. (1.6)

It is easy to see that strong consistency entails weak coneyste
We say thaB+ is asymptotically unbiased for 8 when

TIiLnooE(éT) =0. (1.7)

In general, a consistent estimator is not necessarily asymogitgtunbiased, for
example when the estimator does not have a finite mean. Syrala asymptoti-
cally unbiased estimator may not be consistent, for examglambiased but not
consistent. In the following proposition, we give a general doounder which
asymptotic unbiasedness entails consistency.



1.1 Proposition If the estimatoif+ satisfies
lim E(Br) =16 (1.8)

and A
limV(6t) =0, (1.9)

T—o0

thend: —- 0.

T—c0



2. Congistency of least squaresin linear regression
Let us now consider a linear regression model of the form
y=XB+¢ (2.1)

wheref is a fixedk x 1 parameter vectoy,ande areT x 1 vectorsX isaT x k
matrix,

Y1 €1
y=| 2 [.e=| |, (2.2)
Yt Er
_X11 X12 -+~ Xlk—

Xo1 Xo2 - Xok
X:[X17X27°"7Xk]: . . .

XT1 X12 -0 XTk

Instead of the finite-sample assumptions of the classicadinedel, we make
the following “asymptotic” assumptions:

XX is nonsingular with probability one for ail > k (2.3)
1
XX T—p> Sy where detSy) # 0, (2.4)
1 / Y
1 / p 2
?esma > 0. (2.6)

Then, we have:

~

Br = (XX)Xy=p+(XX)'Xe (2.7)
1

-1
1
= B+ Gx’x) =X'e T%Z B+30=p (2.8)



and the least squares estimator is (weakly) consistent.
Similarly, the “unbiased” least squares estimatooéf

1,
St e

whereg = M(X)e = [IT — X (X'X) ' X']¢, satisfies

1
. 1 / I\~ 17
i [IT—X(XX) x]s

— = [ge—£'X (X’X)_lx’s]

T |1, 1.,\ /1 11
= —— |=fe— | =Xe ) [ =X'X]| =X¢
T—k|T (T ) (T ) T

where

1 / p 2
—E&EE —O
T T—o00 ’

1 / l 1 / - 1 / Y 's—1n _

P o2,
T—oo

In other wordss? is a consistent estimator of.
If furthermore,iTX’g satisfies a central limit theorem, namely

so that

%X’s Tii N[0, 0°5x],

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)



we have, using (2.7),

~ 1 11
VT[B+—B] = VT Gx'x) =X'e
1 11
= | =X'X — X'e

(7x) &

— N[0, 0?2 "]. (2.15)
In other words, the distribution OW[BT — B] is approximately normal fol
large enough. This entails that the distributions of tlaand F statistics can be
approximated by the distributions obtained under the assangpbf the Gaus-
sian classical linear model. [The details of the argumengstablish asymptotic
distributions are not presented in this course.]

3. Instrumental variables

If X ande are asymptotically correlatede.

1
=X T%Z Oxe # 0, (3.1)
we have .
N 1 / 1 / p -1
Br=B+ $XX ?XETZZLH'ZX Oxe # B (3.2)

and the least squares estimator is not consistengfoAlternative estimation
methods are typically required to deal with this problem.

The instrumental variables (IV) method is the simplest altevaatd least
squares when explanatory variables and disturbances are asigaiptacorre-
lated. Instrumental variables can be defined as variables wiecfaaymptot-
ically) uncorrelated with the disturbance term but still corediawith the vari-
ables inX. More precisely, suppose withTax | matrix Z of variables with the



following properties:

1 / p
Z'7Z andX'Z are full rank matrices with probability one for &l (3.4)
1
727 T—p> 5, where dets;) # 0, (3.5)
1
?Z’X T—p> S7x Where rankZzx ) = k. (3.6)

Assumption (3.3) means thZtand € are (asymptotically) uncorrelatethstru-
ment validity). Assumption (3.4) means thatZ andX’Z are full rank matrices,
Assumption (3.5) means they are not (asymptotically) colineaile Assump-
tion (2.4) means the variables Ihcontain information about all the variables in
X (asymptotically)

Consider now equation (2.1) and multiply both sidezby

7'y =Z'XB+Z'c . (3.7)
If we then multiply by2, we get:
1 I, 1 / 1 /
ZZy=ZZXB+ 2. (3.8)

Consider first the case where the number of instruments is emtred humber of

explanatory variablef = k), so thatZ’X is a square invertible matrix. In view
of assumption (3.3), we expe%Z’s to be close to zero fof large enough. This
suggests to estimafe by solving the equation

1 1
~Z'y==27Z'X :

which leads to the estimator:
B =(ZX)'ZYy. (3.10)

This estimator is called the IV estimator Bfbased on the instrumet(in the



case wheré = k). It is easy to see th¢~i IS consistent fop3 :

~

B = B+(ZX)1Z¢

1 !
- B+( z'x) 7% 2. i 5pl0=p (3.11)

It is interesting to note the least squares estiméttman be viewed as a special
case of the IV estimator obtained by takidg= X. Of course 3 will be consistent
only if the orthogonality condition (2.5) holds.

Similarly, if we allow the number of instruments to be largeariithe number
of explanatory variablel > k), suppose temporarily that is fixed. Then the
covariance matrix of the error terdie in (3.7) is:

V(Z'e) = E[Z'e€'Z]
= 7Z'E(e€")2=0%7'Z. (3.12)

This suggests to consider the following “generalized leasasgp” estimator:
B =[X'2(22) 12X X'2(2'2) 2. (3.13)

If | =k, Z’X is a square invertible matrix, so that

~

B = (ZX)XNZ2)(X'2)™X'Z(Z2) 17y
= (ZX)'Zy (3.14)
reduces to the estimator in (3.10). )§d)s also called the IV estimator ¢f based

on the instrument (in the general case wheke> k). Again, itis easy to see that
[ is consistent fop3 :

B=[XZ2(Z2)'ZX]"'*X'2(22) 72y
=B+ [X'2(Z2)Z'X| " X'2(Z'2) 7 ¢



:[3_|_

(9) (39129 (3) 3 "3

2 B[S T i iy 2 0= 8. (3.15)

T—00

If furthermore,iTZ’e satisfies a central limit theorem, namely

1 _, L
FrEeN 0, 0%5], (3.16)
we find
-1 — 1
\/ﬂET—ﬁ] = VT (%X'Z> (%Z’Z) (%Z’X)] (%xfz) (%Z’Z) (%Zfz

() () o] () (1) (e

— N[0, 0[5y 55 2 52x) 7Y 3.

T—oo

Tests based on this distribution can also be derived. [Thelslera not presented
in this course.]




