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1. Introduction

On using usual preliminary specification and residual-based diagnostics, several models
often appear to be essentially equivalent for representingthe behavior of a time series. In
such cases, it can be quite useful to use model selection criteria.

SupposeXt follows anARIMA (p, d, q) process:

ϕp (B) (1 − B)d Xt = µ̄ + θq (B) ut , t ≥ 1 − d

where{ut : t ∈ Z} ∼ BB (0, σ2) .
This model is estimated from the series differentiatedd times:Wt = (1 − B)d Xt, t =

1, ..., T. Let

σ̂2

W =

T
∑

t=1

(

Wt − W̄
)2

/T

whereW̄ =
∑T

t=1
WT /T, the sample variance ofWt, and letσ̂2

T the maximum likelihood
(ML) estimator ofσ2 :

σ̂2

T =
∑

û2

t/T.

2. Predictive performance criteria

Sinceσ2 is the variance of the one-step ahead error prediction error, it is natural to
a) minimizeσ̂2

T ,
or

b) maximizeR2 = 1 − (σ̂2

T / σ̂2

W ) .
These two criteria are equivalent. However,σ̂2

T automatically decreases whenp or q
increases. In order to penalize models which contain too many parameters, it is preferable
to use statistics which involve a correction for the number of degrees of freedom:

c) minimize

s2

T =
T

T − p − q
σ̂2

T =
∑

t

û2

t/ (T − p − q)

or
d) maximize

R̄2 = 1 −
s2

T

s2

W

= 1 −
T − 1

T − p − q

σ̂2

T

σ̂2

W

wheres2

W =
∑T

t=1

(

Wt − W̄
)2

/ (T − 1) .
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3. Information criteria

Another approach consists in evaluating the “distance” between the selected model and the
true (unknown) model. Letf (W ) the density associated with the postulated model and
fo (W ) the density of the true model, whereW = (W1, . . . , WT )′ . One such distance
consists in using theKullback distance:

I (f, fo) =

∫

log [fo (w) /f (w)] fo (w) dw

= E
fo

{log [fo (W ) /f (W )]}

= E
fo

{log [fo (W )]} − E
fo

{log [f (W )]} .

Minimizing I (f, fo) with respect tof is equivalent to minimizing−E {log [f (W )]} . We
obtain an information criterion by selecting an “estimator” of −E

fo

{log (f)} . These differ-

ent criteria take the following general form (up to an additive constant):

IC∗ = −
1

T
log (f) + α (T ) (p + q)

whereα (T ) is a decreasing function ofT. We then try to minimizeIC∗.
In the case wheref is a normal density,IC∗ takes the equivalent form:

IC = log
(

σ̂2

T

)

+ α (T ) (p + q) .

Different criteria are obtained by selecting different functionsα (T ) . The most important
ones are:

a) α (T ) = 2/T [Akaike (1969)];

b) α (T ) = log (T ) /T [Schwarz (1978)];

c) α (T ) = c log [log (T )] /T wherec > 2 [Hannan and Quinn (1979)].

The following criteria are then obtained:

a) Akaike criterion [Akaike (1969)]:

AIC (p, q) = log
(

σ̂2

T

)

+
2 (p + q)

T
;

b) Schwarz criterion [Schwarz (1978)]:

BIC (p, q) = log
(

σ̂2

T

)

+ (p + q)
log (T )

T
;
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c) Hannan-Quinn criterion [Hannan and Quinn (1979)]:

ϕ (p, q) = log
(

σ̂2

T

)

+ c (p + q)
log [log (T )]

T
, wherec > 2 .

If we assume that the true valuespo andqo satisfy0 ≤ po ≤ P and0 ≤ qo ≤ Q, and we
minimize the information criterion over all the pairs{(p, q) : 0 ≤ p ≤ P , 0 ≤ q ≤ Q}, it
is possible to show [see Shibata (1976, 1980), Taniguchi (1980), Hannan and Quinn (1979),
Hannan and Rissanen (1982)] that:

1. the Akaike criterion tends to identify values ofp andq which are too large, i.e., the
values ofp andq that minimizeAIC converge (asT → ∞) towards values which
are larger thenpo andqo;

2. the values ofp andq that minimizeBIC converge towardspo andqo.

4. Bibliographic notes

For a general review of this topic, see Choi (1992, Chapter 4). For further discussion, see
Brockwell and Davis (1991, Section 9.3), Lütkepohl (1991, Chapter 11) and Gouriéroux
and Monfort (1997, Section 6.3). On the case of integrated series, see Paulsen (1984) and
Toda and Yamamoto (1995).
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