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1. Basic notions

1.1. Probability space
1.1.1 Definition A probability space is a triplet (Ω, A, P ) where

(1) Ω is the set of all possible results of an experiment;

(2) A is class of subsets of Ω (called events) forming a σ−algebra, i.e.

(i) Ω ∈ A ,

(ii) A ∈ A ⇒ Ac ∈ A ,

(iii)
∞∪

j=1
Aj ∈ A , for any sequence {A1, A2, ...} ⊆ A ;

(3) P : A → [0, 1] is a function which assigns to each event A ∈ A a number P (A) ∈
[0, 1], called the probability of A and such that

(i) P (Ω) = 1,

(ii) if {Aj}∞j=1 is a sequence of disjoint events, then P (
∞∪

j=1
Aj) =

∞∑
j=1

P (Aj).

1.2. Real random variable
1.2.1 Definition (heuristic) A real random variable X is a variable with real values whose
behavior can be described by a probability distribution. Usually, this probability distribu-
tion is described by a distribution function:

FX(x) = P [X ≤ x] . (1.1)

1.2.2 Definition (formal) A real random variable X is a function X : Ω → R such that

X−1((−∞, x]) ≡ {ω ∈ Ω : X(ω) ≤ x} ∈ A, ∀x ∈ R, (measurable function).

The probability law of X is defined by

FX(x) = P [X−1((−∞, x])] . (1.2)
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1.3. Stochastic process
1.3.1 Definition Let T be a non-empty set. A stochastic process on T is a collection of
r.v.′s Xt : Ω → R such that to each element t ∈ T is associated a r.v. Xt. The process can
be written {Xt : t ∈ T}. If T = R (real numbers), we have a process in continuous time.
If T = Z (integers) or T ⊆ Z, we have discrete time process.

The set T can be finite or infinite, but usually it is assumed to be infinite. In the sequel,
we shall be mainly interested by processes for which T is a right-infinite interval of integers:
i.e., T = (n0,∞) where n0 ∈ Z or n0 = −∞. We can also consider r.v.′s which take their
values in more general spaces, i.e.

Xt : Ω → Ω0

where Ω0 is any non-empty set. Unless stated otherwise, we shall limit ourselves to the
case where Ω0 = R.

To observe a time series is equivalent to observing a realization of a process {Xt : t ∈
T} or a portion of such a realization: given (Ω, A, P ), ω ∈ Ω is first drawn and then the
variables Xt(ω), t ∈ T, are associated with it. Each realization is determined in one shot
by ω.

The probability law of a stochastic process {Xt : t ∈ T}where T ⊆ R can be described
by specifying, for each subset {t1, t2, ... , tn} ⊆ T (where n ≥ 1), the joint distribution
function of (Xt1 , ... , Xtn) :

F (x1, ... , xn; t1, ... , tn) = P [Xt1 ≤ x1, ... , Xtn ≤ xn] . (1.1)

This follows from Kolmogorov’s theorem [see Brockwell and Davis (1991, Chapter 1)].

1.4. Lr spaces
1.4.1 Definition Let r be a real number. Lr is the set of real random variables X defined
on (Ω, A, P ) such that E[|X|r] < ∞.

The space Lr is always defined with respect to a probability space (Ω, A, P ). L2 is the
set of r.v.′s on (Ω, A, P ) whose second moments are finite (square-integrable variables).
A stochastic process {Xt : t ∈ T} is in Lr iff Xt ∈ Lr, ∀t ∈ T , i.e.

E[|Xt|r] < ∞ ,∀t ∈ T . (1.1)
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The properties of moments of r.v.′s are summarized in Dufour (1999b).

2. Stationary processes
In general, the variables of a process {Xt : t ∈ T} are not identically distributed nor
independent. In particular, if we suppose that E(X2

t ) < ∞, we have

E(Xt) = µt , (2.1)

Cov(Xt1 , Xt2) = E[(Xt1 − µt1)(Xt2 − µt2)] = C(t1, t2) . (2.2)

The means, variances and covariances of the variables of the process depend on their posi-
tion in the series. The behavior of Xt can change with time. The function C : T × T → R
is called the covariance function of the process {Xt : t ∈ T}.

In this section, we will study the case where T is an right-infinite interval of integers.

2.1 Assumption (Process on an interval of integers).

T = {t ∈ Z : t > n0} , where n0 ∈ Z ∪ {−∞}. (2.3)

2.2 Definition (Strictly stationary process) : A stochastic process {Xt : t ∈ T} is strictly
stationary (SS) iff the joint probability law of the vector (Xt1+k, Xt2+k, ... , Xtn+k)

′ is
identical with the one of (Xt1 , Xt2 , ... , Xtn)′, for any finite subset {t1, t2, ... , tn} ⊆ T
and for any integer k ≥ 0. To indicate that {Xt : t ∈ T} is SS, we will write {Xt : t ∈
T} ∼ SS or Xt ∼ SS.

2.3 Proposition If the process {Xt : t ∈ T} is SS, then the joint probability law of the
vector (Xt1+k, Xt2+k, ... , Xtn+k)

′ is identical to the one of (Xt1 , Xt2 , ... , Xtn)′, for any
finite subset {t1, t2, ... , tn} and any integer k > n0 −min{t1, ... , tn}.

2.4 Proposition (Strict stationarity of a process on the integers). A process {Xt : t ∈ Z}
is SS iff the joint probability law of (Xt1+k, Xt2+k, ... , Xtn+k)

′ is identical with the law of
(Xt1 , Xt2 , ... , Xtn)′, for any subset {t1, t2, ... , tn} ⊆ Z and any integer k.
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Suppose E(X2
t ) < ∞, for any t ∈ T . If the process {Xt : t ∈ T} is SS, we see easily

that
E(Xs) = E(Xt) ,∀s, t ∈ T , (2.4)

E(XsXt) = E(Xs+kXt+k) , ∀s, t ∈ T, ∀k ≥ 0 . (2.5)

Furthermore, since

Cov(Xs, Xt) = E(XsXt)− E(Xs)E(Xt) , (2.6)

we also have

Cov(Xs, Xt) = Cov(Xs+k, Xt+k) ,∀s, t ∈ T , ∀k ≥ 0 . (2.7)

The conditions (2.4) and (2.5) are equivalent to the conditions (2.4) and (2.7). The mean of
Xt is constant and the covariance between any two variables of the process only depends
on the distance between the variables, but not their position in the series.

2.5 Definition (Second-order stationary process). A stochastic process {Xt : t ∈ T} is
second-order stationary (S2) iff

(1) E(X2
t ) < ∞,∀t ∈ T,

(2) E(Xs) = E(Xt), ∀s, t ∈ T,
(3) Cov(Xs, Xt) = Cov(Xs+k, Xt+k), ∀s, t ∈ T, ∀k ≥ 0 .

If {Xt : t ∈ T} is S2, we write {Xt : t ∈ T} ∼ S2 or Xt ∼ S2.

2.6 Remark Instead of second-order stationary, one also says weakly stationary (WS).

2.7 Proposition (Relation between strict stationarity and second-order stationarity). If the
process {Xt : t ∈ T} is strictly stationary and E(X2

t ) < ∞ for any t ∈ T , then the process
{Xt : t ∈ T} is second-order stationary.

2.8 Proposition (Existence of an autocovariance function). If the process {Xt : t ∈ T} is
second-order stationary, then there exists a function γ : Z→ R such that

Cov(Xs, Xt) = γ(t− s) ,∀s, t ∈ T. (2.8)
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The function γ is called the autocovariance function of the process {Xt : t ∈ T} and γ(k),
for k given, the lag-k autocovariance of the process {Xt : t ∈ T}.

PROOF: Let r ∈ T any element of T . Since the process {Xt : t ∈ T} is S2, we have, for
any s, t ∈ T such that s ≤ t,

Cov(Xr, Xr+t−s) = Cov(Xr+s−r, Xr+t−s+s−r) = Cov(Xs, Xt) , if s ≥ r, (2.9)

Cov(Xs, Xt) = Cov(Xs+r−s, Xt+r−s) = Cov(Xr, Xr+t−s) , if s < r. (2.10)

Further, in the case where s > t, we have

Cov(Xs, Xt) = Cov(Xt, Xs) = Cov(Xr, Xr+s−t) . (2.11)

Thus
Cov(Xs, Xt) = Cov(Xr, Xr+|t−s|) = γ(t− s) . (2.12)

Q.E.D.

2.9 Proposition (Properties of the autocovariance function). Let {Xt : t ∈ T} be a
second-order stationary process. The autocovariance function γ(k) of the process {Xt :
t ∈ T} satisfies the following properties:

(1) γ(0) = V ar(Xt) ≥ 0 , ∀t ∈ T ;

(2) γ(k) = γ(−k) , ∀k ∈ Z (i.e., γ(k) is an even function of k);

(3) |γ(k)| ≤ γ(0) , ∀k ∈ Z ;

(4) the function γ(k) is positive semi-definite, i.e.
N∑

i=1

N∑
j=1

aiajγ(ti − tj) ≥ 0, for

any positive integer N and for all the vectors a = (a1, ... , aN)′ ∈ RN and
τ = (t1, ... , tN)′ ∈ TN ;

(5) any N ×N matrix of the form

ΓN = [γ(j − i)]i, j=1, ... , N =




γ0 γ1 γ2 · · · γN−1

γ1 γ0 γ1 · · · γN−2
...

...
...

...
γN−1 γN−2 γN−3 · · · γ0


 (2.13)
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is positive semi-definite, where γk ≡ γ(k).

2.10 Proposition (Existence of an autocorrelation function). If the process {Xt : t ∈ T}
is second-order stationary, then there exists a function ρ : Z→ [−1, 1] such that

ρ(t− s) = Corr(Xs, Xt) = γ(t− s)/γ(0) ,∀s, t ∈ T , (2.14)

where 0/0 ≡ 1. The function ρ is called the autocorrelation function of the process {Xt :
t ∈ T}, and ρ(k), for k given, the lag-k autocorrelation of the process {Xt : t ∈ T}.

2.11 Proposition (Properties of the autocorrelation function). Let {Xt : t ∈ T} be a
second-order stationary process. The autocorrelation function ρ(k) of the process {Xt :
t ∈ T} satisfies the following properties:

(1) ρ(0) = 1;

(2) ρ(k) = ρ(−k) , ∀k ∈ Z ;

(3) |ρ(k)| ≤ 1, ∀k ∈ Z ;

(4) the function ρ(k) is positive semi-definite, i.e.

N∑
i=1

N∑
j=1

aiajρ(ti − tj) ≥ 0 (2.15)

for any positive integer N and for all the vectors a = (a1, ... , aN)′ ∈ RN and
τ = (t1, ... , tN)′ ∈ TN ;

(5) any N ×N matrix of the form

RN =
1

γ0

ΓN =




1 ρ1 ρ2 · · · ρN−1

ρ1 1 ρ1 · · · ρN−2
...

...
...

...
ρN−1 ρN−2 ρN−3 · · · 1


 (2.16)

is positive semi-definite, where γ0 = V ar(Xt) and ρk ≡ ρ(k) .
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2.12 Theorem (Characterization of autocovariance functions) : An even function γ : Z→
R is positive semi-definite iff γ(.) is the autocovariance function of a second-order station-
ary process {Xt : t ∈ Z}.

PROOF: See Brockwell and Davis (1991, Chapter 2).

2.13 Corollary (Characterization of autocorrelation functions). An even function ρ : Z→
[−1, 1] is positive semi-definite iff ρ is the autocorrelation function of a second-order
stationary process {Xt : t ∈ Z}.

2.14 Definition (Deterministic process). Let {Xt : t ∈ T} be a stochastic process, T1 ⊆ T
and It = {Xs : s ≤ t}. We say that the process {Xt : t ∈ T} is deterministic on T1 iff there
exists a collection of functions {gt(It−1) : t ∈ T1} such that Xt = gt(It−1) with probability
1, ∀t ∈ T1.

A deterministic process is a process which can be perfectly predicted form its own past
(at points where it is deterministic).

2.15 Proposition (Criterion for a deterministic process). Let {Xt : t ∈ T} be a second-
order stationary process, where T = {t ∈ Z : t > n0} and n0 ∈ Z ∪ {−∞}, and let
γ(k) its autocovariance function. If there exists an integer N ≥ 1 such that the matrix
ΓN is singular [where ΓN is defined in Proposition 2.9], then the process {Xt : t ∈ T} is
deterministic for t > n0 + N − 1. In particular, if V ar(Xt) = γ(0) = 0, the process is
deterministic for t ∈ T.

For a second-order indeterministic stationary process en any t ∈ T , all the matrices
ΓN , N ≥ 1, are invertible.

2.16 Definition (Stationary of order m). Let m be a non-negative integer. A stochastic
process {Xt : t ∈ T} is stationary of order m iff

(1) E(|Xt|m) < ∞ , ∀t ∈ T ,
and

(2) E[Xm1
t1 Xm2

t2 ... Xmn
tn ] = E

[
Xm1

t1+kX
m2
t2+k ... Xmn

tn+k ]
for any k ≥ 0, any subset {t1, ... , tn} ∈ TN and all the non-negative integers m1, ...
, mn such that m1 + m2 + ... +mn ≤ m.
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If m = 1, the mean is constant, but not necessarily the other moments. If m = 2, the
process is second-order stationary.

2.17 Definition (Asymptotically stationary process of order m). Let m a non-negative
integer. A stochastic process {Xt : t ∈ T} is asymptotically stationary of order m iff

(1) there exists an integer N such that (|Xt|m) < ∞ ,for t ≥ N,
and

(2) lim
t1→∞

{
E

(
Xm1

t1 Xm2
t1+∆2

...Xmn
t1+∆n

)− E
(
Xm1

t1+kX
m2
t1+∆2+k...X

mn
t1+∆n+k

)}
= 0

for any k ≥ 0, t1 ∈ T , all the positive integers ∆2, ∆3, ... , ∆n such that ∆2 < ∆3 <
... < ∆n, and all the non-negative integers m1, ... , mn such that m1 + m2 + ... +
mn ≤ m.

3. Some important models
In this section, we will again assume that T is a right-infinite interval integers (Assumption
2.1) :

T = {t ∈ Z : t > n0} , where n0 ∈ Z ∪ {−∞} . (3.1)

3.1. Noise models
3.1.1 Definition Sequence of independent r.v.′s : process {Xt : t ∈ T} such that the
variables Xt are mutually independent. We write

Xt : t ∈ T} ∼ IND or {Xt} ∼ IND; (3.2)

{Xt : t ∈ T} ∼ IND(µt) or E(Xt) = µt; (3.3)

{Xt : t ∈ T} ∼ IND(µt, σ
2
t ), if E(Xt) = µt and V ar(Xt) = σ2

t . (3.4)

3.1.2 Definition Random sample: sequence of independent and identically distributed
(i.i.d.) r.v.′s. We write

{Xt : t ∈ T} ∼ IID . (3.5)

A random sample is a SS process. If E(X2
t ) < ∞, for any t ∈ T , the process is S2. In

this case, we write

{Xt : t ∈ T} ∼ IID(µ, σ2) , if E(Xt) = µ and V (Xt) = σ2. (3.6)
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3.1.3 Definition White noise: sequence of r.v.′s in L2 of mean zero, of same variance and
mutually uncorrelated, i.e.

E(X2
t ) < ∞,∀t ∈ T, (3.7)

E(X2
t ) < ∞,∀t ∈ T, (3.8)

E(X2
t ) = σ2 ,∀t ∈ T, (3.9)

Cov(Xs, Xt) = 0 , if s 6= t. (3.10)

We write :
{Xt : t ∈ T} ∼ BB(0, σ2) or {Xt} ∼ BB(0, σ2). (3.11)

3.1.4 Definition Heteroskedastic white noise: sequence of r.v.′s in L2 with mean zero and
mutually uncorrelated, i.e.

E(X2
t ) < ∞,∀t ∈ T, (3.12)

E(Xt) = 0,∀t ∈ T, (3.13)

Cov(Xt, Xs) = 0, if s 6= t, (3.14)

E(X2
t ) = σ2

t , ∀t ∈ T. (3.15)

We write:
{Xt : t ∈ Z} ∼ BB(0, σ2

t ) or {Xt} ∼ BB(0, σ2
t ). (3.16)

Each one of these four models will be called a noise process.

3.2. Harmonic processes
Many time series exhibit apparent periodic behavior. This suggests one to use periodic
functions to describe them.

3.2.1 Definition A function f(t), t ∈ R, is periodic of period P if

f(t + P ) = f(t),∀t.
1
P

is the frequency associated with the function (number of cycles per unit of time).

3.2.2 Example
sin(t) = sin(t + 2π) = sin(t + 2πk),∀k ∈ Z. (3.17)

3.2.3 Example
cos(t) = cos(t + 2π) = cos(t + 2πk),∀k ∈ Z. (3.18)
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3.2.4 Example

sin(νt) = sin

[
ν

(
t +

2π

v

)]
= sin

[
ν

(
t +

2πk

v

)]
,∀k ∈ Z. (3.19)

3.2.5 Example

cos(νt) = cos

[
ν

(
t +

2π

v

)]
= cos

[
ν

(
t +

2πk

v

)]
,∀k ∈ Z. (3.20)

For sin(νt) and cos(νt), the period is P = 2π/ν .

3.2.6 Example

f(t) = C cos(νt + θ) = C[cos(νt) cos(θ)− sin(νt) sin(θ)]

= A cos(νt) + B sin(νt) (3.21)

where C ≥ 0 , A = C cos(θ) and B = −C sin θ . Further,

C =
√

A2 + B2 , tan(θ) = −B/A (if C 6= 0). (3.22)

3.2.7 Definition We call:

C = amplitude;
ν = angular mfrequency (radians/time unit);
P = 2π/ν = period;

v̄ =
1

P
=

v

2π
= frequency (number of cycles per time unit);

θ = phase angle (usually 0 ≤ θ < 2π or − π/2 < θ ≤ π/2).

3.2.8 Example

f(t) = C sin(νt + θ) = C cos(νt + θ − π/2) (3.23)
= C[sin(νt) cos(θ) + cos(νt) sin(θ)] (3.24)
= A cos(νt) + B sin(νt) (3.25)

where

0 ≤ ν < 2π , (3.26)

A = C sin(θ) = C cos
(
θ − π

2

)
, (3.27)
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B = C cos(θ) = −C sin
(
θ − π

2

)
. (3.28)

Consider the model

Xt = C cos(νt + θ) (3.29)
= A cos(νt) + B sin(νt), t ∈ Z. (3.30)

If A and B are constants,

E(Xt) = A cos(νt) + B sin(νt) , t ∈ Z, (3.31)

and thus the process Xt is non-stationary (the mean is not constant). Suppose now A and
B are r.v.′s such that

E(A) = E(B) = 0, E(A2) = E(B2) = σ2, E(AB) = 0. (3.32)

A and B do not depend on t but are fixed for each realization of the process [A = A(ω),
B = B(ω)]. In this case,

E(Xt) = 0, (3.33)
E(XsXt) = E(A2) cos(νs) cos(νt) + E(B2) sin(νs) sin(νt)

= σ2[cos(νs) cos(νt) + sin(νs) sin(νt)] = σ2 cos[ν(t− s)]. (3.34)

The process Xt is stationary of order 2 with the following autocovariance and autocorrela-
tion functions:

γX(k) = σ2 cos(νk), ρX(k) = cos(νk). (3.35)

If we add m cyclic processes of the form (3.29), we obtain a harmonic process of order m.

3.2.9 Definition (Harmonic process of order m). We say the process {Xt : t ∈ T} is a
harmonic process of order m if it can written in the form

Xt =
m∑

j=1

[Aj cos(νjt) + Bj sin(νjt)], ∀t ∈ T , (3.36)

where ν1, ... , νm are distinct constants in the interval [0, 2π).
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If we suppose Aj , Bj , j = 1, ... , m, are r.v.′s in L2 such that

E(Aj) = E(Bj) = 0, E(A2
j) = E(B2

j ) = σ2
j , j = 1, ... , m , (3.37)

E(AjAk) = E(BjBk) = 0, pourj 6= k, (3.38)
E(AjBk) = 0,∀j, k , (3.39)

the process Xt can be considered second-order stationary:

E(Xt) = 0 , (3.40)

E(XsXt) =
m∑

j=1

σ2
j cos[νj(t− s)] , (3.41)

hence

γX(k) =
m∑

j=1

σ2
j cos(νjk) , (3.42)

ρX(k) =
m∑

j=1

σ2
j cos(νjk)/

m∑
j=1

σ2
j . (3.43)

If we add a white noise ut to Xt in (3.36), we obtain again a second-order stationary process
:

Xt =
m∑

j=1

[Aj cos(νjt) + Bj sin(νjt)] + ut, t ∈ T , (3.44)

where the process {ut : t ∈ T} ∼ BB(0, σ2) is uncorrelated with Aj , Bj , j = 1, ... , m.
In this case, E(Xt) = 0 and

γX(k) =
m∑

j=1

σ2
j cos(νjk) + σ2δ(k) (3.45)

where δ(k) = 1 for k = 0, and δ(k) = 0 otherwise. If a series can be described by an
equation of the form (3.44), we can view it as a realization of a second-order stationary
process.

3.3. Linear processes
Many stochastic processes with dependence are obtained as transformations of noise
processes.
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3.3.1 Definition The process {Xt : t ∈ T} is an autoregressive process of order p if it
satisfies and equation of the form

Xt = µ̄ +

p∑
j=1

ϕjXt−j + ut ,∀t ∈ T , (3.46)

where {ut : t ∈ Z} ∼ BB(0, σ2). In this case, we denote

{Xt : t ∈ T} ∼ AR(p).

Usually, T = Z or T = Z+ (positive integers). If
p∑

j=1

ϕj 6= 1, we can define µ = µ̄/(1 −
p∑

j=1

ϕj) and write

X̃t =

p∑
j=1

ϕjX̃t−j + ut,∀t ∈ T,

where X̃t ≡ Xt − µ.

3.3.2 3.3.3 Definition The process {Xt : t ∈ T} is a moving average process of order
q if it can written in the form

Xt = µ̄ +

q∑
j=0

ψjut−j,∀t ∈ T, (3.47)

where {ut : t ∈ Z} ∼ BB(0, σ2). In this case, we denote

{Xt : t ∈ T} ∼ MA(q). (3.48)

Without loss of generality, we can set ψ0 = 1 and ψj = −θj , j = 1, ... , q :

Xt = µ̄ + ut −
q∑

j=1

θjut−j , t ∈ T

or, equivalently,

X̃t = ut −
q∑

j=1

θjut−j

13



where X̃t ≡ Xt − µ̄.

3.3.4 Definition The process {Xt : t ∈ T} is an autoregressive-moving-average (ARMA)
process of order (p, q) if it can be written in the form

Xt = µ̄ +

p∑
j=1

ϕjXt−j + ut −
q∑

j=1

θjut−j,∀t ∈ T, (3.49)

where {ut : t ∈ Z} ∼ BB(0, σ2). In this case, we denote

{Xt : t ∈ T} ∼ ARMA(p, q). (3.50)

If
p∑

j=1

ϕj 6= 1, we can also write

X̃t =

p∑
j=1

ϕjX̃t−j + ut −
q∑

j=1

θjut−j (3.51)

where X̃t = Xt − µ and µ = µ̄/(1−
p∑

j=1

ϕj) .

3.3.5 Definition The process {Xt : t ∈ T} is a moving-average process of infinite order if
it can be written in the form

Xt = µ̄ +
+∞∑

j=−∞
ψjut−j,∀t ∈ Z, (3.52)

where {ut : t ∈ Z} ∼ BB(0, σ2) . We also say that Xt is a weakly linear process. In this
case, we denote

{Xt : t ∈ T} ∼ MA(∞). (3.53)

In particular, if ψj = 0 for j < 0, i.e.

Xt = µ̄ +
∞∑

j=0

ψjut−j,∀t ∈ Z, (3.54)

we say that Xt is a causal function of ut (causal linear process). [Box and Jenkins (1976)
speak about general linear processes.]
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3.3.6 Definition The process {Xt : t ∈ T} is an autoregressive process of infinite order if
it can be written in the form

Xt = µ̄ +
∞∑

j=1

ϕjXt−j + ut, t ∈ T, (3.55)

where {ut : t ∈ Z} ∼ BB(0, σ2) . In this case, we denote

{Xt : t ∈ T} ∼ AR(∞). (3.56)

3.3.7 Remark Generalization: We can generalize the notions defined above by assuming
that {ut : t ∈ Z} is a noise. Unless sated otherwise, we will suppose {ut} is a white noise.

3.3.8 QUESTIONS :

1. Under which conditions are the processes defined above stationary (strictly or in
Lr)?

2. Under which conditions are the processus MA(∞) or AR(∞) well defined (conver-
gent series)?

3. What are the links between the different classes of processes defined above?

4. When a process is stationary, what are its autocovariance and autocorrelation func-
tions?

3.4. Integrated processes
3.4.1 Definition The process {Xt : t ∈ T} is a random walk if it satisfies an equation of
the form

Xt −Xt−1 = vt,∀t ∈ T, (3.57)

where {vt : t ∈ Z} ∼ IID. For such a process to be well defined, we must suppose that
n0 6= −∞ (the process ne can start at −∞). If n0 = −1, we can write

Xt = X0 +
t∑

j=1

vj (3.58)
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hence the name “integrated process”. If E(vt) = µ̄ or Med(vt) = µ̄, one often writes

Xt −Xt−1 = µ̄ + ut (3.59)

where ut ≡ vt − µ̄ ∼ IID and E(ut) = 0 or Med(ut) = 0 (depending on whether
E(ut) = 0 or Med(ut) = 0). If µ̄ 6= 0, the random walk has drift.

3.4.2 Definition The process {Xt : t ∈ T} is a random walk generated by a white noise
[or an heteroskedastic white noise, or a sequence of independent r.v.′s] If Xt satisfies an
equation of the form

Xt −Xt−1 = µ̄ + ut (3.60)

where {ut : t ∈ T} ∼ BB(0, σ2) [or {ut : t ∈ T} ∼ BB(0, σ2
t ), or {ut : t ∈ T} ∼

IND(0)] .

3.4.3 Definition The process {Xt : t ∈ T} is integrated of order d if it can be written in
the form

(1−B)dXt = Zt ,∀t ∈ T, (3.61)

where {Zt : t ∈ T} is a stationary process (usually stationary of order 2) and d is a non-
negative integer (d = 0, 1, 2, ...). In particular, if {Zt : t ∈ T} is an ARMA(p, q)
stationary process, {Xt : t ∈ T} is an ARIMA(p, d, q) process: {Xt : t ∈ T} ∼
ARIMA(p, d, q). We note

B Xt = Xt−1 , (3.62)
(1−B)Xt = Xt −Xt−1 , (3.63)

(1−B)2Xt = (1−B)(1−B)Xt = (1−B)(Xt −Xt−1) (3.64)
= Xt − 2Xt−1 + Xt−2, (3.65)

(1−B)dXt = (1−B)(1−B)d−1Xt, d = 1, 2, ... (3.66)

where (1−B)0 = 1.

3.5. Models of deterministic tendency
3.5.1 Definition The process {Xt : t ∈ T} follows a deterministic tendency if it can be
written in the form

Xt = f(t) + Zt , ∀t ∈ T, (3.67)
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where f(t) is a deterministic function of time and {Zt : t ∈ T} is a noise or a stationary
process.

3.5.2 Important cases of deterministic tendency:

Xt = β0 + β1t + ut, (3.68)

Xt =
k∑

j=0

βjt
j + ut, (3.69)

where {ut : t ∈ T} ∼ BB(0, σ2) .

4. Transformations of stationary processes
4.1 Theorem Let {Xt : t ∈ Z} be a stochastic process on the integers, r ≥ 1 and {aj :

j ∈ Z} a sequence of real numbers. If
∞∑

j=−∞
|aj|E(|Xt−j|r)1/r < ∞, then, for any t, the

random series
∞∑

j=−∞
ajXt−j converges absolutely a.s. and in mean of order r to a r.v. Yt

such that E(|Yt|r) < ∞ .

PROOF: See Dufour (1999a).

4.2 Theorem Let {Xt : t ∈ Z} be a second-order stationary process and {aj : j ∈ Z} an

sequence of real numbers absolutely convergent sequence of real numbers, i.e.
∞∑

j=−∞
|aj| <

∞. Then the random series
∞∑

j=−∞
ajXt−j converges absolutely p.s. and in mean of order 2

to a r.v. Yt ∈ L2, ∀t, and the process {Yt : t ∈ Z} is second-order stationary.

PROOF : See Gouriéroux and Monfort (1997, Property 5.6).
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4.3 Theorem If {Xt : t ∈ Z} be a second-order stationary process with autocovariance
function γX(k), the autocovariance function of the transformed process

Yt =
∞∑

j=−∞
ajXt−j, (4.1)

where
∞∑

j=−∞
|aj| < ∞ , is given by

γY (k) =
∞∑

i=−∞

∞∑
j=−∞

aiajγX(k − i + j) . (4.2)

4.4 Theorem The series
∞∑

j=−∞
ajXt−j converges absolutely p.s. for any second-order sta-

tionary process {Xt : t ∈ Z} iff
∞∑

j=−∞
|aj| < ∞. (4.3)

5. Infinite order moving averages
Consider the random series ∞∑

j=−∞
ψjut−j, t ∈ Z (5.1)

where {ut : t ∈ Z} ∼ BB(0, σ2) .

5.1. Convergence conditions
We can write

∞∑
j=−∞

ψjut−j =
∞∑

j=−∞
Yj(t) =

−1∑
j=−∞

Yj(t) +
∞∑

j=0

Yj(t) (5.2)

where Yj(t) ≡ ψjut−j and

E[|Yj(t)|] = |ψj|E[|ut−j|] ≤ |ψj|[E(u2
t−j)]

1
2 = |ψj|σ < ∞,
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∞∑
j=−∞

ψjut−j is a series of orthogonal variables.

Suppose
−1∑

j=−∞
ψ2

j < ∞. Then

Y 1
m(t) ≡

−1∑
j=−m

ψjut−j
2→

m→∞
Y 1(t) ≡

−1∑
j=−∞

ψjut−j,

Y 2
n (t) ≡

n∑
j=0

ψjut−j
2→

n→∞
Y 2(t) ≡

∞∑
j=1

ψjut−j

[see Dufour (1999a)], and thus

Ym,n(t) ≡ Y 1
m(t) + Y 2

n (t)
2→

m→∞
n→∞

X̃t ≡ Y 1(t) + Y 2(t) ≡
∞∑

j=−∞
ψjut−j, ∀t ∈ Z.

It is also clear that

Xn(t) ≡ Y 1
n (t) + Y 2

n (t) =
−1∑

j=−n

ψjut−j +
n∑

j=0

ψjut−j
2→

n→∞
X̃t ≡

∞∑
j=−∞

ψjut−j , ∀t ∈ Z .

(5.3)
Thus,

+∞∑
j=−∞

ψ2
j < ∞⇒

∞∑
j=−∞

ψjut−j converges in q.m. to a r.v. X̃t

[see Dufour (1999a)]. Further

+∞∑
j=−∞

ψ2
j < ∞⇒

∞∑
j=−∞

ψjut−j converges in q.m. to a r.v. X̃t

[see Dufour (1999a)],

∞∑
j=−∞

|ψj| < ∞⇒
∞∑

j=−∞
ψ2

j < ∞

⇒
∞∑

j=−∞
ψjut−j converges in q.m. to a X̃t.
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If the variables {ut : t ∈ Z} are mutually independent,

+∞∑
j=−∞

ψ2
j < ∞⇒

+∞∑
j=−∞

ψjut−j converges in a.s. to a r.v. X̃t

[see Dufour (1999a)]. The variable X̃t is called the limit (in q.m. or a.s.) of the series
∞∑

j=−∞
ψjut−j , and we write

X̃t =
∞∑

j=−∞
ψjut−j.

on defining Xt ≡ µ + X̃t, we obtain the linear process

Xt = µ +
∞∑

j=−∞
ψjut−j

where it is assumed that the series converges.

5.2. Mean, variance and covariances
By (5.3), we have:

E[Xn(t)] →
n→∞

E(X̃t) ,

E[Xn(t)2] →
n→∞

E(X̃2
t ),

E[Xn(t)Xn(t + k)] →
n→∞

E(X̃t X̃t+k);

see Dufour (1999a). Consequently,

E(X̃t) = 0 , (5.4)

V ar(X̃t) = E(X̃2
t ) = lim

n→∞

n∑
j=−n

ψ2
jσ

2 = σ2

∞∑
j=−∞

ψ2
j , (5.5)

Cov(X̃t, X̃t+k) = E(X̃t X̃t+k)

= lim
n→∞

E

[(
n∑

i=−n

ψiut−i

)(
n∑

j=−n

ψjut+k−j

)]
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= lim
n→∞

n∑
i=−n

n∑
j=−n

ψiψjE(ut−iut+k−j)

=





lim
n→∞

n−k∑
i=−n

ψiψi+kσ
2 = σ2

∞∑
i=−∞

ψiψi+k, if k ≥ 1,

lim
n→∞

n∑
j=−n

ψjψj+|k|σ
2 = σ2

∞∑
j=−∞

ψjψj+|k| , if k ≤ −1,
(5.6)

since t− i = t + k − j ⇒ j = i + k and i = j − k. For any k ∈ Z, we can write

Cov(X̃t, X̃t+k) = σ2

∞∑
j=−∞

ψjψj+|k| , (5.7)

Corr(X̃t, X̃t+k) =
∞∑

j=−∞
ψjψj+|k|/

∞∑
j=−∞

ψ2
j . (5.8)

The series
∞∑

j=−∞
ψjψj+k converges absolutely, for

∣∣∣∣∣
∞∑

j=−∞
ψjψj+k

∣∣∣∣∣ ≤
∞∑

j=−∞

∣∣ψj ψj+k

∣∣ ≤
[ ∞∑

j=−∞
ψ2

j

] 1
2
[ ∞∑

j=−∞
ψ2

j+k

] 1
2

< ∞ . (5.9)

If Xt = µ + X̃t = µ +
+∞∑

j=−∞
ψjut−j , then

E(Xt) = µ , Cov(Xt, Xt+k) = Cov(X̃t, X̃t+k). (5.10)

In the case of a causal MA(∞) process causal, we have

Xt = µ +
∞∑

j=0

ψjut−j (5.11)

where {ut : t ∈ Z} ∼ BB(0, σ2) ,

Cov(Xt, Xt+k) = σ2

∞∑
j=0

ψjψj+|k| , (5.12)

Corr(Xt, Xt+k) =
∞∑

j=0

ψjψj+|k|/
∞∑

j=0

ψ2
j . (5.13)
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5.3. Stationarity
The process

Xt = µ +
∞∑

j=−∞
ψjut−j , t ∈ Z, (5.14)

where {ut : t ∈ Z} ∼ BB(0, σ2) and
∞∑

j=−∞
ψ2

j < ∞ , is second-order stationary, for

E(Xt) and Cov(Xt, Xt+k) do not depend on t. If we suppose that {ut : t ∈ Z} ∼ IID, with

E|ut| < ∞ and
∞∑

j=−∞
ψ2

j < ∞, the process is strictly stationary.

5.4. Operational notation

We can denote the process MA(∞)

Xt = µ + ψ(B)ut = µ +

( ∞∑
j=−∞

ψjB
j

)
ut (5.15)

where ψ(B) =
∞∑

j=−∞
ψjB

j and Bjut = ut−j .

6. Finite order moving averages
6.1 The MA(q) process can be written

Xt = µ + ut −
q∑

j=1

θjut−j (6.1)

where θ(B) = 1−θ1B − ... −θqB
q . This process is a special case of the MA(∞) process

with

ψ0 = 1 , ψj = −θj , for 1 ≤ j ≤ q ,

ψj = 0 , for j < 0 or j > q. (6.2)

6.2 This process is clearly second-order stationary, with

E(Xt) = µ , (6.3)
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V (Xt) = σ2

(
1 +

q∑
j=1

θ2
j

)
, (6.4)

γ(k) ≡ Cov(Xt, Xt+k) = σ2

∞∑
j=−∞

ψjψj+|k| . (6.5)

On defining θ0 ≡ −1, we then see that

γ(k) = σ2

q−k∑
j=0

θjθj+k

= σ2

[
−θk +

q−k∑
j=1

θjθj+k

]

= σ2[−θk + θ1θk+1 + ... + θq−kθq] , for 1 ≤ k ≤ q, (6.6)
γ(k) = 0 , for k ≥ q + 1,

γ(−k) = γ(k) , for k < 0. (6.7)

The autocorrelation function of Xt is thus

ρ(k) =

(
−θk +

q−k∑
j=1

θjθj+k

)
/

(
1 +

q∑
j=1

θ2
j

)
, 1 ≤ k ≤ q

= 0 , k ≥ q + 1

(6.8)

The autocorrelations are zero for k ≥ q + 1.

6.3 For q = 1,
ρ(k) = −θ1/(1 + θ2

1), k = 1 ,
= 0 , k ≥ 2,

(6.9)

hence |ρ(1)| ≤ 0.5 .

6.4 For q = 2 ,

ρ(k) = (−θ1 + θ1θ2)/(1 + θ2
1 + θ2

2) , k = 1 ,
= −θ2/(1 + θ2

1 + θ2
2) , k = 2 ,

= 0 , k ≥ 3 ,
(6.10)

hence |ρ(2)| ≤ 0.5 .
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6.5 For any MA(q) process,

ρ(q) = −θq/(1 + θ2
1 + ... + θ2

q) , (6.11)

hence |ρ(q)| ≤ 0.5 .

6.6 There are general constraints on the autocorrelations of an MA(q) process:

|ρ(k)| ≤ cos(π/{[q/k] + 2}) (6.12)

where [x] is the largest integer less than or equal to x. From the latter formula, we see:

for q = 1 , |ρ(1)| ≤ cos(π/3) = 0.5,
for q = 2 , |ρ(1)| ≤ cos(π/4) = 0.7071,

|ρ(2)| ≤ cos(π/3) = 0.5,
for q = 3 , |ρ(1)| ≤ cos(π/5) = 0.809,

|ρ(2)| ≤ cos(π/3) = 0.5,
|ρ(3)| ≤ cos(π/3) = 0.5.

(6.13)

See Chanda (1962), and Kendall, Stuart, and Ord (1983, p. 519).

7. Autoregressive processes
7.1 Consider a process {Xt : t ∈ Z} which satisfies the equation:

Xt = µ̄ +

p∑
j=1

ϕjXt−j + ut,∀t ∈ Z, (7.1)

where {ut : t ∈ Z} ∼ BB(0, σ2) . In symbolic notation,

ϕ(B)Xt = µ̄ + ut, t ∈ Z, (7.2)

where ϕ(B) = 1− ϕ1B − ... −ϕpB
p .

7.2 Stationarity
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Consider the process AR(1)

Xt = ϕ1Xt−1 + ut, ϕ1 6= 0. (7.3)

If Xt is S2 ,
E(Xt) = ϕ1E(Xt−1) = ϕ1E(Xt), (7.4)

hence E(Xt) = 0 . By successive substitutions,

Xt = ϕ1[ϕ1Xt−2 + ut−1] + ut

= ut + ϕ1ut−1 + ϕ2
1Xt−2

=
N−1∑
j=0

ϕj
1ut−j + ϕN

1 Xt−N . (7.5)

If we suppose that Xt is S2 with E(X2
t ) 6= 0, we see that

E




(
Xt −

N−1∑
j=0

ϕj
1ut−j

)2

 = ϕ2N

1 E(X2
t−N) = ϕ2N

1 E(X2
t ) →

N→∞
0 ⇔ |ϕ1| < 1. (7.6)

The series
∞∑

j=0

ϕj
1ut−j converges in q.m. to Xt :

Xt =
∞∑

j=0

ϕj
1ut−j ≡ (1− ϕ1B)−1ut =

1

1− ϕ1B
ut (7.7)

where

(1− ϕ1B)−1 =
∞∑

j=0

ϕj
1B

j. (7.8)

Since ∞∑
j=0

E|ϕj
1ut−j| ≤ σ

∞∑
j=0

|ϕ1|j =
σ

1− |ϕ1|
< ∞ (7.9)

when |ϕ1| < 1, the convergence is also a.s. The process Xt =
∞∑

j=0

ϕj
1ut−j is S2.

When |ϕ1| < 1, the difference equation

(1− ϕ1B)Xt = ut (7.10)
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has a unique stationary solution which can be written

Xt =
∞∑

j=0

ϕj
1ut−j = (1− ϕ1B)−1ut. (7.11)

The latter is thus a causal MA(∞) process.
This condition is sufficient (but non necessary) for the existence of a unique stationary

solution. The stationarity condition is often expressed by saying that the polynome ϕ(z) =
1− ϕ1z has all its roots outside the unit circle |z| = 1 :

1− ϕ1z∗ = 0 ⇔ z∗ =
1

ϕ1

, (7.12)

where |z∗| = 1/|ϕ1| > 1 . In this case, we also have E(Xt−kut) = 0, ∀k ≥ 1. The same
conclusion holds if we consider the general process

Xt = µ̄ + ϕ1Xt−1 + ut . (7.13)

For the AR(p) process,

Xt = µ̄ +

p∑
j=1

ϕjXt−j + ut (7.14)

or
ϕ(B)Xt = µ̄ + ut, (7.15)

the stationarity condition is the following :

if the polynome ϕ(z) = 1− ϕ1z − ...− ϕpz
p has all its roots outside the unit circle,

the equation (7.14) has one and only one weakly statiinary solution.
(7.16)

The order p polynome ϕ(z) can be written

ϕ(z) = (1−G1z)(1−G2z)...(1−Gpz) (7.17)

and has the roots
z∗1 = 1/G1, ..., z

∗
p = 1/Gp. (7.18)

The stationarity condition may then be written:

|Gj| < 1, j = 1, ..., p. (7.19)
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The solution stationary can be written

Xt = ϕ(B)−1µ̄ + ϕ(B)−1ut = µ + ϕ(B)−1ut (7.20)

where

µ = µ̄/(1−
p∑

j=1

ϕj), (7.21)

ϕ(B)−1 =
p

Π
j=1

(1−GjB)−1 =
p

Π
j=1

( ∞∑

k=0

Gk
j B

k

)

=

p∑
j=1

Kj

1−GjB
(7.22)

and K1, ... , Kp are constants (expansion in partial fractions). Consequently,

Xt = µ +

p∑
j=1

Kj

1−GjB
ut

= µ +
∞∑

k=0

ψkut−k = µ + ψ(B)ut (7.23)

where ψk =
p∑

j=1

KjG
k
j . Thus

E(Xt−jut) = 0, ∀j ≥ 1. (7.24)

For the process AR(1) and AR(2), the stationarity conditions can be written as follows.

(a) AR(1) : (1− ϕ1B)Xt = µ̄ + ut

|ϕ1| < 1 (7.25)

(b) AR(2) : (1− ϕ1B − ϕ2B
2)Xt = µ̄ + ut

ϕ2 + ϕ1 < 1 (7.26)
ϕ2 − ϕ1 < 1 (7.27)
−1 < ϕ2 < 1 (7.28)

7.3 Mean, variance and autocovariances
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Suppose:

a) the autoregressive process Xt is second-order stationary with
p∑

j=1

ϕj 6= 1

and
b) E(Xt−jut) = 0 , ∀j ≥ 1 ,

(7.29)

i.e. we assume Xt is a weakly stationary solution of the equation (7.14) such that
E(Xt−jut) = 0, ∀j ≥ 1.

By the stationarity assumption,

E(Xt) = µ,∀t ⇒ µ = µ̄ +

p∑
j=1

ϕjµ ⇒ E(Xt) = µ = µ̄/

(
1−

p∑
j=1

ϕj

)
(7.30)

For stationarity to hold, it is necessary that
p∑

j=1

ϕj 6= 1. Let us rewrite the process in the

form

X̃t =

p∑
j=1

ϕjX̃t−j + ut (7.31)

where X̃t = Xt − µ , E(X̃t) = 0 . Then, for k ≥ 0,

X̃t+k =

p∑
j=1

ϕjX̃t+k−j + ut+k, (7.32)

E(X̃t+k X̃t) =

p∑
j=1

ϕjE(X̃t+k−j X̃t) + E(ut+k X̃t), (7.33)

γ(k) =

p∑
j=1

ϕjγ(k − j) + E(ut+k X̃t), (7.34)

where
E(ut+k X̃t) = σ2, if k = 0,

= 0 , if k ≥ 1.
(7.35)

Thus

ρ(k) =

p∑
j=1

ϕjρ(k − j), k ≥ 1. (7.36)

These formulae are called the “Yule-Walker equations”. If we know ρ(0), ... , ρ(p− 1), we
can easily compute ρ(k) for k ≥ p + 1. We can also write the Yule-Walker equations in the
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form:
ϕ(B)ρ(k) = 0, k ≥ 1, (7.37)

where Bjρ(k) ≡ ρ(k− j) . To obtain ρ(1), ... , ρ(p−1) when p > 1, it is sufficient to solve
the linear equation system:

ρ(1) = ϕ1 + ϕ2ρ(1) + ... + ϕpρ(p− 1)

ρ(2) = ϕ1ρ(1) + ϕ2 + ... + ϕpρ(p− 2)

...
ρ(p− 1) = ϕ1ρ(p− 2) + ϕ2ρ(p− 3) + ... + ϕpρ(1) (7.38)

where we use the identity ρ(−j) = ρ(j). The other autocorrelations may then be obtained
by recurrence:

ρ(k) =

p∑
j=1

ϕjρ(k − j), k ≥ p. (7.39)

To compute γ(0) = V ar(Xt), we solve the equation

γ(0) =

p∑
j=1

ϕjγ(−j) + E(ut X̃t)

=

p∑
j=1

ϕjγ(j) + σ2, (7.40)

hence, using γ(j) = ρ(j)γ(0),

γ(0)

[
1−

p∑
j=1

ϕjρ(j)

]
= σ2 (7.41)

and

γ(0) =
σ2

1−
p∑

j=1

ϕjρ (j)

. (7.42)

7.4 Special cases

1. AR(1) : X̃t = ϕ1 X̃t−1 + ut

ρ(1) = ϕ1 (7.43)
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ρ(k) = ϕ1ρ(k − 1) , k ≥ 1 (7.44)
ρ(2) = ϕ1ρ(1) = ϕ2

1 (7.45)
ρ(k) = ϕk

1, k ≥ 1 (7.46)

γ(0) = V ar(Xt) =
σ2

1− ϕ2
1

(7.47)

These is no constraint on ρ(1), but there are constraints on ρ(k) for k ≥ 2.

2. AR(2) : Xt = ϕ1X̃t−1 + ϕ2X̃t−2 + ut

ρ(1) = ϕ1 + ϕ2ρ(1) (7.48)

⇒ ρ(1) =
ϕ1

1− ϕ2

(7.49)

ρ(2) =
ϕ2

1

1− ϕ2

+ ϕ2 =
ϕ2

1 + ϕ2 (1− ϕ2)

1− ϕ2

(7.50)

ρ(k) = ϕ1ρ(k − 1) + ϕ2ρ(k − 2), k ≥ 2. (7.51)

Constraints on ρ(1) and ρ(2) entailed by stationarity:

|ρ(1)| < 1, |ρ(2)| < 1 (7.52)

ρ(1)2 <
1

2
[1 + ρ(2)] ; (7.53)

see Box and Jenkins (1976, p. 61).

7.5 Explicit form for the autocorrelations

The autocorrelations of an AR(p) process satisfy the equation

ρ(k) =

p∑
j=1

ϕjρ(k − j), k ≥ 1, (7.54)

where ρ(0) = 1 and ρ(−k) = ρ(k) , or equivalently

ϕ(B)ρ(k) = 0 , k ≥ 1. (7.55)

The autocorrelations can be obtained by solving the homogeneous difference equation
(7.54).
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The polynome ϕ(z) has m distinct non-zero roots z∗1 , ... , z∗m (where 1 ≤ m ≤ p) with

multiplicities p1, ... , pm (where
m∑

j=1

pj = p), so that ϕ(z) can be written

ϕ(z) = (1−G1z)p1(1−G2z)p2 ...(1−Gmz)pm (7.56)

where Gj = 1/z∗j , j = 1, ... , m. The roots are real or complex numbers. If z∗j is a complex
(non real) root, its conjugate z̄∗j is also a root. Consequently, the solutions of equation
(7.54) have the general form

ρ(k) =
m∑

j=1

(
pj−1∑

`=0

Aj`k
`

)
Gk

j , k ≥ 1, (7.57)

where the Aj` are (possibly complex) constants which can be determined from the values
p autocorrelations. We can easily find ρ(1), ... , ρ(p) from the Yule-Walker equations.

If we write Gj = rje
iθj , where i =

√−1 while rj and θj are real numbers (rj > 0),we
see that

ρ(k) =
m∑

j=1

(
pj−1∑

`=0

Aj` k`

)
rk
j e

iθjk

=
m∑

j=1

(
pj−1∑

`=0

Aj` k`

)
rk
j [cos(θjk) + i sin(θjk)]

=
m∑

j=1

(
pj−1∑

`=0

Aj` k`

)
rk
j cos(θjk). (7.58)

By stationarity, 0 < |Gj| = rj < 1 so that ρ(k) → 0 when k → ∞. The autocorrelations
decrease at an exponential rate with oscillations.

7.6 MA(∞) representation of an AR(p) process

We have seen that a weakly stationary process

ϕ(B)X̃t = ut (7.59)

where ϕ(B) = 1− ϕ1B − ...− ϕpB
p, can be written

X̃t = ψ(B)ut (7.60)
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with

ψ(B) = ϕ(B)−1 =
∞∑

j=0

ψjB
j (7.61)

To compute the coefficients ψj , it is sufficient to note that

ϕ(B)ψ(B) = 1. (7.62)

Defining ψj = 0 for j < 0, we see that
(

1−
p∑

k=1

ϕkB
k

)( ∞∑
j=−∞

ψjB
j

)
=

∞∑
j=−∞

ψj

(
Bj −

p∑

k=1

ϕkB
j+k

)

=
∞∑

j=−∞

(
ψj −

p∑

k=1

ϕkψj−k

)
Bj

=
∞∑

j=−∞
ψ̃j Bj = 1. (7.63)

Thus ψ̃j = 1, if j = 0, and ψ̃j = 0, if j 6= 0. Consequently,

ϕ(B)ψj = ψj −
p∑

k=1

ϕkψj−k = 1 , if j = 0

= 0 , if j 6= 0,
(7.64)

where Bkψj ≡ ψj−k . Since ψj = 0 for j < 0 , we see that:

ψ0 = 1

ψj =

p∑

k=1

ϕkψj−k, j ≥ 1. (7.65)

More explicitly,

ψ0 = 1 ,

ψ1 = ϕ1ψ0 = ϕ1 ,

ψ2 = ϕ1ψ1 + ϕ2ψ0 = ϕ2
1 + ϕ2 ,

ψ3 = ϕ1ψ2 + ϕ2ψ1 + ϕ3 = ϕ3
1 + 2 ϕ2ϕ1 + ϕ3 ,

...

32



ψp =

p∑

k=1

ϕkψj−k ,

ψj =

p∑

k=1

ϕkψj−k, j ≥ p + 1 . (7.66)

Under the stationarity condition [roots of ϕ(z) = 0 outside the unit circle], the coefficients
ψj decline at an exponential rate as j →∞, possibly with oscillations.

Given the representation

X̃t = ψ(B)ut =
∞∑

j=0

ψjut−j (7.67)

we can easily compute the autocovariances and autocorrelations of Xt :

Cov(Xt, Xt+k) = σ2

∞∑
j=0

ψjψj+|k| , (7.68)

Corr(Xt, Xt+k) =
∞∑

j=0

ψjψj+|k|/
∞∑

j=0

ψ2
j . (7.69)

However, this has the inconvenient of requiring one to compute limits of series.

7.7 Partial autocorrelations

The Yule-Walker equations allow one to determine the autocorrelations from the coef-
ficients ϕ1, ... , ϕp. In the same way we can determine ϕ1, ... , ϕp from the autocorrelations

ρ(k) =

p∑
j=1

ϕjρ(k − j), k = 1, 2, 3, ... (7.70)

Taking into account the fact that ρ(0) = 1 and ρ(−k) = ρ(k), we find an AR(p) process:



1 ρ (1) ρ (2) . . . ρ (p− 1)
ρ (1) 1 ρ (1) . . . ρ (p− 2)

...
...

...
...

ρ (p− 1) ρ (p− 2) ρ (p− 3) . . . 1







ϕ1

ϕ2
...

ϕp


 =




ρ (1)
ρ (2)

...
ρ (p)


 (7.71)
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or, in more compact notation,
Pp φ̄p = ρ̄p. (7.72)

It follows that
Pkφ̄k = ρ̄k, k = 1, 2, 3, ... (7.73)

where φ̄k = (ϕk1, ϕk2, ... , ϕkk)
′ , so that we can solve for φ̄k :

φ̄k = P−1
k ρ̄k. (7.74)

[If σ2 > 0, we can show that P−1
k exists, ∀k ≥ 1]. For an AR(p) process, we see easily

ϕkk = 0,∀k ≥ p + 1. (7.75)

The coefficients ϕkk are called the lag- k partial autocorrelations.
Particular values of ϕkk [setting ρk = ρ(k)] :

ϕ11 = ρ1, (7.76)

ϕ22 =

∣∣∣∣
1 ρ1

ρ1 ρ2

∣∣∣∣
∣∣∣∣

1 ρ1

ρ1 1

∣∣∣∣
=

ρ2 − ρ2
1

1− ρ2
1

, (7.77)

ϕ33 =

∣∣∣∣∣∣

1 ρ1 ρ1

ρ1 1 ρ2

ρ2 ρ1 ρ3

∣∣∣∣∣∣
∣∣∣∣∣∣

1 ρ1 ρ2

ρ1 1 ρ1

ρ2 ρ1 1

∣∣∣∣∣∣

. (7.78)

7.8 Durbin-Levinson recurrence formula

The partial autocorrelations may be computed using the following recursive formulae:

ϕk+1, k+1 =

ρ (k + 1)−
k∑

j=1

ϕkjρ (k + 1− j)

1−
k∑

j=1

ϕkjρ (j)

, (7.79)

ϕk+1, j = ϕkj − ϕk+1, k+1ϕk, k−j+1, j = 1, 2, ..., k. (7.80)

Given ρ(1), ... , ρ(k + 1) and ϕk1, ... , ϕkk, we can compute ϕk+1, j, j = 1, ... , k + 1. See
Durbin (1960) and Box and Jenkins (1976, pp. 82-84).
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8. Mixed processes
Consider a process {Xt : t ∈ Z} which satisfies the equation:

Xt = µ̄ +

p∑
j=1

ϕj Xt−j + ut −
q∑

j=1

θjut−j (8.1)

where {ut : t ∈ Z} ∼ BB(0, σ2) . Using operational notation,

ϕ(B)Xt = µ̄ + θ(B)ut. (8.2)

8.1 Stationarity conditions

If the polynome ϕ(z) = 1−ϕ1z − ... −ϕpz
p has all its roots outside the unit circle, the

equation (8.1) has one and only one weakly stationary solution, which can be written:

Xt = µ +
θ (B)

ϕ (B)
ut = µ +

∞∑
j=0

ψjut−j , (8.3)

where

µ = µ̄/ϕ(B) = µ̄/(1−
p∑

j=1

ϕj) , (8.4)

θ (B)

ϕ (B)
≡ ψ(B) =

∞∑
j=0

ψjB
j . (8.5)

The coefficients ψj are obtained by solving the equation

ϕ(B)ψ(B) = θ(B). (8.6)

In this case, we also have:
E(Xt−jut) = 0, ∀j ≥ 1. (8.7)

The ψj coefficients may be computed in the following way (setting θ0 = −1) :

(
1−

p∑

k=1

ϕkB
k

)( ∞∑
j=0

ψjB
j

)
= 1−

q∑
j=1

θjB
j = −

q∑
j=1

θjB
j (8.8)

hence
ϕ(B)ψj = −θj , j = 0, 1, ..., q

= 0 , j ≥ q + 1,
(8.9)
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where ψj = 0 , for j < 0 . Consequently,

ψj =
p∑

k=1

ϕkψj−k − θj, j = 0, 1, ..., q

=
p∑

k=1

ϕkψj−k , j ≥ q + 1,
(8.10)

and

ψ0 = 1 ,

ψ1 = ϕ1ψ0 − θ1 = ϕ1 − θ1 ,

ψ2 = ϕ1ψ1 + ϕ2ψ0 − θ2 = ϕ1ψ1 + ϕ2 − θ2 = ϕ2
1 − ϕ1θ1 + ϕ2 − θ2 ,

...

ψj =

p∑

k=1

ϕkψj−k, j ≥ q + 1 . (8.11)

The ψj coefficients behave like the autocorrelations of an AR(p) process, except for the
initial coefficients ψ1, ... , ψq.

8.2 Autocovariances and autocorrelations

Suppose:

a) the process Xt is second-order stationary with
p∑

j=1

ϕj 6= 1 ;

b) E(Xt−jut) = 0 , ∀j ≥ 1 .
(8.12)

By the stationarity assumption,
E(Xt) = µ, ∀t, (8.13)

hence

µ = µ̄ +

p∑
j=1

ϕjµ (8.14)

and

E(Xt) = µ = µ̄/

(
1−

p∑
j=1

ϕj

)
. (8.15)
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The mean is the same as in the case of a pure AR(p) process. The MA(q) part has no effect
on the mean. Let us now rewrite the process in the form

X̃t =

p∑
j=1

ϕjX̃t−j + ut −
q∑

j=1

θjut−j (8.16)

where X̃t = Xt − µ. Consequently,

X̃t+k =

p∑
j=1

ϕj X̃t+k−j + ut+k −
q∑

j=1

θjut+k−j , (8.17)

E(X̃t X̃t+k) =

p∑
j=1

ϕjE(X̃t X̃t+k−j) + E(X̃t ut+k)−
q∑

j=1

θjE(X̃t ut+k−j) ,(8.18)

γ(k) =

p∑
j=1

ϕjγ(k − j) + γxu(k)−
q∑

j=1

θjγxu(k − j) , (8.19)

where
γxu(k) = E(X̃t ut+k) = 0 , if k ≥ 1 ,

6= 0 , if k ≤ 0 ,

γxu(0) = E(X̃t ut) = σ2.

(8.20)

For k ≥ q + 1,

γ(k) =

p∑
j=1

ϕjγ(k − j), (8.21)

ρ(k) =

p∑
j=1

ϕjρ(k − j). (8.22)

The variance is given by

γ(0) =

p∑
j=1

ϕjγ(j) + σ2 −
q∑

j=1

θjγxu(−j) (8.23)

hence

γ(0) =

[
σ2 −

q∑
j=1

θjγxu(−j)

]
/

[
1−

p∑
j=1

ϕjρ(j)

]
. (8.24)
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In operational notation, the autocovariances satisfy the equation

ϕ(B)γ(k) = θ(B)γxu(k) , k ≥ 0, (8.25)

where γ(−k) = γ(k) , Bjγ(k) ≡ γ(k − j) and Bjγxu(k) ≡ γxu(k − j) . In particular,

ϕ(B)γ(k) = 0 , k ≥ q + 1, (8.26)
ϕ(B)ρ(k) = 0 , k ≥ q + 1. (8.27)

To compute the autocovariances, we can solve the equations (8.19) for k = 0, 1, ... , p,
and then apply (8.21). The autocorrelations of an process ARMA(p, q) process behave like
those of an AR(p) process, except that initial values are modified.

8.3 Example ARMA(1, 1) process

Xt = µ̄ + ϕ1Xt−1 + ut − θ1ut−1 , |ϕ1| < 1 (8.28)

X̃t − ϕ1 X̃t−1 = ut − θ1ut−1 (8.29)

where X̃t = Xt − µ. We have

γ(0) = ϕ1γ(1) + γxu(0)− θ1γxu(−1), (8.30)
γ(1) = ϕ1γ(0) + γxu(1)− θ1γxu(0) (8.31)

and

γxu(1) = 0, (8.32)
γxu(0) = σ2, (8.33)

γxu(−1) = E(X̃tut−1) = ϕ1E(X̃t−1ut−1) + E(utut−1)− θ1E(u2
t−1)

= ϕ1γxu(0)− θ1σ
2 = (ϕ1 − θ1)σ

2 (8.34)

Thus,

γ(0) = ϕ1γ(1) + σ2 − θ1(ϕ1 − θ1)σ
2

= ϕ1γ(1) + [1− θ1(ϕ1 − θ1)]σ
2, (8.35)

γ(1) = ϕ1γ(0)− θ1σ
2

= ϕ1{ϕ1γ(1) + [1− θ1(ϕ1 − θ1)]σ
2} − θ1σ

2 , (8.36)
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hence

γ(1) = {ϕ1[1− θ1(ϕ1 − θ1)]− θ1}σ2/(1− ϕ2
1)

= {ϕ1 − θ1ϕ
2
1 + ϕ1θ

2
1 − θ1}σ2/(1− ϕ2

1)

= (1− θ1ϕ1)(ϕ1 − θ1)σ
2/(1− ϕ2

1) . (8.37)

Similarly,

γ(0) = ϕ1γ(1) + [1− θ1(ϕ1 − θ1)]σ
2

= ϕ1

(1− θ1ϕ1) (ϕ1 − θ1) σ2

1− ϕ2
1

+ [1− θ1(ϕ1 − θ1)]σ
2

=
σ2

1− ϕ2
1

{ϕ1(1− θ1ϕ1)(ϕ1 − θ1) + (1− ϕ2
1)[1− θ1(ϕ1 − θ1)]}

=
σ2

1− ϕ2
1

{ϕ2
1 − θ1ϕ

3
1 + ϕ2

1θ
2
1 − ϕ1θ1 + 1− ϕ2

1 − θ1ϕ1 + θ1ϕ
3
1 + θ2

1 − ϕ2
1 θ2

1}

=
σ2

1− ϕ2
1

{1− 2 ϕ1θ1 + θ2
1} . (8.38)

Thus,

γ(0) = (1− 2 ϕ1θ1 + θ2
1)σ

2/(1− ϕ2
1) , (8.39)

γ(1) = (1− θ1ϕ1)(ϕ1 − θ1)σ
2/(1− ϕ2

1) , (8.40)
γ(k) = ϕ1γ(k − 1), for k ≥ 2 . (8.41)

9. Invertibility
9.1 Any second-order stationary AR(p) process can be written under an MA(∞) form.
Similarly, any second-order stationary ARMA(p, q) process can also be written under an
MA(∞) form. By analogy, it is natural to ask the question: can a MA(q) or ARMA(p, q)
process be represented in a purely autoregressive form?

9.2 Consider the process MA(1) :

Xt = ut − θ1ut−1, t ∈ Z , (9.1)

where {ut : t ∈ Z} ∼ BB(0, σ2) and σ2 > 0 . We see easily that

ut = Xt + θ1ut−1
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= Xt + θ1(Xt−1 + θ1ut−2)

= Xt + θ1Xt−1 + θ2
1ut−2

=
n∑

j=0

θj
1Xt−j + θn+1

1 ut−n−1 (9.2)

and

E




(
n∑

j=0

θj
1Xt−j − ut

)2

 = E

[(
θn+1

1 ut−n−1

)2
]

= θ
2(n+1)
1 σ2 →

n→∞
0, (9.3)

provided |θ1| < 1. Consequently, the series
n∑

j=0

θj
1Xt−j converges in q.m. to ut if |θ1| < 1.

In other words, when |θ1| < 1, we can write

∞∑
j=0

θj
1Xt−j = ut, t ∈ Z , (9.4)

or
(1− θ1B)−1Xt = ut, t ∈ Z , (9.5)

where (1 − θ1B)−1 =
∞∑

j=0

θj
1B

j . The condition |θ1| < 1 is equivalent to having the roots

of the equation 1− θ1z = 0 outside the unit circle. If θ1 = 1,

Xt = ut − ut−1 (9.6)

and the series

(1− θ1B)−1Xt =
∞∑

j=0

θj
1Xt−j =

∞∑
j=0

Xt−j (9.7)

does not converge, for E(X2
t−j) does not converge to 0 as j →∞. Similarly, if θ1 = −1,

Xt = ut + ut−1 (9.8)

and the series

(1− θ1B)−1Xt =
∞∑

j=0

(−1)jXt−j (9.9)

does not converge either. These models are not invertible.

9.3 Theorem (Invertibility condition for a MA process) : Let {Xt : t ∈ Z) be a second-
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order stationary process such that

Xt = µ + θ(B)ut (9.10)

where θ(B) = 1− θ1B − ... −θqB
q. Then the process Xt satisfies an equation of the form

∞∑
j=0

φ̄jXt−j = µ̄ + ut (9.11)

iff the roots of the polynome θ(z) are outside the unit circle. Further, when the representa-
tion (9.11) exists, we have:

φ̄(B) = θ(B)−1, µ̄ = θ(B)−1µ = µ/

(
1−

q∑
j=1

θj

)
. (9.12)

9.4 Corollary (Invertibility of an ARMA process) : Let {Xt : t ∈ Z} be a second-order
stationary ARMA process that satisfies the equation

ϕ(B)Xt = µ̄ + θ(B)ut (9.13)

where ϕ(B) = 1−ϕ1B − ... −ϕpB
p and θ(B) = 1− θ1B — ... −θqB

q. Then the process
Xt satisfies an equation of the form

∞∑
j=0

φ̄jXt−j =
=
µ + ut (9.14)

iff the roots du polynome θ(z) are outside the unit circle. Further, when the representation
(9.14) exists, we have:

φ̄(B) = θ(B)−1ϕ(B),
=
µ = θ(B)−1µ̄ = µ/

(
1−

q∑
j=1

θj

)
. (9.15)

10. Wold representation
10.1 We have seen that all second-order ARMA processes can be written in a causal
MA(∞) form. This property indeed holds for all second-order stationary processes.
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10.2 Theorem (Wold) : Let {Xt, t ∈ Z} be a second-order stationary process such that
E(Xt) = µ. Then Xt can be written in the form

Xt = µ +
∞∑

j=0

ψjut−j + vt (10.1)

where {ut : t ∈ Z} ∼ BB(0, σ2) ,
∞∑

j=0

ψ2
j < ∞ , E(utXt−j) = 0, ∀j ≥ 1, and {vt : t ∈ Z}

is a process deterministic such that E(vt) = 0 and E(usvt) = 0, ∀s, t. Further, if σ2 > 0,
the sequences {ψj} and {ut} are unique, and

ut = X̃t − P (X̃t|X̃t−1, X̃t−2, ...) (10.2)

where X̃t = Xt − µ.

PROOF: See Anderson (1971, Section 7.6.3, pp. 420-421).

10.3 If E(u2
t ) > 0 in Wold representation, we say the process Xt is regular. vt is called the

deterministic component of the process while
∞∑

j=0

ψjut−j is its indeterministic component.

When vt = 0, ∀t, the process Xt is said to be strictly indeterministic.

10.4 Corollary (Forward Wold representation) : Let {Xt : t ∈ Z} be second-order a
stationary process such that E(Xt) = µ. Then Xt can be written in the form

Xt = µ +
∞∑

j=0

ψ̄jūt+j + v̄t (10.3)

where {ūt : t ∈ Z} ∼ BB(0, σ̄2) ,
∞∑

j=0

ψ̄
2
j < ∞ , E(ūtXt+j) = 0 , ∀j ≥ 1, and {v̄t : t ∈ Z}

is a deterministic (with respect to v̄t+1, v̄t+2 , ... ) such that E(v̄t) = 0 and E(ūsv̄t) = 0,
∀s, t. Further, if σ̄2 > 0, the sequences {ψ̄j} and {ūt} are uniquely defined, and

ūt = X̃t − P (X̃t|X̃t+1, X̃t+2, ...) (10.4)

where X̃t = Xt − µ .
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PROOF. The result follows on applying Wold theorem to the process Yt ≡ X−t qui is also
second-order stationary. Q.E.D.

11. Generating functions and spectral density
11.1 Generating functions constitute a convenient technique representing or finding the
autocovariance structure of a stationary process.

11.2 Definition (Generating function) : Let (ak : k = 0, 1, 2, ...) and (bk : k =
... ,−1, 0, 1, ...) two sequences of complex numbers. Let D(a) ⊆ C the set of points

z ∈ C for which the series
∞∑

k=0

akz
k converges, and let D(b) ⊆ C the set of points z for

which where the series
∞∑

k=−∞
bkz

k converges. Then the functions

a(z) =
∞∑

k=0

akz
k, z ∈ D(a) (11.1)

and

b(z) =
∞∑

k=−∞
bkz

k, z ∈ D(b) (11.2)

are called the generating functions of the sequences ak and bk respectively.

11.3 Proposition (Convergence annulus of a generating function) : Let (ak : k ∈ Z) be a
sequence of complex numbers. Then the generating function

a(z) =
∞∑

k=−∞
akz

k (11.3)

converges for R1 < |z| < R2 where

R1 = lim sup
k→∞

|a−k|1/k , (11.4)
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R2 = 1/

[
lim sup

k→∞
|ak|1/k

]
, (11.5)

and diverges for |z| < R1 or |z| > R2. If R2 < R1, a(z) converges nowhere and, if
R1 = R2, a(z) diverges everywhere except possibly, for |z| = R1 = R2. Further, when
R1 < R2, the coefficients ak are uniquely defined, and

ak =
1

2πi

∫

C

a (z) dz

(z − z0)
k+1

, k = 0,±1,±2, ... (11.6)

where C = {z ∈ C : |z − z0| = R} and R1 < R < R2 .

11.4 Proposition (Sums and products of generating functions) : Let (ak : k ∈ Z) and
(bk ∈ Z) two sequences of complex numbers such that the generating functions a(z) and
b(z) converge for R1 < |z| < R2, where 0 ≤ R1 < R2 ≤ ∞. Then,

(1) the generating function of the sum ck = ak + bk is c(z) = a(z) + b(z);

(2) if the product sequence

dk =
∞∑

j=−∞
ajbk−j (11.7)

converges for any k, the generating function of the sequence dk is

d(z) = a(z)b(z). (11.8)

Further, the series c(z) and d(z) converge for R1 < |z| < R2.

11.5 We will be especially interested by generating functions of autocovariances γk and
autocorrelations ρk of a second-order stationary process Xt:

γx(z) =
∞∑

k=−∞
γkz

k, (11.9)

ρx(z) =
∞∑

k=−∞
ρkz

k = γx(z)/γ0. (11.10)
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We see immediately that the generating function with a white noise {ut : t ∈ Z} ∼
BB(0, σ2) is constant::

γu(z) = σ2, ρu(z) = 1. (11.11)

11.6 Proposition (Convergence of the generating function of the autocovariances): Let
γk, k ∈ Z, the autocovariances of a second-order stationary process Xt, and ρk, k ∈ Z, the
corresponding autocorrelations.

(1) If R ≡ lim sup
k→∞

|ρk|1/k < 1, the generating functions γx(z) and ρx(z) converge for

R < |z| < 1/R.

(2) If R = 1, the functions γx(z) and ρx(z) diverge everywhere, except possibly on the
circle |z| = 1.

(3) If
∞∑

k=0

|ρk| < ∞ , the functions γx(z) and ρx(z) converge absolutely and uniformly on

the circle |z| = 1.

11.7 Proposition (Unicity) : Let γk and ρk, k ∈ Z, autocovariance and autocorrelation
sequences such that

γ(z) =
∞∑

k=−∞
γkz

k =
∞∑

k=−∞
γ′kz

k, (11.12)

ρ(z) =
∞∑

k=−∞
ρkz

k =
∞∑

k=−∞
ρ′kz

k (11.13)

where the series considered converge for R < |z| < 1/R, where R ≥ 0. Then γk = γ′k and
ρk = ρ′k for any k ∈ Z.

11.8 Proposition (Generating function of the autocovariances of a MA(∞) process) : Let
{Xt : t ∈ Z} a second-order stationary process such that

Xt =
∞∑

j=−∞
ψjut−j (11.14)
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where {ut : t ∈ Z} ∼ BB(0, σ2). If the series

ψ(z) =
∞∑

j=−∞
ψjz

j (11.15)

and ψ(z−1) converge absolutely, then

γx(z) = σ2ψ(z)ψ(z−1). (11.16)

11.9 Corollary (Generating function of the autocovariances of an ARMA process) : Let
{Xt : t ∈ Z} a second-order stationary and causal ARMA(p, q) process, such that

ϕ(B)Xt = µ̄ + θ(B)ut (11.17)

where {ut : t ∈ Z} ∼ BB(0, σ2), ϕ(z) = 1−ϕ1z− ...−ϕpz
p and θ(z) = 1− θ1z− ...−

θqz
q. Then the generating function of the autocovariances of Xt is

γx(z) = σ2 θ (z) θ (z−1)

ϕ (z) ϕ (z−1)
(11.18)

for R < |z| < 1/R, where

0 < R = max{|G1|, |G2|, ..., |Gp|} < 1 (11.19)

and G−1
1 , G−1

2 , ..., G−1
p are the roots of the polynome ϕ(z).

11.10 Proposition (Generating function of the autocovariances of a filtered process) : Let
{Xt : t ∈ Z} a second-order stationary process and

Yt =
∞∑

j=−∞
cjXt−j, t ∈ Z, (11.20)

where (cj : j ∈ Z) is a sequence of real constants such that
∞∑

j=−∞
|cj| < ∞. If the series

γx(z) and c(z) =
∞∑

j=−∞
cjz

j converge absolutely, then

γy(z) = c(z)c(z−1)γx(z). (11.21)
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11.11 Definition (Spectral density) : Let Xt a second-order stationary process such that
the generating function of the autocovariances γx(z) converge for |z| = 1. The spectral
density of the process Xt is the function

fx(ω) =
1

2π

[
γ0 + 2

∞∑

k=1

γk cos(ωk)

]

=
γ0

2π
+

1

π

∞∑

k=1

γk cos(ωk) (11.22)

where the coefficients γk are the autocovariances of the process Xt. The function fx(ω) is

defined for all the values of ω such that the series
∞∑

k=1

γk cos(ωk) converges.

11.12 Remark If the series
∞∑

k=1

γk cos(ωk) converges, it is immediate that γx(e
−iω) con-

verge and

fx(ω) =
1

2π
γx(e

−iω) =
1

2π

∞∑

k=−∞
γke

−iωk (11.23)

where i =
√−1.

11.13 Proposition (Convergence and properties of the spectral density) : Let γk, k ∈ Z,

be an autocovariance function such that
∞∑

k=0

|γk| < ∞ . Then

(1) the series

fx(ω) =
γ0

2π
+

1

π

∞∑

k=1

γk cos(ωk) (11.24)

converges absolutely and uniformly in ω ;

(2) the function fx(ω) is continuous ;

(3) fx(ω + 2π) = fx(ω) and fx(−ω) = fx(ω), ∀ω ;

(4) γk =
∫ π

−π

fx(ω) cos(ωk)dω, ∀k ;

(5) fx(ω) ≥ 0 ;
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(6) γ0 =
∫ π

−π

fx(ω)dω .

11.14 Proposition (Spectral densities of special processes) : Let {Xt : t ∈ Z} be a second-
order stationary process with autocovariances γk, k ∈ Z.

(1) If Xt = µ+
∞∑

j=−∞
ψjut−j where {ut : t ∈ Z} ∼ BB(0, σ2) and

∞∑
j=−∞

|ψj| < ∞ , then

fx(ω) =
σ2

2π
ψ(eiω)ψ(e−iω) =

σ2

2π
|ψ(eiω)|2. (11.25)

(2) If ϕ(B)Xt = µ̄ + θ(B)ut ,where ϕ(B) = 1− ϕ1B − ...− ϕpB
p, θ(B) = 1− θ1B −

...− θqB
q and {ut : t ∈ Z} ∼ BB(0, σ2), then

fx(ω) =
σ2

2π

∣∣∣∣
θ (eiω)

ϕ (eiω)

∣∣∣∣
2

(11.26)

(3) If Yt =
∞∑

j=−∞
cjXt−j where (cj : j ∈ Z) is a sequence of real constants such that

∞∑
j=−∞

|cj| < ∞ , and if
∞∑

k=0

|γk| < ∞ , then

fy(ω) = |c(eiω)|2fx(ω). (11.27)

12. Inverse autocorrelations
12.1 Definition (Autocorrelations inverses) : Let fx(ω) the spectral density of a second-
order stationary process {Xt : t ∈ Z}. If the function 1/fx(ω) is also a spectral density,
the autocovariances γ

(I)
x (k), k ∈ Z, associated with the inverse spectrum inverse 1/fx(ω)

are called the inverse autocovariances of the process Xt, i.e.

γ(I)
x (k) =

∫ π

−π

1

fx (ω)
cos(ωk)dω, k ∈ Z. (12.1)
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12.2 The inverse autocovariances satisfy the equation

1

fx (ω)
=

1

2π

∞∑

k=−∞
γ(I)

x (k) cos(ωk) =
1

2π
γ(I)

x (0) +
1

π

∞∑

k=1

γ(I)
x cos(ωk). (12.2)

The inverse autocorrelations are

ρ(I)
x (k) = γ(I)

x (k)/γ(I)
x (0), k ∈ Z. (12.3)

12.3 A sufficient condition for the function 1/fx(ω) to be a spectral density is that the
function 1/fx(ω) be continuous on the interval−π ≤ ω ≤ π , which entails that fx(ω) > 0,
∀ω.

12.4 If the process Xt is a second-order stationary ARMA(p, q) process such that

ϕp(B)Xt = µ̄ + θq(B)ut (12.4)

where ϕp(B) = 1−ϕ1B − ... −ϕpB
p and θq(B) = 1−θ1B − ... −θqB

q are des polynomes
which have all their roots outside the unit circle and {ut : t ∈ Z} ∼ BB(0, σ2), then

fx(ω) =
σ2

2π

∣∣∣∣
θq (eiω)

ϕp (eiω)

∣∣∣∣
2

(12.5)

and
1

fx (ω)
=

2π

σ2

∣∣∣∣
ϕp (eiω)

θq (eiω)

∣∣∣∣
2

. (12.6)

The inverse autocovariances γ
(I)
x (k) are the autocovariances associated with the model

θq(B)Xt =
=
µ + ϕp(B)vt (12.7)

where {vt : t ∈ Z} ∼ BB(0 , 1/σ2) and
=
µ is some constant. Consequently, the in-

verse autocorrelations of an ARMA(p, q) process behave like the autocorrelations of an
ARMA(q, p). For an process AR(p) process,

ρ(I)
x (k) = 0 , for k > p. (12.8)

For a MA(q) process, the inverse partial autocorrelations (i.e. the partial autocorrelations
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associated with the inverse autocorrelations) are equal to zero for k > q. These properties
can be used for identifying the order of a process.

13. Multiplicity of representations

13.1. Backward representation ARMA models
By the backward Wold theorem, we know that any strictly indeterministic second-order
stationary process Xt : t ∈ Z} can be written in the form

Xt = µ +
∞∑

j=0

ψ̄jūt+j (13.1)

where ūt is a white noise such that E(Xt−jūt) = 0 , ∀j ≥ 1 . In particular, if

ϕp(B)(Xt − µ) = θq(B)ut (13.2)

where the polynomes ϕp(B) = 1− ϕ1B − ... −ϕpB
p and θq(B) = 1− θ1B − ... −θqB

q

have all their roots outside the unit circle and {ut : t ∈ Z} ∼ BB(0, σ2), the spectral
density of Xt is

fx(ω) =
σ2

2π

∣∣∣∣
θq (eiω)

ϕp (eiω)

∣∣∣∣
2

. (13.3)

Consider the process

Yt =
ϕp (B−1)

θq (B−1)
(Xt − µ) =

∞∑
j=0

cj(Xt+j − µ). (13.4)

Pour the Proposition 11.14, the spectral density of Yt is

fy(ω) =

∣∣∣∣
ϕp (eiω)

θq (eiω)

∣∣∣∣
2

fx(ω) =
σ2

2π
(13.5)

and thus {Yt : t ∈ Z} ∼ BB(0, σ2). If we define ūt = Yt, we see that

ϕp (B−1)

θq (B−1)
(Xt − µ) = ūt (13.6)
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or
ϕp(B

−1)Xt = µ̄ + θq(B
−1)ūt, (13.7)

and

(10.1.7)Xt − ϕ1Xt+1 − ...− ϕpXt+p = µ̄ + ūt − θ1ūt+1 − ...− θqūt+q (13.8)

where (1 − ϕ1 − ... −ϕp)µ = µ̄. We call (13.6) or (13.8) the backward representation of
the Xt process.

13.2. Multiple moving-average representations
Let {Xt} ∼ ARIMA(p, d, q) . Then

Wt = (1−B)dXt ∼ ARMA(p, q). (13.9)

If we suppose that E(Wt) = 0 , Wt satisfies an equation of the form

ϕp(B)Wt = θq(B)ut (13.10)

or

Wt =
θq (B)

ϕp (B)
ut = ψ(B)ut. (13.11)

To determine an appropriate ARMA model, one typically estimates the autocorrelations
ρk. The latter are uniquely determined by the generating function of the autocovariances:

γx(z) = σ2ψ(z)ψ(z−1) = σ2 θq (z)

ϕp (z)

θq (z−1)

ϕp (z−1)
. (13.12)

If

θq(z) = 1− θ1z − ...− θqz
q = (1−H1z)...(1−Hqz) =

q

Π
j=1

(1−Hjz), (13.13)

then

γx(z) =
σ2

ϕp (z) ϕp (z−1)

q

Π
j=1

(1−Hjz)(1−Hjz
−1). (13.14)

However

(1−Hjz)(1−Hjz
−1) = 1−Hjz −Hjz

−1 + H2
j = H2

j (1−H−1
j z −H−1

j z−1 + H−2
j )

= H2
j (1−H−1

j z)(1−H−1
j z−1) (13.15)
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hence

γx(z) =

[
σ2

q

Π
j=1

H2
j

]

ϕp (z) ϕp (z−1)

q

Π
j=1

(
1−H−1

j z
) (

1−H−1
j z−1

)

= σ̄2
θ
′
q (z) θ

′
q (z−1)

ϕp (z) ϕp (z−1)
(13.16)

where

σ̄2 = σ2
q

Π
j=1

H2
j , (13.17)

θ′q(z) =
q

Π
j=1

(1−H−1
j z). (13.18)

γx(z) in (13.16) can be viewed as the generating function of a process of the form

ϕp(B)Wt = θ′q(B)ūt = [
q

Π
j=1

(1−H−1
j B)]ūt (13.19)

while γx(z) in (13.14) is the generating function of

ϕp(B)Wt = θq(B)ut = [
q

Π
j=1

(1−HjB)]ut. (13.20)

The processes (13.19) and (13.20) have the same autocovariance function and thus cannot
be distinguished by looking at their seconds moments.

13.1 Example
(1− 0.5B)Wt = (1− 0.2B)(1 + 0.1B)ut (13.21)

(1− 0.5B)Wt = (1− 5B)(1 + 10B)ūt (13.22)

have the same autocorrelation function.

In general, the models

ϕp(B)Wt =

[
q

Π
j=1

(1−H±1
j B)

]
ūt (13.23)

all have the same autocovariance function (and are thus indistinguishable). Since it is easier
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with an invertible model, we select

H∗
j =

{
Hj , if
H−1

j , if

∣∣∣Hj

Hj

∣∣∣ < 1

> 1
, (13.24)

where |Hj| ≤ 1, in order to have an invertible model.

13.3. Redundant parameters
Suppose ϕp(B) and θq(B) have a common factor, say G(B) :

ϕp(B) = G(B)ϕp1
(B), θq(B) = G(B)θq1(B). (13.25)

Consider the models

ϕp(B)Wt = θq(B)ut (13.26)
ϕp1

(B)Wt = θq1(B)ut. (13.27)

The MA(∞) representations of these two models are

Wt = ψ(B)ut, (13.28)

where

ψ(B) =
θq (B)

ϕp (B)
=

θq1 (B) G (B)

ϕp1
(B) G (B)

=
θq1 (B)

ϕp1
(B)

≡ ψ1(B) (13.29)

and
Wt = ψ1(B)ut. (13.30)

(13.26) and (13.27) have the same MA(∞) representation, hence also the same autoco-
variance generating functions:

γx(z) = σ2ψ(z)ψ(z−1) = σ2ψ1(z)ψ1(z
−1). (13.31)

It is not possible to distinguish a series generated by (13.26) form one produced with
(13.27). Among these two models, we will select the simpler one, i.e. (13.27). Further,
if we tried to estimate (13.26) rather than (13.27), we would meet singularity problems (in
the covariance matrix of the estimators).
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