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1. Random variables

1.1 In general, economic theory specifies exact relations betwestoauc vari-
ables. Even a superficial examination of economic data iteBdaiis not (almost
never) possible to find such relationships in actual data. ddsige have relations
of the form:

G=a-+pY+¢&

whereg; can be interpreted as a “random variable”.

1.2 Definition A random variablgr.v.) X is a variable whose behavior can be
described by a “probability law”. IK takes its values in the real numbers, the
probability law ofX can be described by a “distribution function”:

Fx(x) = P[X <]

1.3 If X is continuous, there is a “density functiof (x) such that

Fx(x):/_:fx(x) dx .

The mean and variance &fare given by:
~+00

Uy = E(X) :/ X dFx (X) (general case)

—00

= / +ooxfx (X) dx (continuous case)
V(X)=02 =E [(X - ux)z} = /+oo (X— Hy )*dFx (X) (general case)

= [ - PR x
E (continuous case)
=E(X?) — [E(X))°

1.4 It is easy to characterize relations between two non-random vesialand
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g(x,y) =0
or (in certain cases)

y="f(x).
How does one characterize the links or relations between randaables? The
behavior of a paifX,Y)’ is described by a joint distribution function:

F(x,y) = PIX<X Y <Y
— / / (X, y)dxdy (continuous case.)

We call f(x,y) the joint density function of(X,Y). More generally, if we
considerk v.als Xy, Xo, ..., X, their behavior can be described througtk-a
dimensional distribution function:

F X17X27 Xk) P[X].SXLXZSXZ)“')XKSXK]

X2
_/ / / (X1, X2, - -+, Xk) dXgdXz - - - dXy (continuous case)

wheref (xg,%o, ..., X) is the joint density function oKy, X, ... , X

2. Covariances and correlations

21. Covariance and correlation between two random variables

We often wish to have a simple measure of association betweeratvdom vari-
ablesX andY. The notions of “covariance” and “correlation” provide such mea
sures of association. Let andY be twor.v.’s with meansuy and p, and finite
variancesoz ando?. Belowa.s. means “almost surely” (with probability 1).

2.1 Definition The covariance betweetiandY is defined by

C(X.Y) = 0ur = E[(X— i) (Y — ty)]



2.2 Definition Supposer > 0 anda? > 0. Then the correlation betweeéhand
Y is defined by

P (X,Y) = pyy = Oxy/0x0y .
Wheno% = 0 or 62 = 0, we selp,, = 0.
2.3 Theorem The covariance and correlation betwéeandY satisfy the follow-
Ing properties:
(@) oxy =E(XY)—E(X)E(Y) ;
(b) oxy = 0vx , Pxy = Pyx ;
(0) oxx = 0%, Pxx =1;
(d) 0%y < 0%0%; (Cauchy-Schwarz inequality
() —1<pyy <1;
(f) X andY are independent- oxy =0= pyy =0;

(g) if 0% #0andag? #0,
Py = 1< [3 two constants andb such that # 0 andY = aX +b a.s]

PROOF (a)

(X = py) (Y = py)]

(XY — IJxY Xy + My Hy]
(XY) = uxE(Y) = E(X) Hy =+ Hx Hy
E(XY)— IJxIJY Hx My + Hx Hy

— E(XY)—E(X)E(Y) .

oxy = E
= E|X
E

(b) et (c) are immediate. To get (d), we observe that

E{IY =ty = A (X = )P} = EL[Y = 1) = A (X = )}



= E{(Y = py)? = 22 (X = ) (Y = py) + A% (X = )}
= 02 —2Aoxy +A°0%2 >0.

for any arbitrary constant. In other words, the second-order polynonggl ) =
05 — 2A Oxy +)\20>2< cannot take negative values. This can happen only if the
equation

A?0%2 —2A0xy +02 =0 (2.1)
does not have two distinct real roots, i.e. the roots are eithaptax or identical.
The roots of equation (2.1). are given by

2 2 2 2 2 2

A
2 2
20% 0%

Distinct real roots are excluded whew, — 0502 < 0, hence
0%y < 0%07 .
(e)
0%y < 0%05 = —0x0y < Oxy < OxOy
(f)
Oxy = E{(X—=H) (Y —Hy)} =E(X=Hx) E(Y —pty)
E(Y)— py] =0,

[E(X) = ux][E(Y) — 1y
Pxy = O'xy/O'xO'Y:O.

Note the reverse implication does not hold in general,

Pxy = 0#> X andY are independent



(9) 1) Necessity of the condition. ¥ = aX + b, then
E(Y)=aE(X)+b=auy+b, 05 =a’0%,
and
Oxy = E[(Y = py) (X = py)] = E[a(X — piy) (X — py)] = a0 .

Consequently, .
ao
P>2<Y = F}z{é)z( =1.
2) Sufficiency of the condition. Ip%, = 1, then
0%y — 0505 =0.
In this case, the equation
E{[(Y — 1y) = A (X = )} = 0F — 24 0y +A%0% =0

has one and only one root

ZO'XY
A= 20_)2< :ny/ai,
so that
Oxy ?
E{[(Y—uy)—?(x— 5l }zo
X
and

P [(Y—UY)_%(X—UX):O] :P[Y:%X""(“Y_%“X)] =1
X X X

We can thus write:
Y = aX + b with probability 1

wherea = oxy/o% andb = py — 2% 1y .
y



22. Covariances and correlations betweelk random variables
Consider novkr.v.’s Xi, Xo, ..., Xk such that

E(X) = y;, 1=1,....k,
C(Xj,Xj) = G0ijj, i,jZl,...,k.
We often wish to compute the mean and variance of a linear catibm of
X, Xe o
S aX = anXo+aXo+ -+ aX .
It is easily verified that
E [Zikzlaixi} = 2 ai,
and
V[Ztax] = E{[Zla 06— )] [Zaay (X - )]}
— Z|k lzj 188 Oij -

Since such formulae may often become cumbersome, it will be odggveto use
vector and matrix notation
We define a random vectdf and its mean valug (X) by:

X E (%) Hy
X=1 : , E(X) = : =| i | =puy.
X E (X) My
Similarly, we define a random matriM and its mean valug (M) by:
[ Xa1 Xa2 ... Xan | [ E(Xu1) E(X12) ... E(Xan)
M — X21 X22 “en X2n 7 E (M) _ E ():(21) E(Xzz) N E ():(2n>
xml Xeo xmn E(Xm) E(%m2) - E(Xm)

where thexi j arer.v.’s. To a random vectoX, we can associate a covariance



matrix V (X) :

V(X) =E{[X=EX)] X =E(X)]'} = E{[X — py] [X — piy]'}
{{(Xllll)(xllll) (X —Hq) Ko —H3) - (Xlﬂl)(xkﬂk)]}
—E

(K= i) K= Hg) Ke—Hy) Ko —Hg) o (Ka— Hy) (R — Hy)

011 O12 ... Ok
= : : : = 2.
Ok1 Ok2 ... Okk

If a=(ay,...,a)’, we see that:
Sk aX=aX.

Basic properties o (X) andV (X) are summarized by the following proposi-
tion.

2.4 PropositionLet X = (Xg,... ,Xk)’ ak x 1 random vectora a scalara and
b fixedk x 1 vectors, andA a fixedg x k matrix. Then, provided the moments
considered are finite, we have the following properties:

(a) E(X+a) =E(X)+a;

(b) E(aX) =aE(X);
(c) E(aX) =dE(X), E(AX)=AE(X) ;
(d) V(X+a)=V(X);
(e) V(aX)=a?V(X)
(Hh V(@X)=aV(X)a, V(AX)=AV(X)A’;
(g) C(a@X,b’X)=aV(X)b=b'V(X)a.
5 TheoremLet X = (Xy,...,X%)" be a random vector with covariance matrix

2
V (X) = 2. Then we have the following properties:
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a 2=
b) 2 is a positive semidefinite matrix;
c) 0<|2| < 0f05...02 whereo? =V (X)), i=1,....k;

d) |2| =0« there is at least one linear relation betweenrthésXy, ..., X, i.e.,
we can find constants, .. ., ayx, b not all equal to zero such thatX; + - - - +
axXx = b with probability 1,

(e) ranK2) =r < k< X can be expressed in the form

X =BY +cC

(
(
(
(

whereY is a random vector of dimensiarnwhose covariance matrix Ig, B
Is ak x r matrix of rankr, andc is ak x 1 constant vector.

2.6 Remark We call the determinang | the generalized variance of X.

2.7 Definition If we consider two random vectod$, and X, with dimensions
ki x 1 andk, x 1 respectively, the covariance matrix betwéerandX is defined

by:
C(X1,X2) = E{[X1—E(X1)] [X2—E(X2)]'} .

The following proposition summarizes some basic properti€s(&h, X»).

2.8 Proposition Let X; and X, two random vectors of dimensiotks x 1 and
ko x 1 respectively. Then, provided the moments considered are figiteawe the
following properties:

(@) C(X1,X5) = E[X1X5] —E(X1)E(X2) ;

(b) C(X1,X2) = C(X2,X1)";

(€) C(X1,X1) =V (X1), C(X2,X2) =V (X2) ;

(d) if a andb are fixed vectors of dimensioks x 1 andk, x 1 respectively,

C(X1+a,X2+b) = C(Xl,XZ) ,
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(e) if a andf are two scalar constants,

C(aXy, BX2) = aBC(Xy,Xa) ;

(f) if aandb are fixedk; x 1 andk, x 1 vectors,
C(aXy,b'Xy) =aC(Xq,X2)b;

(g) if A andB are fixed matrices matrices with dimensiagsx k; andg, x ky
respectively,
C (AX]_, BXZ) = AC (X17X2) B’ .

(h) if ky = ko andX3 is ak x 1 random vector,
C(X1+ X2, X3) = C(X1,X3) + C (X2, X3) ;
(1) if ke = ko,
V(X1+X2) = V(X1)+V(X2)+C(Xq,X2) +C(X2,X1) ,
V(X1—Xs) = V(X1)+V(X2) —C(X1,X2) —C (X2, X1) .
3. Multinormal distribution

Consider two random vectod$; and X, with dimensiongk; x 1 andk, x 1 re-
spectively. IfX; andX, are independent, then

C (X1, X2) ZE| (Xo— i) (X2 = ki) | =0

The reverse implication is not true in general, except in speeaisés. One such

/ / / .
case is the one where the random vec{os (xl,xz) follows a multinormal
distribution.

3.1 Definition We say that th& x 1 random vectoK follows a multinormal dis-
tribution with meanu and covariance matriX, denotedX ~ N¢[u,Z], if the



characteristic function oX has the form:
E [ét’x] e R = [ G/

3.2 When|Z| # 0, the vectoiX has a density function of the form:

1 1
f(X) = T (x—w) >t (x-
(X) (27T)k/2\21% exp[ > (X—u) 2+ (x u)]

If k=1, then> = o and

2
f(x):\/%wexp[—%(x—u)%(x—u)] :\/%Taexp!_%(x GZH)] :

Some important properties of the multinormal distribution arersanized in the
following theorem.

3.3 TheoremIf X ~ N¢[u, 2], then
(@ X+c~Ne[u+c,2], for any fixedk x 1 vectorc;

(b) X ~ Ny [a'u,&2a] , for any fixedk x 1 vectors;
(c) AX ~ Ny [Au,AZA | for any fixedg x k matrixA ;
(

d) if
X1 IJ1> ( 211 212 )]
X — ~ N : ,
(XZ) ‘ [(Hz 221 222
whereX, andX, are vectors of dimensiofks x 1 andk, x 1,

H, = E(Xy), 4y, =E(X2), Z11=C(X1,X1), Z22=C(X2,X2),
Z12 — C(Xlaxz) — Z217

then

(1) X1~ N [U1,211], X2~ N, [Up, 222 ;
(if) X, andX, are independent- 3,1, =0;
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(ifi) the conditional distribution ok, givenX, is normal with mean and et
variance

E[X2|X1] = Mo+ ZnZ7 (X1—Hy)
V[X2|X1] = Zoo— 50157510,

X2 |X1 ~ Nig [Ho+ 22151 (X1 — Hy) s Zoo— 201211 210
3.4 TheoremIf X ~ N¢[u, Z] with |X| # O, then
(X =)' Z (X =) ~ x*(K) .

PROOF SinceZ is a positive definite matrix|>| # 0), there exists a nonsingular
matrix P such that

PSP =,
hence
> =PHP)T=(PP) T,
>t = PP.
Consequently,

X=w)' 2 (X =p) = X=p)PP(X—p)
= PX—p]'[P(X—p)] =Vv =5V

where
V=P[X — ] = (Vi,Vo,..., V)" .

SinceX ~ N[u, 2], we haveX — u ~ N0, 2], hence
P[X—u] ~N[0O,PZP] ,

and
Vv=P[X—u] ~ N[Ol .
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Thusvy,...,wareiid.N[0,1] and(X —u) =X —p) =K v~ x?(k) . [

12



