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1. Model-free linear regression and ordinary least squares

1.1. Notations

We wish to explain or predict a variablethroughk otherx;, %, ..., x. We T
observations on each variable:

Y1

y = | %2 | : dependent variable (to explain)

Xj = | I =1,..., k: explanatory variables.

Y

Usually, the explanatory variables are represented by thé matrix

X11 X12 ccc Xk X

Xo1 Xp2 +ve Xok x5
X:[X17X27"°7Xk]: . . . — . )

XT1 Xr2 0 XTk Xt

whereX; is ak x 1 vector:
X = (%1,%2,- -, %), t=21,...,T.
We wish to represent each observatypas a function ok, . .., X«:

Vi = X1+ X2Bo+ -+ XBe+ &, t=1...,T (1.1)

whereg; is a “residual” which is left unexplained by the explanatory a&hbles.
This model can also be written in the following matrix form:

y=XB+¢ (1.2)
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wheree = (€1, &2,..., &1)".



12. The least squares problem

1.2.1 In general, we cannot obtain a “perfect fit¢; =0, t=21...,T). In
view of this, a natural approach (proposed by Gauss) consistaimining the
sum of squared residuals:

T T

t;f?tz = Z Ve —X1By— - _thBk]z

t=

= (y=XB)'(y=XB)=S(B) .
We consider the problem:
Mﬁin (y—=XB) (y—XB) -
Since
S(B)= (Y —BX) (y—XB) =yy—2B'Xy+BX'XB,
we have:
dS(B)
B
To compute the above, we use the following result on differanhawith respect
to a vectoix :

= _2X'y+2X'XB .

J(Xa)
i a, (1.3)
J(XAX) ,
= (A+A)X. (1.4)
For any poini3 = B such thatS(f) is a minimum, we must have:
dS(B) / Inv 2

hence A
(X'X) B = X'y : normal equations



1.2.2 Whenrank(X) = k, we must haveank(X'X) = k so that(X'X) " exists.
In this case, the normal equations have a unique solution:

B = (X'X)"'XlYy. (1.5)

Oncef& is known, we can compute the “fitted values” and the “residuafishe
model.

1.2.3 The model fitted values are
§=XB =X(X'X) Xy =Py,
where

P = X(XX) X (projection matrix)
P =P,PP=P (symmetric idempotent matrix).

1.2.4 The model residuals are:
E=y-XB=y-§=y—Py=(1-P)y=My
where

PX = X, MX =0, (1.6)
PM = P(I-P)=0, MP=0. (1.7)

1.2.5 Each column oM is orthogonal with each column of:
X'M =0,
xM=0, i=1,...k.
Residuals and regressors are orthogonal:
X'e = X'My=0
= xe=0, i=1,...k



T

= it€=Y & =0, ifthe matrixX contains a constant
{=

whereg = (£1,&,,. .., gr) etit = (1,1,...,1)".
1.2.6 Fitted values and residuals are orthogonal:

Ve =yPMy=0. (1.8)
1.2.7 The vectory can be decomposed as the sum of two orthogonal vectors:

y=Py+ (I -P)y=y+E&. (1.9)

(y=xB) (y-xB) + (B -8) xx (B )
=s(8)

(y-XB) (y-XB) = [y-XxB+X(B~B)] [y-XxB+X(B-B)]
= [tx(p-p)| [t x(p-p)]
- é’é+2(ﬁ—ﬁ)/x’é+(ﬁ—ﬁ)'x'x (B—B)
_ é’é+([3—ﬁ)'x’x (B-p) .

This directly verifies thaff = B minimizesS(f).

1.2.8 For any vecto3,

SB) = (y—XB) (y—XB) =
> (y XB) (y XB)

for



2. Classical linear model

In order to establish the statistical propertieq@of/ve need assumptions ohand
€. The following assumptions define tbkassical linear mode(CLM).

2.1 Assumption y=XB+¢

wherey is aT x 1 vector of observations on a dependent variable ,
X is aT x k matrix of observations on explanatory variables,

B is ak x 1 vector of fixed parameters,

€ is aT x 1 vector of random disturbances.

2.2 Assumption E(g) =0.
2.3 Assumption Eleg'] = 0?7 .
2.4 Assumption X is fixed (non-stochastic).

2.5 Assumption rank(X)=k<T.



From the assumption 2.1 - 2.4, we see that:

XiB
E(y) = E(Y[X)=XB={
XrB

B,

= (X1, X2, ..., X¢) BZ

By

= X131+ %P+ -+ XBy,
V(y) = V(y|X) =0

(02 0 --- 0
2 o o o
0O 0 -.- g2

If, furthermore, we add the assumption thdbllows a multinormal (or Gaussian)
distribution, we get the normal classical linear model (NCLM).

2.6 Assumption ¢ follows a multinormal distribution.



3. Linear unbiased estimation

From the assumptions 2.1 - 2.5, we can make the following obsanga

3.1 B IS linear with respect tg.

PROOF B has the fornﬁ = Ay, whereA = (X’X)_1X’ IS a non-stochastic matrix.
]

3.2 B=(XX)IX(XB+e) =B+ (X'X) XE.
3.3 ﬁ IS an unbiased estimator Bf

PROOF E(B) = B+ (X'’X) ' X'E(g) = B. ]

3.4 V(B) = a?(X'’X) .
PROOF
V(B) = E[(B-B)(B-B)]
= E[(X'X) " X'eegX (X'X) 7]
= (X'X)'XE(g€) X (X'X)
= g?(X'X)*

where the last identity follows from Assumption 2.3. []

3.5 Theorem GAUSS-MARKOV THEOREM. ﬁ is the best estimator @ in the
class of linear linear unbiased estimatoBt UE) of B, i.e. V(B) —V(B) is a



positive semidefinite matrix for any Imear unbiased estimateJE) B of B. In
particular, lfB CyandD =C— (X'X)~ X/, then

V(B) = V(B) + DD’ .
PROOF SincefB IS unbiased and

C=D+(X'X)*X,

we have:
E(B) = E{[D+(x'xy1x'} (XB+£)}
= DXB+pB
= B,
hence
DX=0 and CX=I.
Consequently, N
B=Cy=CXp+Ce=p+Cs¢
and N
B—pB=Ce,
hence
V(B) = E[(B B)( ~B)] =ElCeeC| = o’CC
= o°[D+ XD+ X (X'X) ]
— [DD’+ (x X)‘l] — g?DD' + 0?(X'X) "
— o?DD’+ V()
and N A
V(B) —V(B) = o°DD’ (3.1)

IS a positive semidefinite matrix. []



3.6 Corollary Letw be ak x 1 vector of constants. Then,
V(WB) > V(W)

for any linear unbiased estimalﬁrof B.

~

PROOF SinceE ([Ni) :E([3> = 3, we have:
E(wﬁ) - E(WB) —Wg,
v(wﬁ) — WV (B)w:w[azDD'+v(B)}w
— g2WDD'W+WV (ﬁa)w
= o°WDD'w+V (Wﬁ) >V (V\/B) :
for wDD'w > 0. ]

In particular, we must have:

~ ~

V(B)>V(B), i=1..k.

3.7 Theorem GENERALIZED GAUSS-MARKOV THEOREM. LetL be ar x k
fixed matrix andy = L3. Theny = L[B is the BLUEYy, i.e. V(y)—V(y) is a
positive semidefinite matrix for any linear unbiased estimataf y. In particular,
if y=CyandD =C —L(X'X) X/, then

V(¥) =V (y) +0?DD’
and
C(y—-v.¥)=0.
PROOF Sincey is unbiased and

C=D+L(X'X)"X

10



we have

= E{(D+L(XX) X (XB+¢)}
= DXB+LB=DXB+y

m

—~

4

~—
|

=Y,
hence
DX=0 and CX=L.
Consequently,
— LB+Ce=y+Ce
and
V() = E[(7-¥)(7-y)] =E[Ces’C] = o’CC
= @2[D+L(X'X) "X [D' + X (X'X) L]
— 02[DD' +L(X'X) L]
= %DD' + 0L (X'X) 'L’ = 02DD’ +V(LB)
o)
V(y) —V(y) = o?DD’ (3.2)

IS a positive semidefinite matrix, and
C(¥,7) = E[Cee’X(X'X)™ L]
= gZCX(X'X) 'L = a?L(X'X) 'L = V(§),

C(y—9.9) =C(%.7) —C(7.7) = V() - V(§) =0. (3-3)

11



3.8 Corollary QUADRATIC GAUSS-MARKOV OPTIMALITY . LetQ be ar x r
positive semidefinite fixed matrix atdar x k fixed matrix,y = L3 andy = L.
Then

E[(7-v)Q(V—y)] =E[(7-v)QT—V)]
for any linear unbiased estimatpofy.
PROOF Lety=CyandD =C—L(X'X) "X’ Then

)
E[(V-y)Q(V-V)] = E[trQ(¥—y) (¥—V)']
= trQE[ (V=) (V—V)]
= trQ[o“DD'+V ()]
atr (QDD') +tr [QV (¥)]
o“tr (D'QD) +trQE[(Y—y) (¥
(D'QD)
(D

—y)]
otr +E[tr (Y—v)'Q(¥—y)]
o’tr (D'QD) +E[(¥—y)'Q(V—V) ]
E[(V—y)'Q(V—V)]

sinceQis p.s.d.= D'QDis p.s.d.= trD'QD > 0. []

1V

3.9 Corollary For any LUE ofy of y = L3,
trvV(y) > trv(y) .
PROOF
rvV(y) = rE[(y-y)(V-v)] = —
= E[(y—y (V=] ZE[(F—V (T—v)] =trV(D)
by Corollary 3.8 withQ = 1. []

12



3.10 Lemma PROPERTIES OF MATRIX DOMINANCE If A=B+C whereB is
a p.d. matrix an@ is a p.s.d. matrix, then

(a) Ais p.d.,

(b) B[ <A,

(c) B 1-Alisp.s.d.

3.11 Corollary LetL be arr x k fixed matrix,y = L3 andy = L[§. Then
V)= V()

for any LUEY of y.

PROOF Sincey is the BLUE ofy (by the generalized Gauss-Markov theorem),
we have:

V(i) =V({y)+C (34)
whereC is p.s.d. If|V(y)| =0, then|V(y)| < |V(y)|, for car|V(y)| > 0. If

V()| > 0, thenV (y) is p.d. This entails tha¥ (y) is also p.d. andV (y)| <
V). ]

3.12 = XB+Pe, & = My = Me.
PROOF

= Py=P[XB+¢|=XB+Pe, carPX=X,
= My=M[XB+¢€]=Me, carMX=0.

M <>
|

3.13 E(y) = XB ,E(§) =0.

13



PROOF

E(y) = E[XB+Pg]=XB+PE(g) =XB,
E(€) = E(y—9)=XB—-XB=0.
u
3.14 V(y) = 0%P, V(&) = M.
PROOF
V) = V(Xﬁ) :XV@;)X/: °X (X’X)_lx’zgzp7
V(E) = V(My)=MV(y)M = g?M
u

3.15 yis the best linear unbiased estimatoXg.

PROOF This follows directly on takind- = X in the generalized Gauss-Markov
theorem. (]

3.16 £ is the best linear unbiased estimator (BLUE) &fin the sense that
E(¢—¢)=0and
V(E—¢€)—V(€—¢) isap.s.d. matrix
for for LUE € of ¢.
PROOF Sinceg is a LUE ofe, we must have:

£

Ay and E(€—¢)=0.

14



Consequently,

E(€) = E(AY)
= E[AXB+¢€)]=AXB=0,VB,

which entails that

Let

Then

hence

and

so that

Thus

AX =0,
E=AXB+¢)=Ac.
B=A—M where M=1—X(XX)"X".

AX=[B+M]X=BX=0, since MX=0,

V(E—¢) = V[Ae—¢]
= V[B+M)e—¢g]=V[B+M—1)g]
= E[(B+M—1)eg' (B +M—1)]

= a?[B—X(X'X) " X][B' = X (X'X) " X]
— g2[BB + X (X'X) X1,

V(E—¢g) = E[(M—1)egg" (M —1)]
= 02(1 = M) = o®X (X'X) X/,

15



a p.s.d. matrix. []

3.17 C(B, &) = C(B,y—XB) =0.

PROOF
C(B,8) = E[(B—B)&] =E[(X'X) 'X'ee'M]
= g?(X'X)*X'M=0.
0
3.18 C(y,8) =0
PROOF
C(§,&) = E[(XB—XB)&] )
— XE[(B—B)&]| =XC(B,&) =0
u

3.19 Estimation ofg?. Sinced? =E(ef),t=1,..., T, itis natural to consider
the residuals of the regression which can be viewed as estmsatiothe error
termse;:

hence

16



= E[tr (Meg€')] =tr [ME(e€')]

— g%rM,
where
M = trlt — X (X'’X)""X ]:trIT—tr[ (X'X) " X]
= triy —tr [X'X (X'X)~ }_trIT—trIk
— T—k.
Thus,

E(88) = 02(T—K)

3.20 The statistic
= #8/(T—K) =yMy/ (T —K)
is an unbiased estimator af?, and s2(X’X)"" is an unbiased estimator of
v (B) — g?(X'X)
E(s) = 0%,
E [sz(x’X)‘l} — g2(X'X)t.

17



4. Prediction

In the previous section, we studied how one can estiriatethe linear regres-
sion model. Suppose now we know the maXixof explanatory variables fan
additional periods (or observations). We wish to predict the cparding values
of y.
Yo = Xof3 + €0
where
E(e0) =0,V (&) = 0%, E(ggp) =0.

The natural “predictor” in this case is:
Jo = XoB = Xo(X'X) X'y . (4.1)
We can then show the following properties.
4.1 Yy is an unbiased estimator ¥§[ :
E(Yo) =XoB=E(Yo), E(Yo—Yo)=0.
4.2 V(o) =V (XoB ) = XV (B) X§ = 0% (X'X) "X
4.3 C(Yo,¥0) =0.

PROOF

C(Yo,Yo) = E :(yO_XO.B) (Xolg’ —Xoﬁ)/]

_ :go (B —B)/X(’,] —E [eos’x (x’X)‘lx(g] ~0.

4.4 Yy, is best linear unbiased estimator X§3, in the sense that (Vo) — V (Vo)
IS a p.s.d. matrix for any linear unbiased estimaippf Xo. In particular, if

18



o =CyandD = C — Xy (X'X) ' X/, then
V(%) =V (Yo) +0°DD" .

PROOF This follows directly from the generalized Gauss-Markov theorem.]

The “prediction errors” are given by:
& = Yo—Yo=Yo— Yo
— XoB+g0—XoB =0+ X% (B-B) .
4.5 Y is a linear unbiased predictor (LUP) wf:
E[&] =0.
PROOF Yy = Xoﬁ and
E €] = E Yo — Yo = XoB — X0 =0.

4.6 V(&) = 02 [|m+xo(x’X)—1xg,] .
PROOF

V(Yo—Yo) = V(Yo)+V (Yo) — C(Yo,¥o) — C (Yo, Yo)
= 0%m+ 0% (X'X) X
~ ¢? [|m+x0(x’X)‘1x5] .

19



4.7 Theoremyy is the best linear unbiased predictor (BLUP)ygf in the sense
thatV (Yo —Yo) — V (Yo—Yo) is a p.s.d. matrix for any LU, of yo. In particular,
if Jo = Cy andD = C — X (X'X) " *X/, then
V (Yo —Yo) =V (Yo—Yo) +0°DD’".
PROOF
V(Yo—Yo) =V (Yo) +V (Yo) — C (Yo, ¥0) — C (Yo, o)
where
C (Yo, ¥o) = E[£0€'C] =0
for, by the generalized Gauss-Markov theorem,
E[§o] = XoB = CX = Xo = Jo = C(XB +£) = XoB +Ck .
Further,V (Yo) = V (Yo) + 0?DD’ andV (yo) = 0°l,,. Consequently,
V (yo —)70) = O'Zlm—l—v (90) + O'ZDD/
= | 0%+ 0% (X'X) " X}| + o?DD’
= V(yo—Y¥o) + 0°DD’ .

20



5. Estimation with Gaussian errors

If we wish to build confidence intervals and perform hypothesitsiege need a
more complete specification of the error distribution. The stashtlypothesis for
this is to assume that the errors follow a Gaussian distribution.

5.1 Assumption & ~ Ny [0,0%7].

This means that the erroes are i.i.d. N [0,0%| . We can now completely es-
tablish the distribution of the least squares estimator.

5.2 y~N|[XB,0%l], sincey = Xp +¢.

53 3 ~N [B, 0?2 (X’X)—l}  sincef = (X'X) " Xly.
The probability density function of is given by:

1 1(y—XB)' (y—XB)
)T/Z exp{—— :

(i XB, o) = (2mo? 2 0?

5.4 B = (X'X)"1X'yand6? = &'&/T are the maximum likelihood estimators of
B anda? respectively.

PROOF To maximizelL is equivalent to maximizing lfi). Since
T T

(L) = —2In(2m) ~ 2In(0%) 575 (y—XB) (y—XB)
= —2In(2m) — 21n(0%) ~ 55 [yy — 2YXB +BX'XB]

the first-order conditions (which are necessary) for a maximum is:
o(nL)) 1 / N ]
T = 202[ 2X'y+2(X'X)B] =0,
d(In(L)) T1 N 1
/o2 202 204

21



hence
(XX)B = XYy,B=(XX)"XYy,
62 = (y—XB>l (y=XB)/T.
Further the second-order derivative oflln is:

In(L 1
o) _ 1y (5.1)
B op o
which is negative semidefinite as required for a maximum. []

5.5 y=XB ~ Nr [XB,0%P].

5.6 & =Me ~ Ny [0,0°M].

5.7 & andp are independent, becauset 3 are multinormal anc‘[(fi, £)=0.
5.8 £ andy are independent, becausandy are multinormal and (y, €) =0 .

5.9 Lemma DISTRIBUTION OF AN IDEMPOTENT QUADRATIC FORM IN LI.D.
GAUSSIAN VARIABLES. LetQ be aT x T symmetric idempotent matrix of rank
q<T.Ife~Nr|0,0%], then

£'Qe/0% ~ x*(q) .

PROOF SinceQ is a symmetric idempotent matrix, there i a T orthogonal
matrixC, i.e. CC' =C'C = |1, such that

lg O
CQC:(S o)’

£'Qe = £'C'CQCCe = (Ce)' (CQC) (Ce) .

hence

22



Further,

g ~ NJ0,0°] = Ce~NJ[0,0°CC]]
= Ce~N|[0,0%] .

Letv=Ce = (Vy,Vo,..., V7). Then

V1,V2,..., Vr are i.i.d.N [0, 07]

and
Qe = V(CQC)v
Vi
B lqg O Vo
= (V17V27"'7VT)(0 O)
VT
= Vi+Vo+ - +VG+0.V, -+ 0.V
q
— \/t2
t=
This entails
ngg— q (&)2
02 t; g/’
where%'rn\qN[O,l] , t=1...,T,
and

£'Qe/0% ~ x*(q) .

23



5.10

S(B) e
2
0_2 —— 5 X (T T k)
PrROOF This follows directly on applying Lemma 5.9 witQ = M and the fact
thattr(M) =T —k. [

5.11 LetRbe aq x k fixed matrix. Then,
R ~ N [RB, oZR(x’X)‘llﬂ . (5.2)
FurtherRB ands? are independent.

PROOF 3 ~ N [B, 02 (x'X)—l} entailsRB ~ N [Rﬁ, GZR(X’X)_lRJ . Sincef3

and & are independenRB and &' are also independent, so tHa8 ands? =
£'e/ (T —k) are independent. O

5.12 Let Rbe aq x k fixed matrix of rankg, r = R and

S(RB) = [RB—1] [RXX)*R] " [RB 1.

Then A
S(R.B)/0* ~ x*(a) - (5.3)
Further,S(R, B) ands? are independent.
PROOF ) )
RB-r=R(B-B)
and

R([B - /3) ~Nq [o, GZR(X’X)_lR’} .

24
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6. Confidence and prediction intervals

6.1. Confidence interval for the error variance
In the normal classical linear model, we have:
8'8/0%=(T—kK) /0%~ x?(T =K) .

Thus, we can finé andb such that

wﬁa—m>mz%,
Nﬁn—m<ﬂ:%,
Pla<x*(T—k)<b]=1- <%+%> =1-a,
which entails that
PF<‘T;?§531=1—a
2
SRt e

< oc<
b - - a

It is important to note this is not the smallest confidence irtiior o2.

JUECEFMLEE
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62. Confidence interval for a linear combination of regression
coefficients

Consider now the linear combinationg. Then
WB—Wp ~ N |0,0%W (X'X)

hence .
wWpB—-wp
oA

whereA = \/vv’ (X’X)~*w. Sinceo is unknown, consider:

~ N[0, 1]

. _ WB-wp
- sA
. wWB-w}p V\/B wB (T-k)&
B Aa\/; / 02T K)

s

whereX andY are independeny, ~ N[0,1] andX ~ x?(T —k). Thus,t follows
a Student distribution withT — k degrees of freedom:

t~t (T —K)

hence
Pl—taje <t(T—k) <tgp2] =1-a
whereP [t (T —k) >t4/2| = a/2 and

p [V\/B—ta/zsﬂ <wWp gvx/[3+ta/254} —1-q.

27



6.3. Confidence region for a regression coefficient vector

We now wish to build a confidence region for a ved®ft of linear combinations
of the elements 0B, whereR: g x kand has rank. Then

S(RB)/0% = (RB—RB)' (R(X'X)"R] "(RB—RB)/0*~ x*(q) .
Sinceo is unknown, let us consider:

Cwo a2 SRP)/ao®E  Xy/q
F= SR = T2/ (T 1)~ %/ (TN
whereX; andX; are independent,

X = SR, B)/0%~ x*(q) ,
Xo = (T —Kk)s?/a? ~ x*(T —K) .

ThusF follows a Fisher distribution witlig, T — k) degrees of freedom:
F~F(QT-k).

If we defineF, by
PIF(q,T—-k >F]=0a,

the set of all vector&B such thatF < F; :
(RB—RB)'[R(X'X) "R] "(RB—RB)/qs’ < Fy .

Is a confidence region with leveHa for RB. This setis a an ellipsoictpnfidence
ellipsoid).

28



6.4. Prediction intervals

Yo = XoB + €0
where
£
(8—0) ~/ N [O, O-ZIT_H]_}
Further
Jo — %B. B—(XX) XYy,
Yo—Yo = X(B—B)— o~ N{0, 0?1+, (X'X) *xo]}.
hence G0y
0— Yo
~ N[0, 1
UA]_ [O’ ] 7

L2
whereA; = [1+x6(X’X) xo} , and

Yo—Yo
~t(T—k
SAl t( )

wheret, /, satisfies

P [Yo—1ta2501 < Yo < Yo+1ta/2801) =1—ar.
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65. Confidence regions for several predictions

We now consider the problem of predicting a vector of obseruatyg generated
according to the same model independently of

Yo = Xof3 + €0,
€ 2
<80> N [an- |T+m} )
whereXg is known butyy is not observed. For predicting, let us define:
S}O — XOE) _
& = Yo—Yo=Eo—X(B—B),
where
E(&) = O,
V(&) = 02 [Im+X0(X’X)_1X6} — 0Dy,
& ~ N[0, 0%[ln+Xo(X'X) x| -
Consequently,

&V (&) & ~ x*(m),
€Dy /a” ~ x*(m) .
Sinceo? is unknown, we replace it bsf:
(T—K)$?/a%~ x*(T —K) .
Further, since? is independent of, andyp = X3, &2 is independent ofy,

_ &Do& _ &Py &/0’m _
P = The T Towejem ok MR
-1

F o= (0—=30) [lm+X(XX) X5|  (Yo—Yo) /mS ~F (mT—k) .
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Then the set of vectong such that
F S FO{ (ma T-— k)

IS a confidence region fog with level 1— a.
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7. Hypothesis tests
7.0.1 Let us now consider the problem of testing an hypothesis oficime
Ho: W B =wg (7.1)

wherew be ak x 1 vector of constani$o testHy, it is natural to consider the
difference:

W8 —Wo =W (ﬁ—ﬁ) ~ N {O, o w (X’X)_lw} .

Under the assumptions of the Gaussian classical linear inedehen have:

V\/B_WO L vy —1 1/2
t = WBS;WONt(T—k)

This suggests the following tests i} :

rejectHo at levela againsw/3 —wp # 0 when|t| >t;» (two-sided test)
(7.2)
rejectHp at levela againsw/ 3 —wy > 0 whent >t, (one-sided test) (7.3)

rejectHo at levela againsw/3 —wy < 0 whent < —t, (one-sided test). (7.4)

An important special case of the above problem consists imgg#ie value of
any given component @ :

Ho(Bio) : Bi = Bio

wheref; is an element of.
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Let us now consider the more general hypothesis which consigtsting the
value of a general vector linear transformatior3af

wi | [wB]
Ho:RB=r = WZ B = W?B (7.5)
| Wo | [ WeB_

whereR s aq x k fixed matrix with full row rank[rank(R) = q.

7.0.2 Wald-type test A natural approach then consists in estimatikf§) by
RB.,and then to examine the differenB8 —r. UnderH,

RB~NIr, %), where Sgr=0’R(X'X) 'R
We need a concept of distance betwéaﬁ\andr. By (5.3),
W= (RB—r) 2" (RB—r) ~ x*(a) underHo.

We tend to rejecHy whenW is too large(W > c. However, o2 and >y are
unknown. It is then natural tom replace by the estimate?®, and>g by

Sr=RX'X)'R.
This yields a Wald-type criterion:
W = (RB—1)Z:"(RB—T)
~ , o —1 -1 ~
— (RB—T) [szR(x X) Fz} (RB—r)

~

= (RB—r1) [R(X’X)‘lR/} _1(RB—r)/sz
— S(Raﬁ’>/52

Since ) n
F=W/q=SR B)/as~F(qT k),
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we rejectHp at levela when
F>F(Q,T—K). (7.6)

7.0.3 Likelihood ratio test  Another approach to testingy consists in looking
for alikelihood ratio test. This testis based on focusing orikiedihood function:

1 1(y—XB) (y—X
L(y;XB,GZIT):<2n02)T/2exp{—§(y ngy ﬁ)}. (7.7)
Let
L(Q)=maxt = max L (7.8)

B, o2 (B,0?)€Q

i.e. we find values of3 andg? which maximize “the probability of the observed
sample”, and

L(ow)=max = max L (7.9)
B.o? (B,0%)cw
RB=r

i.e. we find values of3 andg? which maximize “the probability of the observed
sample” and satisfidy, where

Q={(B,0%):—0<B<4w i=1,...,k0<0o?<+o}
w:{(B702) eQ:R[B:r} .
We see easily that R
0<L(w) <L(Q),

hence

I_
S

)

1

o
VAN

—
ey

SIB
N——"

IA

Y

)
>1.

—
VN

€>
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We rejectHp when A
L(Q)
LR(Y) = —=
M=T%)
whereA ; depends on the level of the test:
PILR(Y) > Ad] =0 .

7.0.4 L(Q) is achieved whe = 8 ando? = 52 :

2/\(17

A\ / I~
R (=0
L(Q) = T2 EXPY —5 ~ = T/Zexp{——}
(2r6°) 2 o (2r6°) 2
o T/2 TT/2e-T/2
- o T/2 T/2
[ZNGZ}T 2 (v o) (v v
2m)" | (y=XxB) (y—XB)
TT/2a-T/2
(2mT /28"

AN/ ~
whereS, = (y—XB) (y—XB).
7.0.5 To findL(Q), it is equivalent to maximize

(L) = 7 In(2m) 210 (0%) 5 (v~ XB) (y~ XB)

under the constrair®B = r.Considerg? as given. It is then sufficient to solve the
problem:

IVIBin (y—XB) (y—XB)
with restrictionr — RB = 0. Ton do this, we consider the Lagrangian function:

Z=(y—XB) (y—XB) - A'[r—Rp] .
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The optimumg = fi must satisfy the first-order conditions:
0.

T —2X'y+2(X'X)B+RA =0 (7.10)
0% -
— = r—RB=0. (7.11)

On multiplying by (7.10) byR(X'X)*, we get:
—2R(X'X) X'y + 2RB+R(X'X) 'RA =0
ROXX) IRA = 2R(X'X) I X'y — 2r =2 [RB - r]

A =2 [R(X’X)_lR’] - [RB _ r} .

By (7.10),
2(X'X)B = 2X'y—RA (7.12)
— 2X'y—2R [R(X’X)_lR'] - [RB—r} (7.13)
hence
B = (X’X)_lx’y—(X’X)_lF([R(X’X)_lR’} - [RfB—r]

~ -1 ~
— B+ (X'X)IR [R(X’X)_lﬁ] [r - Rﬁ} .
We see thaf3 does not depend oor. Substitutingﬁ in In(L), we see that
T T 1

|n<|_) — —Eh’] (27-[) - §|n 02— Tﬂ

whereS, = (y— Xﬁ)l (y— XB) , from which we get

din(lL) T S

002 202 204~ 0
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at the optimum, hence

62 =Su/T = (y-XB) (y-XB)/T.
TT/2e-T/2
(27_[)1-/23-[)/2 )
The likelihood ratio test is given by the critical region:

fo(8) >

L(&) =

or, equivalently,
> AT (7.14)

L

Since

So = (Y-XB)(y-XB) o
(y—XB)'(y- x3>+g —B) (X)) (B—B)
= So+(B—B)(XX)(B-B),

we also see that

( ) [ R(X'X) ‘1F¥} TRXX) L XX) (XIX) L

oo -9
- (owd) frocx ] o]

= (RB-1) |R(X >1F¥} "(RB-1) =SR.B)
= (as)F,

hence

S-S _ (S%—S0)/d

"ET T /(TN

37



and

S(ozsgz+(q32)F_ (as’) F q

1) gy ES AT
S, & H(T—k)sZ 1+ F>25
@)Fz%()\i/T—l) —Fy .
The likelihood ratio test oHp : RB = r has the critical region
(Sv—S0) /9
F= >Fq (g, T—KkK
So/ (T = (@1 =
where
F~F(qT-k) .

This is an easy method for testifty : R3 = r. Note also that:

B So_) T/Z_ q T/2
e (2) " ()"
E — u(LRZ/T—l).

q
8. Estimator optimal properties with Gaussian errors

When errors are Gaussian, the OLS estimatﬁrs —=1,....k and &*> =
(y—xﬁ’) (y—X[B) /(T —k) have minimum variance in the class of all unbi-

ased estimators @8, i = 1,..., k, and 02 respectively [see Rao (1973, section
5a)].
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