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ABSTRACT

In this paper, we develop inference procedures (tests and confidence sets) for two apparently
distinct classes of situations: first, problems of comparing or pooling information from several
samples whose stochastic relationship is not specified; second, problems where the distributions
of standard test statistics are difficult to assess (e.g., because they involve unknown nuisance pa-
rameters), while it is possible to obtain more tractable distributional results for statistics based on
appropriately chosen subsamples. A large number of econometric models lead to such situations,
such as comparisons of regression equations when the relationship between the disturbances across
equations is unknown or complicated: seemingly unrelated regression equations (SURE), regres-
sions with moving average (MA) errors, etc. To deal with such problems, we propose a general
approach which uses union-intersection techniques to combine tests (or confidence sets) based on
different samples. In particular, we make a systematic use of Boole-Bonferroni inequalities to con-
trol the overall level of the procedure. This approach is easy to apply and transposable to a wide
spectrum of models. In addition to being robust to various misspecifications of interest, the approach
studied turns out to have surprisingly good power properties with respect to other available tech-
niques (e.g., various asymptotically motivated methods and other bounds procedures). Applications
to inference in SURE and regressions with MA(q) errors are discussed in detail. In the latter case,
we also present an extensive Monte Carlo study, demonstrating the advantages of the sample-split
approach. Finally, the methods proposed are applied to a demand system for inputs, a multivariate
return to schooling model, and a time series model of Canadian per capita GDP.
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1. Introduction

Straightforward application of usual inference procedures (tests and confidence regions) in econo-
metrics is often impossible. The problem usually comes from an insufficient specification of the
probability distribution generating the data, as occurs for example when one makes assumptions
only on the first few moments of an error distribution. However, the problem also arises in para-
metric models that specify the data generating process up to a finite vector of parameters. This is
typically the case when the assumptions made on the distribution depart from those made in the
standard linear regression framework, such as the absence of serial independence and homoskedas-
ticity.

This paper treats in a unified way two apparently distinct categories of problems where distribu-
tional results are difficult to establish. The first one consists of comparing and pooling information
about parameter estimates from samples whose stochastic relationship is totally unspecified. In
such cases, it is not possible to write a usable joint likelihood function and standard finite sample
or asymptotic methods are not applicable. The second one consists of making inferences in models
for which the distributions of standard test and confidence set procedures are difficult to establish,
e.g. because of the presence of nuisance parameters, but for which relevant test statistics based on
appropriately selected subsamples are distributionally more tractable.

To illustrate the problems we will study, consider the case where we have m ≥ 1 regression
equations of the form:

yi,t = x′
i,tβi + ui,t :, t = ti + 1, . . . , ti + Ni ,

ui = (ui,ti+1, . . . , ui,ti+Ni)
′ ∼ N(0, Ωi), i = 1, 2, . . . ,m,

(1)

where βi is an unknown ki × 1 vector (ki < Ni), xi,t is a ki × 1 vector of fixed (or strictly
exogenous) regressors and Ωi is an unknown positive definite nonsingular Ni ×Ni matrix, i ∈ I =
{1, 2, . . . ,m}. This setup describes situations frequently met in econometrics. Special cases of
interest include the following ones:

(a) models in which each equation expresses a similar relationship between analogous variables
(i.e., the coefficients βi have the same economic interpretation), but each one corresponds to
a different sample and the different samples may be dependent in a way that is difficult to
specify (e.g., this includes many panel data models);

(b) models with structural change: this situation is a special case of the previous one, where the
different samples correspond to different subperiods;

(c) stacked regressions where each equation represents a different economic relation, possibly
with different numbers of regressors which have different economic interpretations;

(d) time series models where the dependence between the m equations in (1) is induced by serial
dependence.
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For example, take m = 2. A model of type (a) could express the relation between the log of
the wage and a variable measuring the level of education for two individuals. The coefficient β is
then interpreted as the return to education [see Ashenfelter and Krueger (1992), for instance], and
we may wish to test whether this return is the same for individuals 1 and 2. In models of type (b),
we may wish to know whether the parameter linking variable y to variable x is the same over the
whole period of observation. An example of a type (c) model could be two equations where y1,t

and y2,t represent the consumption of two different goods and x1,t and x2,t are different vectors of
explanatory variables. Model (c) is composed of two distinct relationships, but for some reason, we
want to test the equality of the two coefficients. An important example of a type (d) model is a linear
regression model with errors that follow a moving average (MA) process of order one, where the
first equation contains the odd-numbered observations and the second equation the even-numbered
observations.

The most common practice in such situations is to rely on asymptotic inference procedures. The
lack of reliability of such methods is well documented in the literature. This feature of asymptotic
tests has been established by Park and Mitchell (1980), Miyazaki and Griffiths (1984), Nankervis
and Savin (1987) and DeJong, Nankervis, Savin, and Whiteman (1992) in the context of AR(1)
models. Burnside and Eichenbaum (1994) provide evidence on the poor performance of GMM-
based Wald test statistics. For more general theoretical results on the inaccuracy of asymptotic
methods, the reader may consult Dufour (1997); see also Nelson, Startz, and Zivot (1996), Savin and
Würtz (1996) and Wang and Zivot (1996). Furthermore, there are situations where usual asymptotic
procedures do not apply. For instance, consider a model for panel data with time dependent errors:
if no assumption is made on the dependence structure, it is not at all clear what should be done.

The main characteristic of model (1) is that the vector of dependent variables y =
(y′

1, . . . ,y′
m)′ is in some way divided into m subsamples (different individuals and/or different

subperiods), whose relationship is unknown. Because the joint distribution of the vector of errors
u = (u′

1,u
′
2, . . . ,u′

m)′ is not specified, usual inference methods based on the whole sample y are
not applicable. This paper develops inference procedures which are valid in such contexts.

The general issues we shall consider can be described as follows. Given several data sets whose
stochastic relationship is not specified (or difficult to model), but on which we can make inferences
separately, we study the following problems: (I) how to combine separate tests for an hypothe-
sis of interest bearing on the different data sets (more precisely, how to test the intersection of
several related hypotheses pertaining to different data sets); for example, in model (1), we may
wish to test whether the linear restrictions Ciβi = γi0, i = 1, 2, . . . ,m, hold jointly; (II) how
to test cross-restrictions between the separate models (such as β1 = β2 = · · · = βm, when
ki = k, i = 1, 2, . . . ,m), which involves testing the union of a large (possibly infinite) number
of hypotheses of the preceding type (e.g., βi = β0, i = 1, 2, . . . ,m, for some β0); (III) how to
combine confidence sets (e.g., confidence intervals or confidence ellipsoids) for a common parame-
ter of interest and based on different data sets in order to obtain more accurate confidence sets. All
these problems require procedures for pooling information obtained from separate, possibly non
independent, samples and for making comparisons between them.

Besides being applicable to situations where the stochastic relationship between the different
samples is completely unknown, the methods proposed will also be useful for inference on various
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models in which the distribution of a standard statistic based on the complete sample is quite dif-
ficult to establish (e.g., because of nuisance parameters), while the distributional properties of test
statistics can be considerably simplified by looking at properly chosen subsamples. This is the case,
for example, in seemingly unrelated regressions (SURE) and linear regressions with MA errors.

The methods proposed here rely on a systematic exploitation of Boole-Bonferroni inequalities
[see Alt (1982)] which allow one to bound the probability of the union (or intersection) of a finite
set of events from their marginal probabilities, without any knowledge of their dependence struc-
ture. Although such techniques have been used in the simultaneous inference literature to build
simultaneous confidence intervals, especially in standard linear regressions [see Miller (1981) and
Savin (1984)], it does not appear they have been exploited for the class of problems studied here.
In particular, for general problems of type I, we discuss the use of induced tests based on reject-
ing the null hypothesis when at least one of the several separate hypotheses is rejected by one of
several separate tests, with the overall level of the procedure being controlled by Boole-Bonferroni
inequalities. For problems of type II, we propose using empty intersection tests which reject the null
hypothesis when the intersection of a number of separate confidence sets (or intervals) is empty. In
the case of confidence intervals, this leads to simple rules that reject the null hypothesis when the
distance between two parameter estimates based on separate samples is greater than the sum of the
corresponding critical points. We also discuss how one can perform empty intersection tests based
on confidence ellipsoids and confidence boxes. For problems of type III, we propose using the
intersection of several separate confidence sets as a way of pooling the information in the differ-
ent samples to gain efficiency. These common characteristics have led us to use the terminology
union-intersection (UI) methods.

The techniques discussed in this paper for type I problems are akin to procedures proposed for
combining test statistics [see Folks (1984)] and for meta-analysis [see Hedges and Olkin (1985)].
Meta-analysis tries to combine the evidence reported in different studies and articles on particular
scientific questions: it has often been used to synthesize medical studies. However, these litera-
tures have concentrated on situations where the separate samples can be treated as independent and
do not deal with econometric problems. Conversely, these methods are practically ignored in the
econometric literature. Note also that the techniques we propose for problems of types II and III can
be viewed as extensions of the “union-intersection” method proposed by Roy (1953) [see Arnold
(1981, pp. 363-364)] for testing linear hypotheses in multivariate linear regressions, in the sense that
an infinity of relatively simple hypothesis tests are explicitly considered and combined. A central
difference here comes from the fact that the “simple” null hypotheses we consider are themselves
tested via induced tests (because we study quite distinct setups) and from the different nature of the
models studied.

As pointed above, our methods have the advantage of being versatile and straightforward to
implement, even when important pieces of information are missing. These also turn out to be
easily applicable in various problems where the distributional properties of test statistics can be
considerably simplified by looking at appropriately selected subsamples. We show in particular
that this is the case for several inference problems in SURE models and linear regressions with
MA errors. This provides original and rather striking examples of “sample split techniques" for
simplifying distributional properties. For other recent illustrations of this general idea, the reader
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may consult Angrist and Krueger (1994), Dufour and Jasiak (1995) and Staiger and Stock (1993).
In the first reference, the authors propose a sample-split technique to obtain IV estimators with
improved properties, while the two other papers suggest similar methods to obtain more reliable
tests in structural models.

The paper is organized as follows. Section 2 presents the general theory: in the context of
a general statistical model, we derive procedures for testing null hypotheses of types I and II. In
Section 3, we consider the problem of pooling confidence sets obtained from different data sets
(type III problems). In Section 4, we apply our results to test the equality of linear combinations of
parameters of different equations in a SURE model, an interesting setup where standard tests and
confidence sets only have an asymptotic justification [for a review, see Srivastava and Giles (1987)].
In particular, we impose no restrictions on the contemporaneous covariance matrix, allowing for
different variances and instantaneous cross-correlation. In section 5, we study inference for linear
regression models with MA(q) errors. We show that our inference technique is very well suited for
testing hypotheses on regression coefficients in the presence of MA errors. We study in detail the
case of an MA(1) process and consider the problem of testing an hypothesis about the mean. We
compare our procedure with some alternative tests. It appears much easier to implement than other
commonly used procedures, since it does not require estimation of MA parameters. We also study
the performance of our method by simulation. The results show that sample-split combined test
procedures are reliable from the point of view of level control and enjoy surprisingly good power
properties. We conclude in Section 6.

2. Hypothesis testing: general theory

In this section, we consider a general statistical model characterized by a sample space Y and a
family L = {Pθ : θ ∈ Θ} of probability distributions parameterized by θ, where Θ is the set
of admissible values for θ. Let L0 be a subset of L and suppose we wish to test H0 : Pθ ∈ L0

against H1 : Pθ ∈ L\ L0. If the model is identified, which will be assumed, this amounts to testing
H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1, where θ ∈ Θ0 ⇔ Pθ ∈ L0.

We consider here three classes of inference problems concerning θ. First, we study situa-
tions where Θ0 can expressed as a finite intersection of subsets of Θ, i.e., Θ0 =

⋂
γ∈Γ Θ0γ ,

where Γ is an index set of the form Γ = {1, 2, . . . , r}, and Θ0,γ ⊂ Θ, γ ∈ Γ. Second,
we examine null hypotheses which restrict θ to a subset Θ0 of Θ, where Θ0 can be written as
Θ0 =

⋃
γ∈Γ Θ0(γ), Θ0(γ) ⊂ Θ, γ ∈ Γ. In this case, Γ is not constrained to be a finite set. Thirdly,

we consider situations where the information about θ is available from different subsamples whose
joint distribution is unknown. We then try to pool these pieces of information by combining infer-
ences based on each subsample.

2.1. H0 as the finite intersection of subhypotheses

The test procedure we present in this section is based on the fact that, although H0 may not be easily
testable, it can be expressed as the intersection of subhypotheses, H0γ : θ ∈ Θ0γ , each one of which
can be tested by usual procedures. The decision rule is built from the logical equivalence that H0 is
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wrong if and only if any of its components H0γ is wrong.
Assume that we can test H0γ using a statistic Tγ such that, for any θ ∈ Θ0γ , Pθ({y ∈ Y :

Tγ(y) ≥ x}) is known, for all x ∈ R, γ ∈ Γ = {1, 2, . . . , r}. The relation between these statistics
is unknown or difficult to establish [as it is the case in model (1)]. We wish to combine the infor-
mation on the true probability distribution of the model, brought by each of those r statistics. Since
H0 is true if and only if all the H0γ’s are individually true, a natural way of testing H0 is to proceed
as follows. Using the r statistics Tγ , we build r critical regions Wγ(αγ) = T−1

γ ([tγ(αγ), : ∞)),
where tγ(αγ) is chosen so that Pθ [Wγ(αγ)] = αγ under H0γ . We reject the null hypothesis H0

when the vector of observations y lies in at least one of the Wγ(αγ) regions, or equivalently if
Tγ(y) ≥ tγ(αγ) for at least one γ. The rejection region corresponding to this decision rule is⋃

γ∈Γ Wγ(αγ). Such a test is called an induced test of H0; see Savin (1984). Its size is impossible
or difficult to determine since the joint distribution of the statistics Tγ is generally unknown or in-
tractable. It is however possible to choose the individual levels αγ so that the induced test has level
α ∈ (0, 1), for by sub-additivity:

Pθ

⎡
⎣ ⋃

γ∈Γ

Wγ(αγ)

⎤
⎦ ≤

∑
γ∈Γ

Pθ [Wγ(αγ)] =
∑
γ∈Γ

αγ ,

for any θ ∈
⋂

γ∈Γ Θ0γ = Θ0. Therefore, if we want the induced test to have level α, we only need
to choose the αγ’s so that they sum to α (or less).

To our knowledge, there is no criterion for choosing the αγ’s in an optimal manner. Without
such a rule, in most of our applications we will give the null hypotheses H0γ the same degree of
protection against an erroneous rejection by taking αγ = α0 = α/r,∀γ ∈ Γ. However, there may
exist situations where we wish to weigh the H0γ’s in a different way. In particular, if for some
reason we know that one of the decisions dγ′ (say, accepting or rejecting H0γ′) is less reliable than
the other decisions, we are naturally led to give dγ′ less impact on the final decision concerning the
acceptance or rejection of H0. In other words, we will choose αγ′ < αγ ,∀γ �= γ′.

In the case where we choose αγ = α0 = α/r,∀ γ ∈ Γ, we reject H0γ at level α0 when y is in
Wγ(α0). Assuming Fγ,θ(x) is continuous in x, this region of Y can be re-expressed as

Wγ(α0) = {y ∈ Y : 1 − Fγ,θ[Tγ(y)] ≤ 1 − Fγ,θ[tγ(α0)]}
= {y ∈ Y : 1 − Fγ,θ[Tγ(y)] ≤ α0},

for all θ ∈ Θ0, where Fγ,θ(z) ≡ Pθ

[
T−1

γ ((−∞, z])
]

is the probability distribution function of
Tγ(y). Then an equivalent alternative rejection criterion is to reject H0γ when the p-value Λγ(y) ≡
1−Fγ,θ[Tγ(y)] is less than α0. So according to this rule, a rejection of H0 occurs whenever at least
one of the r p-values Λγ is not greater than αγ , and the critical region of this test procedure is

W (α) =
{

y ∈ Y : min
γ∈Γ

Λγ(y) ≤ α0

}
.

If we assume that the statistics Tγ are identically distributed under the null hypothesis, then Fγ,θ =
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Fθ, ∀ θ ∈ Θ0 and tγ(α0) = t(α0), ∀ γ ∈ Γ , hence (with probability one)

W (α) =
{

y ∈ Y : max
γ∈Γ

Tγ(y) ≥ t(α0)
}

.

This criterion is derived heuristically from the logical equivalence that H0 is true if and only if
all the H0γ’s are true. It is similar to Tippett’s (1931) procedure for combining inferences obtained
from independent studies: using the fact that the r p-values are i.i.d. U[0,1] under H0, Tippett (1931)
suggested the rule:

reject H0 at level α if min{Λγ : γ ∈ Γ} ≤ 1 − (1 − α)1/r.

Such procedures were also proposed for meta-analysis [see Hedges and Olkin (1985)], but have
seldom been used in econometrics. We show below that an extension of Tippett’s procedure to
the case where the p-values are not independent, can be fruitfully applied to several econometric
problems. The analogy with meta-analysis comes from the fact that inference on the i-th equation
in (1) is made “independently" from inference on any other equation, although the test statistics
may not be stochastically independent. Since dependence of the test statistics is a common situation
in econometrics, we do not assume the independence of the p-values, which leads one to use α/r
instead of 1−(1−α)1/r. When α is small, the difference between α/r and 1−(1−α)1/r is typically
quite small. For some applications of this approach to independent test statistics, see Dufour (1990),
McCabe (1988) and Phillips and McCabe (1988, 1989).

It is possible to demonstrate optimality properties for induced tests. For example, con-
sider a test procedure which combines r p-values Λ1, Λ2, . . . , Λr, so that it rejects H0 when
S(Λ1, Λ2, . . . , Λr) ≤ s, where S is some function from R

r into R and s a critical value such
that P [S(Λ1, Λ2, . . . , Λr) ≤ s] ≤ α under H0. Birnbaum (1954) showed that every monotone
combined test procedure is admissible in the class of all combined test procedures.1. A com-
bined test procedure S is monotone if S is a nondecreasing function, i.e. if x∗

i ≤ xi, i =
1, 2, . . . , r ⇒ S(x∗

1, x
∗
2, . . . , x∗

r) ≤ S(x1, x2, . . . , xr). In our case, S(Λ1, Λ2, . . . , Λr) =
min{Λ1, Λ2, . . . , Λr}, is clearly nondecreasing. For further discussion of admissibility issues in
such contexts, see Folks (1984).

2.2. H0 as the union of subhypotheses

Let us consider a null hypothesis of the form H0 : θ ∈ Θ0, where Θ0 =
⋃

γ∈Γ Θ0(γ). The solution
to this testing problem is very similar to the one suggested above in the case of an intersection
of subhypotheses. Once again it is based on the fact that H0 is wrong if and only if each of its
components is wrong. If each hypothesis H0(γ) : θ ∈ Θ0(γ) can be tested using the rejection
region Wγ(αγ) = T−1

(
[tγ(αγ), ∞)

)
, satisfying Pθ

[
Wγ(αγ)

]
= αγ ,∀ θ ∈ Θ0(γ), it would

appear natural to consider the overall rejection region W (αγ , γ ∈ Γ ) =
⋂

γ∈Γ Wγ(αγ) for a test of
H0.

1On admissibility of decision rules, see Lehmann (1986, section 1.8, p.17).
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However, difficult problems arise when one wants to implement this procedure as described
above. First, if Γ contains a finite number p of elements, we have

Pθ

[
W (αγ , γ ∈ Γ )

]
≥ 1 −

p∑
γ=1

[
1 − Pθ

[
Wγ(αγ)

]]
,

which provides a lower bound for the probability of making a type I error. Of course, this type of
bound is of no use since we try to bound from above the probability of an erroneous rejection of
H0. Appropriate upper bounds for the probability of an intersection are difficult to obtain. Second,
when Γ is infinite, it is impossible to build Wγ(αγ) for every γ ∈ Γ.

It is however interesting to note that some null hypotheses can be written as the union of several
hypotheses (possibly an infinite number of such hypotheses). It is then natural to construct an
overall rejection region which is equivalent to the infinite intersection

⋂
γ∈Γ Wγ(αγ). For example,

consider the hypothesis H0 : θ1 = θ2 = · · · = θm, where θi is a q × 1 subvector of the initial
parameter vector θ. We note that H0 is true if and only if ∃θ0 ∈ R

q such that θ1 = θ2 = · · · =
θm = θ0, where θ0 is the unknown true value of θi under the null. Defining Θ0(θ0) ≡ {θ ∈ Θ :
θ1 = θ2 = · · · = θm = θ0}, we have Θ0 =

⋃
θ0∈Rq Θ0(θ0). H0 can be expressed as an infinite

union of subhypotheses H0(θ0) : θ ∈ Θ0(θ0). Therefore H0 is true if and only if anyone of the
H0(θ0)’s is true.

Obviously, it is impossible to test every H0(θ0). Instead, we propose the following procedure.
For each i ∈ {1, 2, . . . ,m}, we build a confidence region Ci(yi, αi) for θi with level 1 − αi using
the sample yi, where the αi’s are chosen so that

∑m
i=1 αi = α. This region satisfies

Pθ [Ai(θi, αi)] ≥ 1 − αi, ∀ θ ∈ Θ,

where Ai(θi, αi) = {y ∈ Y : Ci(yi, αi) � θi}, i = 1, 2, . . . ,m, and G � x means that the set
“G contains x”. In particular, if θ0 is the true value of θi, we have

Pθ [Ai(θ0, αi)] ≥ 1 − αi, ∀ θ ∈ Θ0.

Proposition 1 A (conservative) α-level test of H0 : θ1 = θ2 = . . . = θm is given by the rejection
region

W (α,m) =
{
y ∈ Y :

m⋂
i=1

Ci(yi, αi) = ∅
}

.

where αi, i = 1, 2, . . . ,m satisfy
∑m

i=1 αi ≤ α.

Proof : We need to show that Pθ [W (α,m)] ≤ α,∀ θ ∈ Θ0,∀ α ∈ (0, 1). Note that ∀ θ0 ∈ R
q,

m⋂
i=1

Ci(yi, αi) = ∅ ⇒ ∃j ∈ {1, 2, . . . ,m} : Cj(yj, αj) �� θ0,
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hence, using the Boole-Bonferroni inequality,

Pθ [W (α,m)] ≤ Pθ

[
m⋃

i=1

{y ∈ Y : Ci(yi, αi) �� θ0}
]

≤
m∑

i=1

Pθ [Y \ Ai(θ0, αi)] ≤
m∑

i=1

αi ≤ α, ∀ θ ∈ Θ. �

We shall call a critical region of the form of W (α,m) an empty intersection test. In our notation,
W (α,m) does not depend directly upon α, but on how the αi’s are chosen to satisfy the constraint∑m

i=1 αi ≤ α. For this procedure to be applicable, we need to have confidence regions Ci(yi, αi)
with levels 1−αi. This is of course possible in model (1) as long as Ωi = σ2

i INi , i ∈ {1, 2, . . . ,m}.
We describe three interesting special cases for which the procedure takes a simple and appealing
form.

2.2.1. Intersection of confidence intervals: the sum of critical points rule

Consider a situation where q = 1. Typically, Ci(yi, αi) has the form

Ci(yi, αi) =
[
θ̂i − ciL(yi, αi) , θ̂i + ciU (yi, αi)

]
,

where θ̂i is some estimator of θi,
∑m

i=1 αi ≤ α ∈ (0, 1), and ciL(yi, αi) > 0, ciU (yi, αi) > 0 for
all possible values of yi. Furthermore, it is usually the case that ciL(yi, αi) = ciU (yi, αi) but we
shall not need this restriction here. It is easy to see that the following lemma holds.

Lemma 2.1 The intersection of a finite number m of intervals Ii ≡ [Li , Ui] ⊂ R, i = 1, 2, . . . ,m,
with non empty interiors is empty if and only if

min{Ui : i = 1, 2, . . . ,m} < max{Li : i = 1, 2, . . . ,m}.

Proof : Define UM ≡ min{Ui : i = 1, 2, . . . ,m}, LM ≡ max{Li : i = 1, 2, . . . ,m} and
Ĩ ≡ {x ∈ R : LM ≤ x ≤ UM}. Then

Ĩ �= ∅ ⇔ ∃x such that Li ≤ x ≤ Ui for i = 1, 2, . . . ,m ⇔ ∃x such that LM ≤ x ≤ UM

or equivalently,

Ĩ = ∅ ⇔ ∀x, x �∈ [LM , UM ] ⇔ UM < LM . �

From Lemma 2.1 and Proposition 1, we reject H0 if and only if

min{θ̂i + ciU (yi, αi) : i = 1, 2, . . . ,m} < max{θ̂i − ciL(yi, αi) : i = 1, 2, . . . ,m}.
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But this condition is equivalent to

∃j, k ∈ {1, 2, . . . ,m} such that θ̂j + cjU(yj, αj) < θ̂k − ckL(yk, αk)

or

∃j, k ∈ {1, 2, . . . ,m} such that
|θ̂k − θ̂j |

cjU (yj, αj) + ckL(yk, αk)
> 1.

Finally, we reject H0 if and only if

max
j, k∈{1,2, ... ,m}

[
|θ̂k − θ̂j |

cjU (yj , αj) + ckL(yk, αk)

]
> 1.

In the case where m = 2, with cjU (yj, αj) = cjL(yj, αj) = cj(yj, αj), j = 1, 2, this criterion
takes the simple form: reject the null hypothesis when the distance between the two estimates is
larger than the sum of the two corresponding “critical points". The rejection region is then:

W (α, 2) = {y ∈ Y : |θ̂1 − θ̂2| > c1(y1, α1) + c2(y2, α2)}.

For m > 2, we reject the null hypothesis when at least one of the distances |θ̂k − θ̂j| is larger than
the sum cj(yj , αj)+ck(yk, αk). We will now extend this procedure to multidimensional parameters
and consider confidence ellipsoids.

2.2.2. Intersection of two confidence ellipsoids

Consider the null hypothesis H0 : θ1 = θ2, where θi is a q×1 vector. As before, H0 can be restated
as H0 : θ ∈ {θ ∈ Θ : ∃θ0 ∈ R

q : θ1 = θ2 = θ0}. Suppose that for i = 1, 2, we have a confidence
ellipsoid Ci(yi, αi) for θi, such that

Ci(yi, αi) � θ0 ⇔
(
θ̂i − θ0

)′
Ai

(
θ̂i − θ0

)
≤ ci(αi),

where Ai is a q × q positive definite matrix whose elements depend on yi, θ̂i is an estimator of θi,
and ci(αi) is a constant such that

Pθ [{y ∈ Y : Ci(yi, αi) � θ}] ≥ 1 − αi, ∀ θ ∈ Θ.

Then there exists two q × q matrices P1 and P2 such that P1
′A1P1 = Iq, P2

′(P1
′A2P1)P2 = D,

where D is a diagonal non-negative definite q × q matrix, |P1| �= 0 and P2P2
′ = Iq. It is easy to

show that (
θ̂1 − θ0

)′
A1

(
θ̂1 − θ0

)
≤ c1(α1) ⇔ (γ̂1 − γ)′ (γ̂1 − γ) ≤ c1(α1),

(
θ̂2 − θ0

)′
A2

(
θ̂2 − θ0

)
≤ c2(α2) ⇔ (γ̂2 − γ)′ D (γ̂2 − γ) ≤ c2(α2)
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where γ = P2
′P1

−1θ0 and γ̂i = P2
′P1

−1θ̂i, i = 1, 2. Setting

E1(α1) = {γ ∈ R
q : (γ̂1 − γ)′ (γ̂1 − γ) ≤ c1(α1)},

E2(α2) = {γ ∈ R
q : (γ̂2 − γ)′ D (γ̂2 − γ) ≤ c2(α2)},

the rejection criterion C1(y1, α1)
⋂

C2(y2, α2) = ∅ of Proposition 1 is seen to be equivalent to
E1(α1)

⋂
E2(α2) = ∅.

To determine whether the intersection of the two ellipsoids is empty, it is sufficient to find the
set E∗

2(α2) of solutions of the problem

min
γ∈E2(α2)

‖γ − γ̂1‖2 (2)

and check whether there is at least one element of E∗
2(α2) lying in E1(α1), in which case the two

confidence ellipsoids have a non empty intersection and H0 is accepted at level α1 + α2. This is
justified by the following lemma.

Lemma 2.2 Let E∗
2(α2) ⊂ E2(α2) be the set of the solutions of (2). Then

E1(α1) ∩ E2(α2) �= ∅ ⇐⇒ E1(α1) ∩ E∗
2(α2) �= ∅.

Proof : (⇐) Let E1(α1) ∩ E∗
2(α2) �= ∅. Since E∗

2(α2) ⊆ E2(α2), it follows trivially that E1(α1) ∩
E2(α2) �= ∅.
(⇒) Let E1(α1)∩E2(α2) �= ∅. Then we can find γ̃ such that γ̃ ∈ E1(α1) and γ̃ ∈ E2(α2). In other
words, γ̃ is an element of E2(α2) that satisfies the condition ‖γ̃ − γ̂1‖2 ≤ c1(α1), which entails
that minγ∈E2(α2) ‖γ − γ̂1‖2 ≤ c1(α1). Now suppose E1(α1)

⋂
E∗

2(α2) = ∅. This means that the
following implication must hold:

‖γ0 − γ̂1‖2 ≡ min
γ∈E2(α2)

‖γ − γ̂1‖2 ⇒ γ0 �∈ E1(α1)

⇒ ‖γ0 − γ̂1‖2 > c1(α1).

Since E∗
2(α2) is not empty, it follows that minγ∈E2(α2) ‖γ − γ̂1‖2 > c1(α1), a contradiction. Thus

we must have E1(α1)
⋂

E∗
2(α2) �= ∅. �

Although any numerical calculus computer package is able to solve (2.2), we propose a simple
two step procedure for deciding whether the intersection of two ellipsoids is empty. This method
can prove useful for high dimensional problems. The two steps are the following:

(1) check whether θ̂1 ∈ C2(y2, α2) or θ̂2 ∈ C1(y1, α1). If one of these events is realized, then
C1(y1, α1)

⋂
C2(y2, α2) is not empty, and H0 is accepted. Otherwise, go to the second stage

of the procedure;

(2) since θ̂1 �∈ C2(y2, α2), it follows (by convexity) that E∗
2(α2) is a subset of the boundary
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∂E2(α2) and
min

γ∈∂E2(α2)
‖γ − γ̂1‖2 = min

γ∈E2(α2)
‖γ − γ̂1‖2 > 0, (3)

so that we can check whether E1(α1)
⋂

E2(α2) �= ∅ by checking if E1(α1)
⋂

∂E2(α2) �= ∅.
If the latter condition is satisfied, H0 is accepted; otherwise H0 is rejected.

To be more specific, step (2) above simply requires one to find the vector γ̃ which minimizes
‖γ − γ̂1‖2 subject to the restriction (γ − γ̂2)

′ D (γ − γ̂2) = c2(α2), and then to reject H0 when
‖γ̃ − γ̂1‖2 > c1(α1).

2.2.3. Intersection of two confidence boxes

When the covariance matrices of the estimators θ̂i are unknown, one cannot typically build con-
fidence ellipsoids. To illustrate such situations, consider the following example. Two published
papers investigate econometric relationships of the form

yi = Xiβi + ui , i = 1, 2, (4)

where ui ∼ N(0, σ2
i INi), and βi is a k × 1 vector of unknown parameters.

We wish to compare the two parameter vectors β1 and β2. However, only the standard errors
of the coefficients are known (or reported), not their covariance matrices. Then it is not possible to
use the previous procedure. But it is possible to use simultaneous inference techniques and build
simultaneous confidence boxes (hyperrectangles). Various methods for building such confidence
sets are described in Miller (1981) and Savin (1984). More precisely, let us build for each of the two
regressions in (4) k simultaneous confidence intervals, denoted by Cj

i (yi, α
j
i ) for the component βj

i

of βi, j = 1, 2, . . . , k, i = 1, 2, such that

Pθ

⎡
⎣ k⋂

j=1

{y ∈ Y : Cj
i (yi, α

j
i ) � βj

i}

⎤
⎦ ≥ 1 − αi, ∀ θ ∈ Θ, i = 1, 2.

Then choosing the αi’s so that α1 + α2 = α, and applying the result of Proposition 1, we reject
H0 : β1 = β2 at level α when the intersection of the two hyperrectangles is empty.

Checking whether the intersection of the two boxes is empty is especially simple because one
simply needs to see whether the confidence intervals for each component of βi have an empty
intersection (as in Section 2.2.1). Furthermore it is straightforward to extend this technique in
order to compare more than two regressions. Similarly, although we proposed a test for the null
hypothesis that all the parameter vectors βi are equal (then imposing that in each equation has
the same number of parameters), it is easy to extend this procedure in order to test the equality
of linear transformations of βi, i = 1, 2, . . . ,m. Indeed, the method relies only on the ability
to derive confidence regions for parameters which are restricted to be equal under the null. This is
clearly possible whenever the paramaters of interest are of the form Riβi. The procedure is actually
applicable to any function h(θ) of the parameter, provided we are able to build a confidence region
for h(θ).
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3. Confidence set estimation

In the previous section, we described a general method for testing hypotheses in several contexts.
The main feature of the procedure is that a single final decision concerning a family of probability
distributions is taken by combining several individual (partial) decisions on that family.

In many situations, we may wish to go a step further. For instance, consider again model (1)
and the null hypothesis H0 : β1 = β2 = · · · = βm. The results of Section 2 show how to test
such an hypothesis. Suppose H0 is taken for granted. It is then natural to ask what could be a valid
confidence region for β, the unknown common value of βi, i = 1, 2, . . . ,m. The main difficulty
here comes from the fact that only the marginal distributions of the separate samples are specified,
not their joint distribution. Suppose each of these marginal distributions can be used to build a
confidence region for β. The problem is then to find a way of pooling these pieces of information on
the true value of β and derive a single confidence region which is based on the whole sample. This
can be done as follows. Suppose each one of the separate observation vectors y1,y2, . . . ,ym has
a distribution which depends on θ ∈ Θ. Although the joint distribution of y = (y′

1,y
′
2, . . . ,y′

m)′

is unknown, we assume it is possible to build m separate confidence regions Ci(αi,yi) for θ such
that

Pθ [Ci(αi,yi) � θ] ≥ 1 − αi, ∀ θ ∈ Θ, i = 1, 2, . . . ,m.

Then a natural way to exploit simultaneously these different pieces of information consists of taking
the intersection

⋂m
i=1 Ci(αi,yi) of the different confidence regions. It is easy to see that

Pθ

[
m⋂

i=1

Ci(αi,yi) � θ

]
≥ 1 −

m∑
i=1

Pθ [Ci(αi,yi) �� θ] ≥ 1 −
m∑

i=1

αi , ∀ : θ ∈ Θ.

Thus selecting α1, α2, . . . , αm so that
∑m

i=1 αi = α, we can get any desired confidence level.
This procedure can be especially useful when one of the subsample yields a particularily accurate
confidence set for θ.

In the next sections, we show how the procedures described in Sections 2 and 3 can be used to
make inference in SURE and regressions with MA errors.

4. Exact inference in SURE models

4.1. The model and the procedures

In this section we consider the SURE-type model:

yi = Xiβi + ui ,

ui ∼ N(0 , σiiINi), i = 1, 2, . . . ,m,
(5)

where Xi is a Ni × ki fixed matrix of rank ki < Ni, βi is a ki × 1 vector of unknown parameters,
ui = (ui1, ui2, . . . , uiNi)

′, and E(uituis) = 0,∀t �= s. Note we do not impose any restriction
on the relationship between the m equations, so that the above model is more general than the
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standard SURE model. The null hypotheses of interest are H
(1)
0 : λi = λ0i, i = 1, 2, . . . ,m,

and H
(2)
0 : λ1 = λ2 = . . . = λm, where λi = Riβi, Ri is a known qi × ki matrix with rank

qi ≤ ki, i = 1, 2, . . . ,m, and λ0i is a known qi×1 vector, i = 1, 2, . . . ,m.2 An interesting special
case of H

(1)
0 is β1 = β2 = · · · = βm = β0, which is obtained by choosing ki = k, Ri = Ik,

λ0i = β0, a known k × 1 vector, in the above setup.
We will consider two versions of (5), depending on whether we make the assumption A1 :: u =

(u′
1,u

′
2 . . . ,u′

m)′ ∼ N(0, σ2IN ), where N =
∑m

i=1 Ni. Under A1, there exists an optimal test

of H
(1)
0 given by the critical region associated to the Fisher F statistic, based on the stacked model

y = Xβ + u, where y = (y′
1,y

′
2 . . . ,y′

m)′,β = (β′
1, . . . ,β′

m)′, X = diag(Xi)i=1,2, ... ,m, and

F =

(
λ̂ − λ0

)′ [
s2R(X ′X)−1R′]−1 (

λ̂ − λ0

)
Q

,

with λ = (λ′
1,λ

′
2, . . . ,λ′

m)′, λ̂ =
(
λ̂
′
1, λ̂

′
2, . . . , λ̂

′
m

)′
, λ0 = (λ′

01,λ
′
02, . . . ,λ′

0m)′, λ̂i =
Riβ̂i, λ̂i = (X ′

iXi)−1X ′
iyi , i = 1, 2, . . . ,m, R = diag(Ri)i=1,2, ... ,m , s2 = ‖(IN −

X(X ′X)−1X ′)y‖2/(N − K), Q =
∑m

i=1 qi and K =
∑m

i=1 ki.
When we introduce heteroskedasticity in the model by allowing the variances to differ across

equations, our procedure is still valid, but the Fisher procedure is not. As an alternative, one would
typically use an asymptotic method based on a generalized least squares estimation and a critical
region defined by a Wald, a Lagrange multiplier or a likelihood ratio statistic. But, as we already
mentioned in the introduction, it is well known that these approximations are not reliable.

An induced test of H
(1)
0 consists in testing H

(1)
0i : λi = λ0i at level αi using the critical region

Wi(αi) = {y ∈ Y : Fi > F (αi; qi, Ni − ki)}, where

Fi =

(
λ̂i − λ0i

)′[
s2
i Ri(X ′

iXi)−1R′
i

]−1(
λ̂i − λ0i

)
qi

,

with λ̂i = Riβ̂i , : s2
i = ‖(INi − X i(X ′

iXi)−1X ′
i)yi‖2/(Ni − ki) and F (αi; qi, Ni − ki) is the

1 − αi percentile of the Fisher distribution with (qi, Ni − ki) degrees of freedom. The αi’s can

be chosen so that
∑m

i=1 αi = α. Then the level α critical region for an induced test of H
(1)
0 is⋃m

i=1 Wi(αi).
If we wish to test H

(2)
0 at level α, we simply have to build m confidence regions at level 1− αi

for λi which are defined by

Ci(yi, αi) = {x ∈ R
q :
(
λ̂i − x

)′[
s2
i Ri(X ′

iXi)−1R′
i

]−1(
λ̂i − x

)
≤ qiF (αi; qi, Ni − ki)}

in the λi space, and reject H
(2)
0 whenever

⋂m
i=1 Ci(yi, αi) = ∅, with

∑m
i=1 αi = α.

Note that, under assumption A1, the induced procedure for a test of H
(1)
0 can be improved by

taking into account the independence of the regressions. In Section 2, we showed that the rejection
region associated with an induced test of H

(1)
0 is

⋃m
i=1 Wi(αi), where Wi(αi) is the critical region

2For H
(2)
0 we must have q = qi,∀i = 1, 2, . . . , m, and q ≤ min{ki : i = 1, 2, . . . , m}.
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for a test of βi = β0 at level αi. Under A1, we have:

Pθ

[
m⋃

i=1

Wi(αi)

]
= 1 − Pθ

[
m⋂

i=1

Y \ Wi(αi)

]
= 1 −

m∏
i=1

Pθ [Y \ Wi(αi)] .

Under H
(1)
0 we have Pθ [Y \ Wi(αi)] = 1−αi, Thus by choosing the αi’s so that

∏m
i=1(1−αi) = α,

we get a test of H
(1)
0 which has level α. If αi = α0, i = 1, 2, . . . ,m, we must have α0 = 1 − (1 −

α)1/m.

Unfortunately, the independence assumption A1 is not helpful when we turn to the test of H
(2)
0 .

But the procedure of Section 2.2 remains valid. To see why it is difficult to exploit the independence
of the regressions, consider the case where m = 2 and k = 1. We can build two confidence intervals
Ci(yi, α0) =

[
β̂i−ci(yi, α0), β̂i+ci(yi, α0)

]
, with α0 = α/2. According to our rejection criterion

(see Section 2.2.1), we reject H
(2)
0 at level α when |β̂1 − β̂2| > c1(y1, α0) + c2(y2, α0). It is quite

difficult to find the size of this critical region.
Consider now model (5) where assumption A1 is not imposed. This model has m(m+1)

2 +∑m
i=1 ki parameters and

∑m
i=1 Ni observations. In this case, no usual finite sample or asymptotic

test procedure appears to be available for comparing the coefficients of the different regressions.
But the induced test method allows one to test H

(1)
0 and H

(2)
0 relatively easily.

4.2. Some examples

We now present some illustrations of the procedure described in the previous sections.

4.2.1. Testing restrictions in a system of demands for inputs

The first example we consider is taken from Berndt (1991, p. 460-462). We consider the problem of
testing restrictions on the parameters of a generalized Leontieff cost function. We assume that the
production technology has constant returns to scale and incorporates only two inputs, capital (K)
and labor (L), whose prices are PK and PL respectively. If we denote the output by Y and the total
cost by C, the generalized Leontieff cost function is

C = Y · (dKKPK + 2dKL(PKPL)1/2 + dLLPL).

If the producer has a cost minimizing strategy, it can be shown that the demands for factors K and
L are given by

K/Y = dKK + dKL(PL/PK)1/2, L/Y = dLL + dKL(PK/PL)1/2.

A stochastic version of this model would consist in the two equation SURE model

kt = ak + bkp
k
t + uk

t , lt = al + blp
l
t + ul

t,
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where uk and ul are two Gaussian random vectors with zero mean and covariance matrices σ2
kIN

and σ2
l IN , respectively. N = 25 is the sample size for each variable of the model. A restriction

imposed by the theory is bk = bl, which will be our null hypothesis. To test H0, the procedure
described in Section 2.2.1 is particularly well suited since we have no a priori information on
the relation between the random variables uk

t and ul
s. Using the data provided in Berndt (1991),

which are described in Berndt and Wood (1975), we performed separate tests of the following null
hypotheses:

H0 : bk = bl H∗
0 :
(

ak

bk

)
=
(

al

bl

)

The results of the estimation are:

kt = 0.0490 + 0.00342 pk
t + ûk

t ,
(.000125) (.000084)

lt = −0.04464 + 0.28295 pl
t + ûl

t ,
(.001621) (.002350)

where the standard errors are given in parenthesis. In Figure 1, we show the two 97.5% level
confidence ellipsoids required for testing H∗

0 . It is straightforward to see that we can reject both null
hypotheses at level 5% because none of the regions intersect. Similarly, the 97.5% level confidence
intervals for bk and bl are respectively (−0.01869, 0.02539) and (0.1659, 0.3992), and so do not
intersect.

Since no information on the joint distribution of uk
t and ul

t is available, usual GLS procedures
cannot be applied in this context. However, suppose that we assume that (uk

1 , u
k
2 , . . . , uk

25, u
l
1, u

l
2,

. . . , ul
25)

′ is a Gaussian random vector with variance matrix

Ω =

⎛
⎝ σ2

1I25 σ12I25

σ12I25 σ2
2I25

⎞
⎠ ,

as is usually done in SURE models. Using standard GLS techniques, the estimate of (ak, bk, al, bl)′

is (0.05100, 0.00235,−0.04886, 0.28804)′ and the F statistics for testing H0 and H∗
0 at level are

27.61 and 938.37, respectively. Since the corresponding 5% asymptotic critical values are 4.05175
and 3.19958, the null hypotheses are both rejected. However, one may prefer the empty intersection
test procedure, because it makes a weaker assumption on the error distribution. Moreover, GLS-
based tests only have an asymptotic justification.

4.2.2. Testing restrictions on returns to schooling

This example is taken from Ashenfelter and Zimmerman (1993). The study considers the following
SURE model:

Y1j = θ1X1j + λ2X2j + w1j Y2j = λ1X1j + θ2X2j + w2j ,

where Yij and Xij represent the log wage and the schooling of the i-th brother in the j-th family.
These equations are the reduced form of a structural model which expresses the relationship between
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FIGURE 1. 97.5% confidence ellipsoids and intervals in the Berndt example.
Confidence ellipsoid for (ak, bk)′ : — ; confidence ellipsoid for (al, bl)′ : −−− ; the confidence

intervals for bk and bl appear on the left and right vertical axes respectively.

the wage and years of schooling:

Y1j = β1X1j + Fj + v1j , Y2j = β2X2j + Fj + v2j ,

Fj = λ1X1j + λ2X2j + ξj ,

where F is a family specific component. We must have θi = βi + λi, i = 1, 2.
The structural model has been estimated over a sample of 143 pairs of brothers. The estimates

reported by Ashenfelter and Zimmerman (1993, Table 3) are given below, with standard errors in
parentheses:

θ̂1 = 0.052 , λ̂1 = 0.018 , θ̂2 = 0.068 , λ̂2 = 0.006 .
(0.015) (0.020) (0.019) (0.015)

A natural hypothesis to test here is H0 : (β1, λ1)
′ = (β2, λ2)

′ . This can easily be tested from the es-
timated structural model, since H0 is equivalent to H∗

0 : (θ1, λ1)
′ = (θ2, λ2)

′ . Here, we will use the
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hyperrectangle technique, because Ashenfelter and Zimmerman (1993) do not provide the full esti-
mated covariance matrix for each regression. We first find a confidence interval with level 1−(α/4)
for each one of the mean parameters in the structural model, and check whether the two rectangles
so obtained overlap, in which case we accept the null hypothesis. This is done for α = 5%. Each
one of the following events [0.0140, 0.0900] � θ1, [−0.0326, 0.0686] � λ1, [0.0199, 0.1161] � θ2,
[−0.0320, 0.0440] � λ2 occurs with probability 0.9875. We accept the null hypothesis at level 5%,
since the two boxes [0.0140, 0.0900]× [−0.0326, 0.0686] and [0.0199, 0.1161]× [−0.0320, 0.0440]
have a non-empty intersection, which is [0.0199, 0.0900] × [−0.0320, 0.0440].

5. Exact inference in linear regression models with MA(q) errors

In this section, we show that the procedures developed in Section 2 can be useful for inference in
some dynamic models.

5.1. A test on the mean of a general MA(q) model

In this section, we consider models of the form

yt = mt + ut , ut = Ψ(B)εt , t ∈ T = {1, 2, . . . , T},

ε ≡ (ε1−q, ε2−q, . . . , ε0, ε1, . . . , εT )′ ∼ N
[
0, σ2IT+q

]
,

(6)

where Ψ(z) = ψ0 + ψ1z + ψ2z
2 + · · · + ψqz

q , ψ0 ≡ 1, mt =
∑K

k=1 xtkbk = x′
tb , b ≡

(b1, b2, . . . , bK)′ is a vector of unknown coefficients and xt ≡ (xt1, xt2, . . . , xtK)′ , t =
1, 2, . . . , T, are vectors of fixed (or stricly exogenous) variables. In model (6), y ∼ N(m, Ω),
where m = (Em1, E m2, . . . , EmT )′ and Ω = (ωt,s)t,s=1,2, ... ,T , with

ωt,s =

⎧⎨
⎩

σ2
∑q

i=|t−s| ψi ψi−|t−s| , if |t − s| ≤ q,

0, if |t − s| > q.

(7)

(7) shows the key feature of model (6): observations distant by more than q periods from each other
are mutually independent. Then, we are naturally led to consider model (6) for subsamples obtained
as follows. Define subsets of T, Ji ≡ {i, i + (q + 1), i + 2(q + 1), . . . , i + ni(q + 1)}, where
ni ≡ I [(T − i)/(q + 1)] (I[x] denotes the integer part of x), i = 1, 2, . . . , q + 1, and consider
the q + 1 equations

yt = mt + ut , t ∈ Ji , u ∼ N
[
0, σ2

uIni+1

]
, i = 1, 2, . . . , q + 1. (8)

(8) belongs to the class of model (1). In each equation, the error term satisfies the assumptions of the
linear regression model, so that it is possible to apply usual inference procedures to test restrictions
on b, H0 : b ∈ Φ. This null hypothesis can be seen as the intersection of q + 1 hypotheses H0,i,
each of which restricts the mean of the i-th subsample to be in Φ, i = 1, 2, . . . , q + 1. The
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methods presented in Sections 2 and 3 are perfectly suited to such situations. We build q +1 critical
regions with level α/(q+1) to test each one of the hypotheses H0,i, and reject the null hypothesis at
level α if the vector of observations belongs to the union of these regions. Note we did not make any
assumption on the roots of Ψ(z). In particular, we did not restrict the MA process {Ψ(B)εt : t ∈ T}
to be invertible.

In the next subsection we apply the procedure to a MA(1) process with a constant and provide
comparisons with some alternative procedures such as asymptotic tests and bounds tests.

5.2. Exact inference in the context of a MA(1) process

5.2.1. An induced test on the mean

Consider the model described by (6), with q = 1, K = 1 and xt = 1, ∀ t ∈ T :

yt = β + εt + ψεt−1 , εt
ind.∼ N(0, σ2), t ∈ T. (9)

The vector of parameters is θ = (β, ψ, σ2)′. The null hypothesis we consider is H0 : θ ∈ Θ0,
Θ0 = {θ ∈ Θ : β = 0}. According to our procedure, assuming T is even, we form two subsamples
of size T/2, (yt, t ∈ Ji), where J1 = {1, 3, 5, . . . , T − 1} and J2 = {2, 4, 6, . . . , T}. For each
subsample, we make inference on β from the regression equation

yt = β + ut , t ∈ Ji , ui = (ut : t ∈ Ji)′ ∼ N(0, σ2
uIT/2) , i = 1, 2. (10)

A natural critical region with level α/2 for testing β = 0 is then given by

Wi(α/2) = {y ∈ Y : |β̂i|/[V̂ (β̂i)]
1/2 > t(T/2 − 1;α/4)},

where β̂i is the OLS estimator of β and V̂ (β̂i) the usual unbiased estimator of the variance of β̂i

from regression (10) using sample (yt : t ∈ Ji); t(T/2 − 1;α/4) is the upper 1 − (α/4) percentile
of the Student’s t distribution with (T/2) − 1 degrees of freedom. We reject H0 : β = 0 at level α
if y ∈ W1(α/2) ∪ W2(α/2).

5.2.2. Alternative procedures

We compared this procedure with two alternatives. The first one consists in testing H0 using bounds
proposed by Hillier and King (1987), Zinde-Walsh and Ullah (1987), Vinod (1976) and Kiviet
(1980); see also Vinod and Ullah (1981, ch. 4). The latter are based on standard least squares based
tests statistics for testing β = 0 obtained from the complete sample, such as the t-statistic or its
absolute value. Since the distributions of the latter depend on the unknow value of the moving aver-
age parameter ψ, one finds instead bounds tl(α) and tu(α) which do not depend on the parameter
vector θ and such that

Pθ[T (y) > tl(α)] ≥ α ≥ Pθ[T (y) > tu(α)],
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for all θ ∈ Θ0, α ∈ (0, 1). Then the decision rule that consists in rejecting H0 when T (y) > tu(α)
and accepting H0 when T (y) < tl(α) has level α. An inconvenient feature of such procedures is
that it may be unconclusive (when T (y) ∈ [tl(α), tu(α)]). Obviously, to avoid losses of power, the
bounds should be as tight as possible.

In all the above references on bounds tests, the bounds are derived assuming that the MA param-
eter is known, so that they depend on it, even under the null hypothesis. Therefore we will denote
by tlθ(α) and tuθ (α) the lower and upper bounds on tθ(α). But as ψ is unknown, we have to find
the supremum, tu(α), over the set {tuθ (α) : tuθ (α) :≥: tθ(α), ∀ θ ∈ Θ0}, to make sure that the test
based on the rejection region

W (α) = {y ∈ Y : T (y) > tu(α)}

satisfies the level constraint,
sup
θ∈Θ0

Pθ [W (α)] :≤: α.

Since the moving average parameter is not restricted by H0, the set of admissible values for ψ is R.
The upper bound is then likely to be quite large.

In the context of model (9), T (y) is typically the usual t statistic, its square or its absolute value.
Since under H0, its distribution only depends on ψ (and the sample size), we write tψ, tuψ and tlψ
instead of tθ, tuθ and tlθ, respectively.

Here, we only use the bounds of Zinde-Walsh and Ullah (1987) and Kiviet (1980), denoted by
tuZ,ψ(α) and tuK,ψ(α), because they are respectively tighter than those of Hillier and King (1987)
and Vinod (1976). The supremum tuK(α) of tuK,ψ(α) for ψ ∈ R is difficult to establish, but Kiviet
(1980, Table 6, p. 357), gives the values of the bounds for ψ ∈ {.2, .3, .5, .9}, and it can be seen that
tuK,.9(α) ≥ tuK,ψ(α), for ψ ∈ {.2, .3, .5, .9}. We note that these bounds increase with ψ, and we
suspect that the supremum is arbitrarily large, possibly infinite when ψ = 1. Nevertheless, we will
use tuK,.9(α) as the relevant upper bound in our simulations. Zinde-Walsh and Ullah (1987) derived
bounds on the Fisher statistic (or on the square of the t statistic in our case). tuZ,ψ(α) is proportional
to the ratio λmax(ψ)/λmin(ψ) of the highest and lowest eigenvalues of the covariance matrix of y :

tuZ,ψ(α) = [t0(α)]2λmax(ψ)/λmin(ψ).

We need to make here a remark about the accuracy of Zinde-Walsh and Ullah’s bound. Their
test rejects H0 at level α when [T (y)]2 > sup

ψ∈R

tuZ,ψ(α) ≡ tuZ(α). The critical value tuZ(α) is not

easy to determine analytically, so instead of finding the maximum of tuZ,ψ(α) on R,we reckoned
tuZ,ψ(0.05) for some values of ψ in the interval [−1, 2]. We found a maximum at ψ = 1, and a
minimum at ψ = −1, for every sample size we considered. Although tuZ,1(0.05) ≤ tuZ(0.05), we
used this value as the upper bound. Doing so gives more power to the Zinde-Walsh – Ullah test than
it really has, because it may reject H0 more often than it would do if we used tuZ(0.05). Despite this
fact, tuZ,1(0.05) is so large (see Table 1) that the power of the test is zero everywhere on the set of
alternatives we considered, for any sample size and for any ψ (see Section 5.2.3).

The second alternative consists of using asymptotic tests. In this category, we considered three
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TABLE 1. Zinde-Walsh and Ullah’s bounds

Sample size T 25 50 75 100

tuZ,1(0.05) 1 164.1972 4 254.3396 9 291.4222 16 274.6855

commonly used tests. The first category includes tests based on a GLS estimation of (9). In the
first step, one finds a consistent estimator Ω̂ of Ω and P̂ such that P̂ ′P̂ = Ω̂−1. In the second step,
we multiply both sides of (9) by P̂ and apply OLS to that transformed model. In the last step, we
test H0 using the standard F test. We examine two estimation procedures that lead to a consistent
estimator of β, resulting in two test statistics. The first one is detailed in Fomby, Hill, and Johnson
(1984, p. 220-221). We denote it by GLS-MM because in the first step of GLS, we estimate the MA
parameter ψ by the method of moments. ψ is estimated by minimizing the distance (in the sense
of the Euclidean norm on R) between the sample and true first order autocorrelations. The second
estimation procedure uses exact maximum likelihood in the first step of GLS and will be denoted
by GLS-ML.3

The third test we consider is motivated by a central limit theorem [see Brockwell and Davis
(1991, p. 219) for instance] which establishes the following property: if a process, with mean
β, has an infinite order MA representation with IID error terms and MA coefficients ψi, i =
. . . ,−2,−1, 0, 1, 2, . . . , satisfying the two following conditions

∞∑
i=−∞

|ψi| < ∞,
∞∑

i=−∞
ψi �= 0,

then the sample mean of the process is asymptotically normally distributed, with mean β and vari-
ance T−1

∑∞
k=−∞ γ(k), where γ(k) is the autocovariance at lag k. Note that the last condition on

the ψi’s is not satisfied for the MA(1) process (9) with ψ = −1, but as ψ is unknown, we might
not be aware of this fact or ignore it. Then a natural way of testing H0 is to estimate β by the
sample mean ȲT and the asymptotic variance by the consistent estimator proposed in Newey and
West (1987):

φ̂T (p) =
1
T

[
rT (0) + 2

p∑
k=1

(
1 − k

p + 1

)
rT (k)

]
,

where rT (k) is the sample autocovariance at lag k. Then, if H0 is true, the statistic

ξNW
T =

T Ȳ 2
T

φ̂T (p)

has an asymptotic χ2 distribution with 1 degree of freedom. We will denote this procedure by NW.4

3For further discussion of ML estimation in this context, see Tunnicliffe Wilson (1989) ans Laskar and King (1995).
4Of course, the list of the methods considered in the present simulation is not exhaustive. For example, possible

variants of the NW method include the covariance matrix estimators proposed by Wooldridge (1989). Bayesian methods
[see Kennedy and Simons (1991)] and marginal likelihood methods [see King (1996)] could also be used in this context.
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TABLE 2. Size and critical values of 5% level asymptotic tests

Sample size T = 25 T = 50

ψ∗ Size (%) ACV CCV ψ∗ Size (%) ACV CCV

GLS-MM −0.5 19.22 4.25968 30.664 −0.5 18.59 4.0384 59.555

GLS-ML −0.5 27.87 4.25968 37.979 −0.5 15.06 4.0384 14.615

NW 1 15.03 3.840 8.459 1 10.25 3.840 5.789

Sample size T = 75 T = 100

ψ∗ Size (%) ACV CCV ψ∗ Size (%) ACV CCV

GLS-MM −0.5 16.98 3.97024 64.502 −0.5 14.98 3.9371 38.789

GLS-ML −0.5 10.13 3.97024 6.396 −0.5 7.84 3.9371 4.983

NW 1 8.82 3.840 5.243 1 8.08 3.840 4.907

Before presenting the results of our simulations, we wish to insist on a very important condition
one has to impose when comparing the relative performance of two tests. In the Neyman-Person
approach to the problem of testing a null hypothesis H0 against an alternative H1, it is meaningless
to say that a test A has a higher power than a test B, if the two tests do not have the same level.
A test of H0 : θ ∈ Θ with critical region W has level α if sup

θ∈Θ0

Pθ(W ) ≤ α, and it has size α

if sup
θ∈Θ0

Pθ(W ) = α ; see Lehmann (1986, Section 3.1). When the probability of rejection Pθ(W )

under the null hypothesis (θ ∈ Θ0) is not constant, controlling the level of a test requires one to
ensure that Pθ(W ) ≤ α for all θ ∈ Θ0, and controlling its size involves ensuring that the maximum
(or supremum) of the rejection probabilities over θ ∈ Θ0 is equal to α. Of course, this may lead
to a difficult search over the parameter space. When the distribution of a test statistic depends on
a nuisance parameter (the unknown value of ψ, in the present case), correcting the size of a test
requires one to find a critical value such that the maximum probability of rejection under the null
hypothesis (irrespective of ψ) is equal to α. A way of doing this is to detect the value of ψ, ψ∗ say,
for which the discrepancy between the level and the size is maximum. For that value, we simulate
S times the test statistic, Tψ∗(y).5 We then take the observation of rank ((95 × S)/100) + 1 of the
statistic as our corrected 5%-level critical value: we reject H0 at level 5% when Tψ∗(y) is larger
than or equal to that value. Table 2 reports ψ∗, the size (in %), the 5% asymptotic critical value
(ACV), and the 5% corrected critical value (CCV), for each sample size T , and each of the three
asymptotic procedures.

But space and time limitations have precluded us from including all proposed methods in our simulations.
5For all asymptotic test procedures, we set S = 10 000.
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5.2.3. Simulations

In our simulations, we proceeded as follows. For ψ ∈ {−1,−.5, 0, .5, 1} and T ∈ {25, 50, 75, 100},
we considered a grid of β values around β0 = 0. In each case, 1000 independent samples (yt, t =
1, 2, . . . , T ) were generated and the following statistics were computed: (1) the t statistic based
on the whole sample; (2) the t statistic based on the two subsamples (yt : t ∈ J1) and (yt : t ∈ J2)
containing the odd and even observations respectively; (3) the GLS-MM and GLS-ML based F
statistics; (4) the ξNW

n statistic. Using these statistics, the following tests were implemented at
level 5% and the corresponding rejection frequencies were computed: (a) Zinde-Walsh and Ullah’s
bounds test; (b) Kiviet’s bounds test;6 (c) GLS-MM asymptotic test (corrected and uncorrected for
size); (d) GLS-ML asymptotic test (corrected and uncorrected for size); (e) NW asymptotic test
(corrected and uncorrected for size); (f) the induced test which combines the standard t-tests based
on the two subsamples (yt : t ∈ J1) and (yt : t ∈ J2); (g) the separate tests based on the subsamples
(yt : t ∈ J1) and (yt : t ∈ J2). The results are presented in Figures 2 to 6 and Tables 3 to 7.

As it became clear in the description of the induced test, when applying such a procedure to
model (9), one is led to split the sample in two, and make two tests at level α/2. At first sight, the
procedure displays features that may seem quite unattractive. First, it splits the available sample
in two, and second it combines two tests whose levels are only α/2 (instead of α). From these
two remarks, one may expect the procedure to lack power. But we should keep in mind that, since
the two “sub-tests" have level α/2, the resulting induced test has level certainly greater than α/2
(although not greater then α). Furthermore, this test actually uses the information contained in the
whole sample. Then it becomes less clear whether the induced test procedure automatically leads to
a loss of power relatively to other alternative tests. Two questions arises from these remarks: (1) is
combining preferable to not combining ?, i.e., should our decision at level α rely on an induced test
procedure or on a test based on one of the subsample only ? (2) how does the induced test compare
with the procedures mentionned in Section 5.2.2 ?

Figures 2 to 6 answer the first question. They show that the power of the induced test (solid line)
is generally higher than that of an α-level test based on one of the two subsamples (dashed lines).
In other words, combining is preferable to not combining. When it is not the case [when the true
value of the MA parameter is unity, ψ = 1, see Figures 2(a) to 2(d)], the power loss from using the
induced test is very small, so that one would usually prefer the sample-split procedure that uses all
the observations.

Tables 3 to 7 report the estimated probability of a rejection of H0 : β = 0 for different sample
sizes (T ∈ {25, 50, 75, 100}) and true values for β (β ∈ {−1,−.8,−.5,−.2, 0, .2, .5, .8, 1}), for
each one of the test procedures of Section 5.2.2. If we first consider bounds tests, we note that the
Kiviet test is dominated by the induced test, except for ψ = .5 and ψ = 1. We already mentioned
in Section 5.2.2 that the bound which has been used here, namely tuK,.9(0.05), is not appropriate
because we do not know whether this value satisfies the level constraint:

sup
θ∈Θ0

Pθ

[
{y ∈ Y : T (y) > tuK,.9(0.05)}

]
≤ 0.05.

6Because Kiviet (1980) does not provide the upper bound for T = 75 and T = 100, we did not investigate the
behaviour of Kiviet’s test for these values of T.
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FIGURE 2. Rejection frequencies of H0 : β = 0 in model (9) with ψ = 1.
T = 25, 50, 75, 100.

Induced test ( — ); tests based on subsamples (yt : t ∈ J1) and (yt : t ∈ J2) ( · · · and − · − ).
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FIGURE 3. Rejection frequencies of H0 : β = 0 in model (9) with ψ = 0.5 .
T = 25, 50, 75, 100.

Induced test ( — ), tests based on subsamples (yt : t ∈ J1) and (yt : t ∈ J2) ( · · · and − · − ).
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FIGURE 4. Rejection frequencies of H0 : β = 0 in model (9) with ψ = 0.
T = 25, 50, 75, 100.

Induced test ( — ), tests based on subsamples (yt : t ∈ J1) and (yt : t ∈ J2) ( · · · and − · − ).
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FIGURE 5. Rejection frequencies of H0 : β = 0 in model (9) with ψ = −.5.
T = 25, 50, 75, 100.

Induced test ( — ), tests based on subsamples (yt : t ∈ J1) and (yt : t ∈ J2) ( · · · and − · − ).
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FIGURE 6. Rejection frequencies of H0 : β = 0 in model (9) with ψ = −1.
T = 25, 50, 75, 100.

Induced test ( — ), tests based on subsamples (yt : t ∈ J1) and (yt : t ∈ J2) ( · · · and − · − ).
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TABLE 3. Rejection frequencies of H0 : β = 0 in model (9) with ψ = 1

Sample size T = 25 Sample size T = 75
β GLS-ML GLS-MM NW Kiv. Ind. test GLS-ML GLS-MM NW Ind. test

− 1.0 0.80 3.40 56.00 66.70 59.80 97.70 0.70 99.10 98.80
−0.8 0.20 1.10 37.80 46.60 40.00 84.90 0.10 91.50 89.70
−0.5 0.00 0.20 17.00 20.10 16.60 40.00 0.00 52.00 48.00
−0.2 0.00 0.00 6.10 6.20 5.20 6.60 0.00 14.30 9.90
−0.1 0.00 0.00 4.50 5.00 3.50 2.20 0.00 7.00 4.40

0.0 0.00 0.00 4.30 4.30 3.50 1.10 0.00 4.30 2.70
0.1 0.00 0.00 5.20 5.10 4.30 2.10 0.00 6.50 3.80
0.2 0.00 0.00 6.50 7.60 5.30 5.80 0.00 11.80 9.80
0.5 0.10 0.60 18.10 21.20 18.10 38.60 0.00 55.20 48.90
0.8 0.10 1.80 38.80 46.40 40.50 83.60 0.20 91.10 89.40
1.0 0.30 3.90 55.00 64.90 59.60 96.70 0.80 98.90 98.80

Sample size T = 50 Sample size T = 100
β GLS-ML GLS-MM NW Kiv. Ind. test GLS-ML GLS-MM NW Ind. test

− 1.0 46.00 0.20 92.40 93.30 90.70 99.50 25.60 99.80 99.70
−0.8 21.50 0.00 77.30 78.30 72.30 97.00 6.70 97.70 96.90
−0.5 3.50 0.00 40.10 40.20 32.90 61.30 0.20 69.10 63.20
−0.2 0.20 0.00 9.60 10.00 6.80 11.90 0.00 17.40 12.20
−0.1 0.00 0.00 4.90 4.50 3.50 4.60 0.00 7.90 5.00

0.0 0.10 0.00 3.90 3.90 2.40 3.40 0.00 4.40 2.80
0.1 0.10 0.00 4.30 4.70 3.50 5.60 0.00 7.40 3.90
0.2 0.20 0.00 8.20 9.20 6.60 11.60 0.00 15.10 10.30
0.5 3.70 0.00 34.90 40.60 33.70 62.80 0.30 67.00 60.40
0.8 21.00 0.10 74.00 78.60 72.70 96.50 4.60 97.30 96.60
1.0 45.10 0.40 89.70 95.00 90.30 99.90 22.90 99.90 99.80
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TABLE 4. Rejection frequencies of H0 : β = 0 in model (9) with ψ = .5

Sample size T = 25 Sample size T = 75
β GLS-ML GLS-MM NW Kiv. Ind. test GLS-ML GLS-MM NW Ind. test

− 1.0 4.80 10.70 79.40 85.30 83.90 100.00 8.50 100.00 100.00
−0.8 2.50 4.70 61.20 67.30 66.30 98.80 1.00 99.50 99.40
−0.5 0.60 1.00 27.20 30.30 29.00 65.50 0.10 77.50 76.70
−0.2 0.00 0.00 6.70 6.80 7.00 11.30 0.00 19.40 18.10
−0.1 0.00 0.00 4.60 3.90 4.60 2.80 0.00 8.40 7.00

0.0 0.00 0.00 4.30 3.50 4.20 0.80 0.00 4.30 2.90
0.1 0.00 0.00 5.60 4.70 4.70 3.10 0.00 7.80 6.40
0.2 0.10 0.10 7.80 8.10 8.30 10.40 0.00 19.30 17.10
0.5 0.50 0.60 27.80 30.90 30.20 64.70 0.10 77.70 75.60
0.8 1.60 4.60 60.50 66.80 64.70 97.80 1.10 99.50 99.40
1.0 5.00 12.10 78.30 84.80 82.80 100.00 7.20 100.00 100.00

Sample size T = 50 Sample size T = 100
β GLS-ML GLS-MM NW Kiv. Ind. test GLS-ML GLS-MM NW Ind. test

− 1.0 83.00 2.40 99.30 99.80 99.40 100.00 65.10 100.00 100.00
−0.8 50.80 0.20 93.80 94.30 94.00 99.80 26.80 99.90 99.90
−0.5 10.80 0.00 58.30 59.20 55.80 86.80 1.10 90.90 89.00
−0.2 0.40 0.00 12.70 11.50 11.90 20.50 0.00 24.70 22.50
−0.1 0.10 0.00 6.50 4.10 5.60 6.00 0.00 10.90 7.90

0.0 0.10 0.00 3.30 2.90 3.60 3.40 0.00 4.30 3.50
0.1 0.20 0.00 5.70 4.30 5.20 7.40 0.00 8.70 6.70
0.2 0.40 0.00 13.00 12.20 11.90 19.10 0.00 22.30 20.70
0.5 10.40 0.00 59.70 59.30 57.40 88.10 1.00 89.70 88.10
0.8 50.60 0.50 94.80 96.00 94.70 100.00 25.20 100.00 99.90
1.0 82.10 3.50 99.40 99.70 99.50 100.00 63.30 100.00 100.00
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TABLE 5. Rejection frequencies of H0 : β = 0 in model (9) with ψ = 0

Sample size T = 25 Sample size T = 75
β GLS-ML GLS-MM NW Kiv. Ind. test GLS-ML GLS-MM NW Ind. test

− 1.0 35.30 45.80 97.80 96.20 97.00 100.00 70.30 100.00 100.00
−0.8 19.30 23.10 89.30 81.70 85.20 100.00 28.20 100.00 100.00
−0.5 6.20 5.10 48.40 31.70 45.30 96.90 0.80 98.50 94.30
−0.2 2.50 0.90 8.90 2.80 9.90 25.80 0.00 33.70 28.20
−0.1 1.20 0.30 3.30 0.90 6.60 7.20 0.00 11.80 10.40

0.0 1.00 0.20 3.10 0.40 4.70 1.40 0.00 2.70 4.50
0.1 1.40 0.60 5.10 0.80 7.00 6.90 0.00 10.60 9.50
0.2 1.90 0.70 9.40 3.00 11.00 23.40 0.00 32.10 27.10
0.5 7.00 5.40 48.30 31.80 45.70 96.10 0.80 98.00 94.30
0.8 20.80 23.80 87.50 80.50 85.90 100.00 26.70 100.00 100.00
1.0 37.70 45.30 98.00 97.20 97.00 100.00 70.70 100.00 100.00

Sample size T = 50 Sample size T = 100
β GLS-ML GLS-MM NW Kiv. Ind. test GLS-ML GLS-MM NW Ind. test

− 1.0 99.70 40.80 100.00 100.00 100.00 100.00 99.80 100.00 100.00
−0.8 95.00 13.20 100.00 99.90 99.60 100.00 93.20 100.00 100.00
−0.5 45.10 0.50 88.60 73.30 80.20 99.80 20.80 99.60 98.30
−0.2 2.70 0.00 21.40 6.90 19.40 42.50 0.00 47.50 36.30
−0.1 0.50 0.00 7.50 1.40 6.50 12.30 0.00 14.60 12.50

0.0 0.30 0.00 2.40 0.10 4.70 3.90 0.00 3.30 5.20
0.1 0.90 0.00 6.90 1.60 8.00 12.60 0.00 12.70 11.50
0.2 2.60 0.00 20.80 7.10 18.30 43.50 0.20 43.60 35.40
0.5 43.80 0.60 89.00 72.90 80.20 100.00 17.40 99.60 98.60
0.8 95.10 13.30 99.90 99.70 99.60 100.00 94.00 100.00 100.00
1.0 99.60 41.30 100.00 100.00 100.00 100.00 99.90 100.00 100.00
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TABLE 6. Rejection frequencies of H0 : β = 0 in model (9) with ψ = −0.5

Sample size T = 25 Sample size T = 75
β GLS-ML GLS-MM NW Kiv. Ind. test GLS-ML GLS-MM NW Ind. test

− 1.0 93.50 91.70 100.00 97.50 97.20 100.00 100.00 100.00 100.00
−0.8 82.80 76.30 99.80 77.30 84.90 100.00 98.50 100.00 100.00
−0.5 49.80 41.70 82.70 10.10 40.30 100.00 56.70 100.00 96.90
−0.2 18.00 18.20 6.30 0.00 10.80 82.90 14.70 65.10 24.60
−0.1 8.00 8.60 1.40 0.00 6.40 29.60 9.30 10.80 9.90

0.0 4.50 4.30 0.10 0.00 4.40 3.60 5.30 0.40 4.00
0.1 10.60 9.70 1.90 0.00 6.20 29.20 9.60 12.20 9.40
0.2 18.90 19.50 8.70 0.00 11.10 81.50 15.30 67.10 23.80
0.5 50.00 41.80 81.40 10.50 42.80 100.00 58.00 100.00 97.60
0.8 82.10 76.00 99.80 76.60 84.40 100.00 98.10 100.00 100.00
1.0 93.10 92.40 100.00 97.90 97.90 100.00 100.00 100.00 100.00

Sample size T = 50 Sample size T = 100
β GLS-ML GLS-MM NW Kiv. Ind. test GLS-ML GLS-MM NW Ind. test

− 1.0 100.00 97.90 100.00 100.00 100.00 100.00 100.00 100.00 100.00
−0.8 100.00 86.90 100.00 100.00 100.00 100.00 100.00 100.00 100.00
−0.5 98.60 38.90 100.00 66.10 81.80 100.00 97.00 100.00 99.90
−0.2 33.50 16.80 39.70 0.10 18.30 94.90 20.60 84.60 32.30
−0.1 10.30 10.30 4.60 0.00 7.00 45.50 9.40 18.60 11.00

0.0 2.90 5.00 0.10 0.00 4.40 5.00 4.40 0.40 4.30
0.1 9.50 9.10 5.60 0.00 7.10 44.40 9.30 16.80 10.10
0.2 33.90 15.80 37.20 0.00 17.30 95.30 19.70 82.70 32.00
0.5 99.00 41.30 99.90 67.00 80.20 100.00 97.40 100.00 99.80
0.8 100.00 87.70 100.00 99.90 99.90 100.00 100.00 100.00 100.00
1.0 100.00 98.10 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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TABLE 7. Rejection frequencies of H0 : β = 0 in model (9) with ψ = −1

Sample size T = 25 Sample size T = 75
β GLS-ML GLS-MM NW Kiv. Ind. test GLS-ML GLS-MM NW Ind. test

− 1.0 99.50 93.10 100.00 79.90 85.20 100.00 100.00 100.00 100.00
−0.8 98.20 80.10 100.00 34.80 64.00 100.00 99.20 100.00 100.00
−0.5 89.80 58.30 89.10 0.00 28.70 100.00 82.30 100.00 83.60
−0.2 49.90 40.80 0.10 0.00 9.00 100.00 51.60 84.60 17.10
−0.1 2.20 4.30 0.00 0.00 5.90 98.80 47.00 0.10 8.10

0.0 0.00 0.00 0.00 0.00 4.80 0.70 0.00 0.00 3.80
0.1 2.30 2.80 0.00 0.00 6.10 99.10 47.00 0.10 8.10
0.2 52.40 41.40 0.40 0.00 9.30 100.00 51.40 87.90 17.90
0.5 90.70 59.40 88.10 0.40 28.50 100.00 82.00 100.00 85.50
0.8 98.10 81.30 100.00 34.30 64.70 100.00 99.30 100.00 100.00
1.0 99.60 93.10 100.00 79.40 87.20 100.00 100.00 100.00 100.00

Sample size T = 50 Sample size T = 100
β GLS-ML GLS-MM NW Kiv. Ind. test GLS-ML GLS-MM NW Ind. test

− 1.0 100.00 98.30 100.00 100.00 100.00 100.00 100.00 100.00 100.00
−0.8 100.00 92.60 100.00 99.20 99.00 100.00 100.00 100.00 100.00
−0.5 100.00 69.30 100.00 13.10 58.20 100.00 99.20 100.00 98.30
−0.2 96.60 46.00 29.10 0.00 12.10 100.00 61.20 99.70 21.70
−0.1 75.00 42.10 0.00 0.00 6.20 100.00 48.60 0.50 8.50

0.0 0.00 0.00 0.00 0.00 3.80 1.10 0.00 0.00 3.80
0.1 76.00 41.90 0.00 0.00 6.50 100.00 48.90 0.40 8.70
0.2 96.40 45.80 28.20 0.00 10.80 100.00 61.90 99.50 20.70
0.5 100.00 69.30 100.00 12.10 59.20 100.00 99.00 100.00 98.50
0.8 100.00 92.30 100.00 99.50 98.70 100.00 100.00 100.00 100.00
1.0 100.00 98.30 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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In other words, a critical region based on Kiviet’s bounds has an unknown level. Moreover, what
makes the induced test more attractive relatively to Kiviet’s test is that it avoids the calculation of a
bound that changes with the sample size. Finally, because Zinde-Walsh and Ullah’s upper bounds
are so large (see Table 1), the power of their test is zero for all ψ. These are not reported in Tables
3-7.

The most surprising result which emerges from our Monte Carlo study can be seen in Tables 3,
4 and 5. Once the asymptotic critical values used for the GLS-MM and GLS-ML tests have been
corrected so that the corresponding critical regions have the desired level, our procedure becomes
more powerful than these alternatives for many plausible values of ψ. The difference between es-
timated power functions grows as ψ increases, but diminishes when the sample size T gets larger.
The GLS-MM method seems to be the worst of all the asymptotic procedures studied here, whereas
GLS-ML appears to benefit from the asymptotic efficiency property of maximum likelihood esti-
mators. But for non negative values of ψ, the sample size has to be T = 100 for the GLS-ML test
to have a probability of correctly rejecting the null as high as the induced test. The GLS-MM test
is still dominated for some negative values of ψ (ψ = −.5), irrespective of the sample size. Only
when ψ is close to −1 does this procedure become admissible.

While the two commonly used asymptotic inference procedures, GLS-MM and GLS-ML, can-
not be recommended on the ground of our Monte Carlo study, the conclusion is less negative for
the NW method. Except for small sample sizes (T = 25) and large values of the MA parameter
(ψ = 1, .5), it does better than the induced test procedure. This result is somewhat unexpected be-
cause the Newey-West estimator of V(ȲT ) does not take into account the autocovariance structure
of the process. However, although the induced test is conservative, it is more powerful than NW
test for alternatives close to the null hypothesis when ψ is negative. Furthermore, it is important to
remember that the NW test suffers from level distortions (see Table 2) that are not easy to correct in
practice.

5.2.4. An example: an induced test on the mean of the Canadian per capita GDP series

We now apply our procedure to test the nullity of the mean of a process that has a MA(1) represen-
tation. Our series is the first difference of the Canadian per capita GDP, denominated in real 1980
Purchasing Power Parity-adjusted US dollars, observed yearly from 1901 to 1987. It is taken from
Bernard and Durlauf (1995). Figure 7 plots the series.

Using standard Box-Jenkins procedure (autocorrelation and partial autocorrelation functions),
we identified a MA(1) process for the series (see Table 8).

We then consider a model like (9). ML estimation of (9) gives β̂ = 136.1810 and ψ̂ = 0.4211
with estimated variances 945.1919 and 0.0095, respectively. The estimated Cov(β̂, ψ̂) is 0.0834 and
the sample variance of the residuals is 40117.5725.

To implement an induced test for the nullity of the mean parameter, β, at level 5%, we split
the sample in two parts, {yt : t ∈ Ji}, i = 1, 2, which contain respectively the odd and the even
observations, and make two 2.5% tests of β = 0, using the statistics ti =

√
ni |ȳi|/si, where

ȳi =
∑

j∈Ji
yj/ni, s2

i =
(∑

j∈Ji
(yj − ȳi)2

)
/(ni − 1), and ni is the size of subsample i, i = 1, 2.

We reject the null hypothesis when t1 > t(α/4, ν1) or t2 > t(α/4, ν2), where t(α/4, ν) is the
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FIGURE 7. First differences of the Canadian per capita GDP.

Source: Bernard and Durlauf (1995)

TABLE 8. Sample autocorrelations of the Canadian per capita GDP series

Lag 1 2 3 4 5 6 7 8 9 10 11 12

Autocorrelation .41 .19 .10 -.04 .05 .07 .12 .04 -.04 .09 .08 .20

Standard Error .11 .12 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13

Ljung-Box Q-statistic 15.4 18.8 19.8 19.9 20.2 20.6 22.1 22.3 22.5 23.3 24.0 28.3
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TABLE 9. Induced and asymptotic tests. Model: yt = β + εt + ψεt−1

i = 1 i = 2 GLS-MM GLS-ML

β̂ 127.6836 125.4406 122.2522 123.6574

t(ν) 4.1892 (43) 3.5076 (42) 7.5112 (86) 6.9345 (86)

p-value 0.00014 0.00109 0.00000 0.00000

ψ̂ −− −− 0.5298 0.4221

1 − (α/4) percentile of the Student’s t distribution with ν degrees of freedom. We also perform
both GLS-MM and GLS-ML asymptotic tests. Our results are reported in Table 9. β̂ is the two
step estimator of β, ψ̂ the estimator of ψ that has been obtained in the first step to estimate the error
covariance matrix, and t the test statistic, whose distribution will be approximated by a Student’s t
distribution with 86 degrees of freedom.

Both subtests reject the null hypothesis at level 2.5%. Hence the induced test rejects the nullity
of the mean at level 5%. The two asymptotic tests also reject the null hypothesis, if we admit that
the asymptotic critical value is a good approximation when the sample size is 87. Our findings
are consistent with the results of the Monte Carlo study of Section 5.2.3. For similar sample sizes
(T = 75 or T = 100) we found that the GLS-MM test produces larger values of the test statistic
than the GLS-ML test does. This is what we have here with T = 87.

If we decide to include a linear trend in the mean of the MA(1) process, our induced test proce-
dure still applies. The per capita GDP series now admits the following representation

yt = β0 + β1t + εt + ψεt−1 , εt
ind∼ N(0, σ2)

for t = 1, 2, . . . , T. We consider the three hypotheses:

H
(0)
0 : β0 = 0 , H

(1)
0 : β1 = 0 , H0 :

(
β0

β1

)
=
(

0
0

)
.

For each hypothesis, we perform the induced test as well as the asymptotic tests. Results appear in
Table 10.

We note that only one of the subtests rejects the presence of a linear trend. However, according to
our decision rule, this is enough to reject H

(1)
0 . Both GLS-MM and GLS-ML unambiguously reject

this hypothesis. But we know from our simulations that the asymptotic tests tend to reject the null
too often when it is true. For the parameters βj, : j = 1, 2, we also report two confidence intervals

Ij
1 and Ij

2 , each with level 97.5%, based on the two subsamples (yt : t ∈ J1) and (yt : t ∈ J2). The
intersection Ij

1

⋂
Ij
2 gives the set of values γ ∈ R such that the hypothesis Hj

0(γ) : βj = γ is not
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TABLE 10. Induced and asymptotic tests. Model: yt = β0 + β1t + εt + ψεt−1

i = 1 i = 2 GLS-MM GLS-ML

β̂0 −37.0695 −6.2981 −22.5258 −22.5578

β̂1 3.7444 2.9941 3.3507 3.3554

t0(ν) −0.6832 (42) −0.0903 (41) −0.6726 (85) −0.6577 (85)

p-value
(
H

(0)
0

)
0.49823 0.92849 0.50303 0.51251

t1(ν) 3.5058 (42) 2.1674 (41) 5.0392 (85) 4.9319 (85)

p-value
(
H

(1)
0

)
0.00110 0.03606 0.00000 0.00000

F (ν1, ν2) 17.2244 (2, 42) 9.0421 (2, 41) 37.9250 (2, 85) 39.3875 (2, 85)

p-value
(
H0

)
0.00000 0.00056 0.00000 0.00000

ψ̂ −− −− 0.3536 0.3253

tj , j = 1, 2, and F denote the Student’s t and Fisher’s F statistics used for testing H
(j)
0 , j = 1, 2,

and H0, respectively.

rejected at level 5% by the induced test. These intervals are:

I0
1 = [−163.2002, 89.0612] , I0

2 = [−168.5787, 155.9825] ,

I1
1 = [1.2616, 6.2272] , I1

2 = [−0.2201, 6.2083] ,

yielding the following 95% confidence intervals for β0 and β1 :

β0 ∈ [−163.2002, 89.0612] , β1 ∈ [1.2616, 6.2083] .

These entail that β0 is not significantly different from 0, while β1 is.
When we apply the induced test procedure, we implicitely assume that we have correctly iden-

tified a MA(1) process. An interesting issue is to look at what we get if, instead of the true MA(1)
representation, we use a MA(2) model to build our test statistics. In this case, we split the sample in
three parts, make three tests at level 5/3% and reject the null H0 : β = 0 when our sample falls in
one of the three critical regions. The results are in Table 11.

We first note that as two of the subsample based tests reject H0 at level 5/3%, we reject the null
at level 5%. We also note that both asymptotic tests reject the null hypothesis. But we know that
using 5% critical values obtained from asymptotic distributions leads to a probability of making a
type I error larger than 5%. Therefore, although asymptotic tests and tests based on the sample split
yield the same decision of rejecting H0, we put more confidence in the sample split procedure.

36



TABLE 11. Induced and asymptotic tests. Model: yt = β + εt + ψ1εt−1 + ψ2εt−2

i = 1 i = 2 i = 3 GLS-MM GLS-ML

β̂ 122.4644 130.7687 126.4918 128.9405 129.7032

t(ν) 2.6573 (28) 4.1328 (28) 2.9150 (28) 3.6828 (86) 3.2812 (86)

p-value 0.01286 0.00029 0.00692 0.00040 0.00149

ψ̂1 −− −− −− 0.4096 0.3931

ψ̂2 −− −− −− 0.2354 0.1037

t denotes the statistics used for testing H0 : β = 0 .

6. Concluding remarks

In this paper, we proposed a set of inference methods for comparing and pooling information ob-
tained from different data sets, which simply use separate tests (or confidence sets) based on the dif-
ferent data sets. The methods described are based on a systematic exploitation of Boole-Bonferroni
inequalities and can yield exact tests and confidence sets without the need to specify at all the re-
lationship between the data sets, even with small sample sizes. As a result, they are quite versatile
and usually easy to implement. The general problems studied include: (I) combining separate tests
based on different data sets for an hypothesis of interest (more precisely, for the intersection of
similar hypotheses), to obtain more powerful tests; (II) comparing parameters estimated from the
different data sets (e.g., to test their equality); (III) combining confidence regions based on dif-
ferent samples to obtain a more accurate confidence set. For problem I, we were led to consider
Bonferroni-type induced tests; for problem II, we proposed empty intersection tests; and for prob-
lem III, we suggested taking the intersection of separate confidence sets with appropriate levels.

We also showed that the methods proposed can be quite useful in various models where usual
inference procedures based on a complete sample involve difficult distributional problems (e.g.,
because of nuisance parameters), but for which distributional properties of test statistics computed
on appropriately selected subsamples are simpler. This leads to an interesting form of sample-
split method. One first splits the sample into several subsets of observations from which separate
inferences (tests or confidence sets) are obtained. Then these results are recombined, using the
general union-intersection (UI) methods already described, to obtain a single inference which uses
the full sample. The way the data set is split depends on the model considered. In some situations
the structure naturally suggests the division. This is for example true when the model contains
several equations. In other cases, the division is based on more elaborate arguments, as in moving
average models.

The union-intersection/sample-split methods proposed can be applied to a wide spectrum of
econometric situations and models. We discussed and illustrated their applications in two cases
where only asymptotic methods are typically available, namely inference in SURE models and
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linear regressions with MA errors. In the latter case, we also presented an extensive Monte-Carlo
study comparing the sample-split union-intersection (SS-UI) method for testing an hypothesis about
a mean with other available approaches. Two main conclusions emerged from these results: first,
they provided further evidence on the size distortions associated with usual asymptotic procedures;
second, they showed that SS-UI tests not only have the predicted levels, but enjoy good power prop-
erties. In view of the fact that these methods involve splitting the sample and lead to conservative
procedures, hence leading one to expect a power loss, this is indeed quite remarkable. Our results
show that the Bonferroni-based recombination of the evidence obtained from the different subsam-
ples apparently makes up for the loss. For another application of SS-UI approach to autoregressive
and other types of dynamic models, the reader may consult Dufour and Torrès (1997).

Before closing, it is worthwhile noting a few other points. First, the UI (or UI-SS) procedures
are often simpler to implement than usual asymptotic procedures. For SURE models and linear
regressions with MA errors, they only require critical values from standard distributions. For MA
models, they avoid the task of estimating MA coefficients. Second, they offer some extra robustness
to model specification, as illustrated by SURE models where no assumption on the relationship
between the different equations is needed. Thirdly, although we stressed here the derivation of finite
sample methods, there is nothing that forbids the application of UI (or UI-SS) methods to situations
where only asymptotically justified tests or confidence sets are available from the separate data sets.
In such cases, the methods are applied in exactly the same way. This feature may be especially
attractive for gaining robustness to model specification. We think all these properties make this UI-
SS approach an attractive and potentially quite useful addition to the methods available to applied
econometricians.
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