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PROJECTION-BASED STATISTICAL INFERENCE IN LINEAR
STRUCTURAL MODELS WITH POSSIBLY WEAK INSTRUMENTS

BY JEAN-MARIE DUFOUR AND MOHAMED TAAMOUTI1

It is well known that standard asymptotic theory is not applicable or is very unreli-
able in models with identification problems or weak instruments. One possible way out
consists of using a variant of the Anderson–Rubin ((1949), AR) procedure. The latter
allows one to build exact tests and confidence sets only for the full vector of the coef-
ficients of the endogenous explanatory variables in a structural equation, but not for
individual coefficients. This problem may in principle be overcome by using projection
methods (Dufour (1997), Dufour and Jasiak (2001)). At first sight, however, this tech-
nique requires the application of costly numerical algorithms. In this paper, we give a
general necessary and sufficient condition that allows one to check whether an AR-type
confidence set is bounded. Furthermore, we provide an analytic solution to the problem
of building projection-based confidence sets from AR-type confidence sets. The latter
involves the geometric properties of “quadrics” and can be viewed as an extension of
usual confidence intervals and ellipsoids. Only least squares techniques are needed to
build the confidence intervals.

KEYWORDS: Simultaneous equations, structural model, instrumental variable, weak
instrument, confidence interval, testing, projection, quadric, exact inference, asymp-
totic theory.

1. INTRODUCTION

ONE OF THE CLASSIC PROBLEMS of econometrics consists of making infer-
ence on the coefficients of structural models. Recently, the statistical problems
raised by such models have received new attention in view of the observa-
tion that proposed instruments are often “weak,” i.e., poorly correlated with
the relevant endogenous variables, which corresponds to situations where the
structural parameters are close to being not identifiable (given the instruments
used). The literature on this topic is now considerable; see the reviews by Stock,
Wright, and Yogo (2002) and Dufour (2003).

In view of the unreliability of asymptotic arguments in such setups, we focus
here on procedures for which finite-sample pivotallity obtains under standard
assumptions. The oldest one appears to be the statistic proposed by Ander-
son and Rubin ((1949), henceforth AR). The latter is a limited-information
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method that allows one to test a hypothesis by setting the full vector of the
endogenous explanatory variable coefficients in a linear structural equation;
under usual parametric assumptions (error Gaussianity, instrument strict exo-
geneity), the distribution of the statistic is a central Fisher distribution, while
under weaker (standard) assumptions, it is asymptotically chi-square. It is com-
pletely robust to the presence of weak instruments. Other potential pivots
aimed at being robust to weak instruments have recently been suggested by
Wang and Zivot (1998), Kleibergen (2002), and Moreira (2003). However, only
asymptotic distributional theories have been supplied for these statistics, so
that the level of the procedures may not be controlled in finite samples, even
under restrictive Gaussian distributional assumptions. It is important to note
here that the quality of asymptotic approximations typically depends on the ex-
ogenous regressors (or the instruments) involved: no error bound is available
and, of course, simulation evidence never can be viewed as a substitute for an
analytical theory. Even under the parametric distributional assumptions that
underlie the AR Fisher distribution, this appears to be the case. By contrast,
the null distribution of the AR statistic is invariant to the numerical values
of the instruments. In our view, this is a fundamental difference, especially
in dealing with weak instrument problems where large-sample arguments can
be especially misleading (for further discussion of these issues, see Dufour
(1997, 2003)).2

An important practical shortcoming of the above methods is that they are
designed to test hypotheses of the form H0 :β = β0� where β is the coeffi-
cient vector for all the endogenous explanatory variables. In particular, these
statistics do not allow one to test linear restrictions on the vector β� A gen-
eral solution to this problem is the projection technique described by Dufour
(1990, 1997), Wang and Zivot (1998), and Dufour and Jasiak (2001). However,
a drawback of the projection approach comes from the fact that it can be nu-
merically costly: for example, in Dufour and Jasiak (2001), such confidence
intervals were derived for an empirical example, but nonlinear optimization
methods (based on Fortran IMSL routines) had to be used.

In this paper, we study some general geometric features of AR-type confi-
dence sets and we provide a closed-form solution to the problem of building
projection-based confidence sets from AR sets. First, we observe that AR-type
confidence sets can be described as quadrics, a class of geometric figures that

2As a limited-information method, the AR procedure may involve an efficiency loss with re-
spect to full-information methods, but does allow for a less complete specification of the model
and more robustness (for further discussion of this point, see Dufour and Taamouti (2004)). Note
also that proposed exact or asymptotic pivots in this context typically take for granted a number
of structural restrictions that characterize the specification of the structural equation. If the as-
sumptions suggested by the structural model are relaxed, e.g., by considering the corresponding
unrestricted reduced form, the AR statistic as well as most other pivots may cease to be pivotal
(see Forchini and Hillier (2003)). Here, as in most of the literature on weak instruments, we focus
on the situation where the structural restrictions are maintained.
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covers as special cases the usual confidence intervals and ellipsoids, but also
includes hyperboloids and paraboloids. In particular, we give a simple nec-
essary and sufficient condition under which such confidence sets are bounded
(which indicates identifiability). Second, we derive simple explicit expressions
for projection-based confidence intervals in the case of coefficient linear trans-
formations, so that search by nonlinear methods is no longer required.

In Section 2, we present the background model and the basic statistical
method considered. Section 3 presents the quadric confidence sets. In Sec-
tion 4, we discuss some general properties of quadric confidence sets, and
provide a simple necessary and sufficient condition under which such sets are
bounded. Section 5 provides explicit projection-based confidence intervals for
individual structural parameters and linear transformations of these parame-
ters. We conclude in Section 6.

2. FRAMEWORK

We consider here a standard simultaneous equations model (SEM)

y = Yβ+X1γ + u�(2.1)

Y = X1Π1 +X2Π2 + V �(2.2)

where y and Y are T × 1 and T × G matrices of endogenous variables,
X1 and X2 are T × k1 and T × k2 matrices of exogenous variables, β and γ
are G × 1 and k1 × 1 vectors of unknown coefficients, Π1 and Π2 are k1 × G
and k2 × G matrices of unknown coefficients, u = (u1� � � � � uT )

′ is a vector of
structural disturbances, and V = [V ′

1 � � � � � V
′
T ]′ is a T × G matrix of reduced-

form disturbances. Furthermore,

X = [X1�X2] is a full-column rank T × k matrix,(2.3)

where k = k1 + k2� Finally, to get a finite-sample distributional theory for the
test statistics, we use the standard assumptions

u and X are independent,(2.4)

u∼N[0�σ2
uIT ]�(2.5)

In such a model, we are generally interested in making inference on β and γ.
In Dufour (1997), it is shown that if the model is unidentified (i.e., the ma-
trix Π2 does not have maximal rank), any valid confidence set for β or γ must
be unbounded with positive probability. This is due to the fact that such a
model may be unidentified and holds indeed even if identification restrictions
are imposed. This result explains many recent findings on the performance of
standard asymptotic statistics when the instruments X2 are weakly correlated
with the endogenous explanatory variables Y . The usual approach, which con-
sists of inverting Wald-type statistics to obtain confidence sets (for potentially
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unidentified parameters), is not valid in these situations since the resulting con-
fidence sets are bounded with probability 1. This is related to the fact that such
statistics are not pivotal and follow distributions that depend heavily on nui-
sance parameters. More precisely, for any sample size, the confidence level of
Wald-type confidence sets (i.e., the minimum value of the coverage probability
over all possible values of the nuisance parameters) is equal to zero (for the
definition of the level of a confidence set, see Lehmann (1986, Section 3.5)).
In particular, as shown in Dufour (1997), this holds even if the “identifying
restriction” rank(Π2) =G is imposed.

A first solution to this problem (see Dufour (1997) and Staiger and Stock
(1997)) consists of using the Anderson–Rubin statistic (Anderson and Rubin
(1949)). To test H0 :β= β0 in equation (2.1), the test statistic is given by

AR(β0)= (y −Yβ0)
′[M(X1)−M(X)](y −Yβ0)/k2

(y −Yβ0)′M(X)(y −Yβ0)/(T − k)
�(2.6)

where for any full rank matrix B, M(B) = I − P(B) and P(B) = B(B′B)−1B′

is the projection matrix on the space spanned by the columns of B� Under the
assumptions (2.3)–(2.5), we have under H0 : AR(β0) ∼ F(k2�T − k)� This test
also remains asymptotically valid under weaker distributional assumptions, in
the sense that the asymptotic null distribution of AR(β0) is χ2(k2)/k2; see
Dufour and Jasiak (2001) and Staiger and Stock (1997). The distributional re-
sult in (2.6) holds irrespective of the rank of the matrix Π2� which means that
tests based on AR(β0) are robust to weak instruments. A confidence set for β
with level 1 − α can also be obtained by inverting the above test,

Cβ(α)= {β0 : AR(β0)≤ Fα(k2�T − k)}�(2.7)

where Fα(k2�T −k) is the 1 −α quantile of the F distribution with (k2�T −k)
degrees of freedom.

Below, we shall also consider two alternative statistics proposed by Wang
and Zivot (1998). The first one is a likelihood ratio (LR)-type statistic and the
second is a Lagrange multiplier (LM)-type statistic. Under the assumptions
(2.1)–(2.5) and additional regularity conditions on the asymptotic behavior of
the instruments (described by Wang and Zivot (1998)), these two statistics fol-
low χ2(k2) distributions asymptotically when the model is exactly identified
(k2 = G), and are bounded by a χ2(k2) distribution when the model is overi-
dentified (k2 >G). To test H0 :β= β0� these statistics are

LRLIML(β0)= T
{
ln[κ(β0)] − ln[κ(β̂LIML)]

}
�(2.8)

LM2SLS(β0)= T(y −Yβ0)
′P[P[M(X1)X2]Y ](y −Yβ0)

(y −Yβ0)′M(X1)(y −Yβ0)
�(2.9)
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where κ(β0) = (y − Yβ0)
′M(X1)(y − Yβ0)/(y − Yβ0)

′M(X)(y − Yβ0)� As-
ymptotic and conservative confidence sets for β can be obtained by inverting
the latter tests.

A common shortcoming of all these tests is that they require one to specify
the entire vector β. In particular, they do not allow for general hypotheses
of the form H0 :g(β) = 0� where g(β) may be any transformation of β, such
as g(β) = βi − βi0, where βi is any scalar component of β� In this paper, we
deal with this problem by studying the characteristics of the confidence sets
obtained by inverting such statistics, and we derive closed-form confidence sets
for the components of β or for linear combinations of these components.3 We
will show that confidence sets based on the statistics AR, LR, and LM can be
expressed in terms of a quadratic-linear form involving a matrix A� a vector b,
and a scalar c� These sets (replacing the inequality by an equality) are known
as quadrics; see Shilov (1961, Chapter 11) and Pettofrezzo and Marcoantonio
(1970, Chapters 9 and 10). We will then classify possible cases as functions
of A� b, and c� and we will derive analytic expressions for projection-based
confidence sets (or intervals) on linear transformations of model parameters.

3. ANDERSON–RUBIN-TYPE CONFIDENCE SETS

Let us first consider the AR statistic. A simple algebraic calculation shows
that the inequality AR(β0)≤ Fα(k2�T − k) may be written in the simple form

β′
0Aβ0 + b′β0 + c ≤ 0�(3.1)

where A = Y ′HY� b= −2Y ′Hy , c = y ′Hy , and

H ≡HAR =M(X1)−
[

1 + k2Fα(k2�T − k)

T − k

]
M(X)�(3.2)

We can thus write

Cβ(α)= {β0 :β′
0Aβ0 + b′β0 + c ≤ 0}�(3.3)

If we use the statistic LRLIML(β0) or LM2SLS(β0) instead of AR, we get anal-
ogous confidence sets that only differ through the H matrix. For LRLIML(β0)�
this matrix takes the form

HLR =M(X1)−M(X)κ(β̂LIML)exp[χ2
α(k2)/T ]�(3.4)

while for LM2SLS(β0) it is

HLM = P
[
P[M(X1)X2]Y

] −M(X1)[χ2
α(k2)/T ]�(3.5)

3This problem was also considered by Stock and Wright (2000), Kleibergen (2001), and Startz,
Zivot, and Nelson (2003), but the solutions provided rely on large-sample approximations and
require additional identification assumptions.
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For the AR and LR statistics, the matrix A can be written

A= Y ′M(X1)Y −Y ′M(X)Y(1 + fα)�

where fα = k2Fα(k2�T − k)/(T − k) for AR and fα = exp[χ2
α(k2)/T ] ×

κ(β̂LIML) − 1 for the LR statistic. Clearly A is symmetric with diagonal el-
ements of the form Aii = Y ′

iM(X1)Yi − Y ′
iM(X)Yi(1 + fα)� where Aii is a

corrected difference between the sum of squared residuals from the regression
of Yi on X1 and the sum of squared residuals from the regression of Yi on
X = [X1�X2]� This difference can be viewed as a measure of the importance
of X2 in explaining Yi� i.e., the relevance of X2 as an instrument for Yi� In
general, Y ′HY is not positive definite and may have both positive and nega-
tive eigenvalues. In the next section, we will show that Cβ(α) is bounded if and
only if all the eigenvalues of Y ′HY are positive; in particular, negative eigen-
values occur with high probability when identification conditions are not satis-
fied. Similarly, c = y ′Hy is a corrected difference between the sum of squared
residuals from the regression of y on X1 and the sum of squared residuals from
the regression of y on X = [X1�X2]. For the vector b, a typical element is given
by bi = −2{[M(X1)Yi]′[M(X1)y]−[M(X)Yi]′[M(X)y](1+fα)}� The first term
(multiplied by −1/(2T)) is the sample covariance between the residuals of the
regression of Yi on X1 and the residuals of the regression of y on X1� while the
second term gives the same covariance with X1 replaced by X = [X1�X2]�

4. GEOMETRY OF QUADRIC CONFIDENCE SETS

The locus of points that satisfy an equation of the form β′Aβ+ b′β+ c = 0�
where A is a symmetric G × G matrix, b is a G × 1 vector, and c is a scalar,
constitutes a quadric surface. These include as special cases various figures such
as ellipsoids, paraboloids, hyperboloids, and cones. Consequently, we shall call
a confidence set of the form

Cβ = {β0 :β′
0Aβ0 + b′β0 + c ≤ 0}(4.1)

a quadric confidence set. A quadric is characterized by the sum of a quadratic
form (β′

0Aβ0) and an affine transformation (b′β0 + c)� Depending on the val-
ues of A� b, and c� it may take several forms. In this section, we examine
some general properties of quadric confidence sets, especially the conditions
under which such sets are bounded or unbounded. In particular, we will see
that the eigenvalues of the A matrix play a central role in these properties and
that larger eigenvalues are associated with more “concentrated” (or “smaller”)
confidence sets. For these reasons, we call A the concentration matrix at level α
(or the α-concentration matrix) associated with β. It will be convenient here to
distinguish between two basic cases: the one where A is nonsingular and the
one where it is singular. We adopt the convention that an empty set is bounded.
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4.1. Nonsingular Concentration Matrix

If A is nonsingular, we can write

β′
0Aβ0 + b′β0 + c = (β0 − β̃)′A(β0 − β̃)− d�(4.2)

where β̃ = − 1
2A

−1b and d = 1
4b

′A−1b − c� Since A is a real symmetric matrix,
we have

A= P ′DP�(4.3)

where P is an orthogonal matrix and D is a diagonal matrix whose elements
are the eigenvalues of A� The inequality β′

0Aβ0 + b′β0 + c ≤ 0 may then be
reexpressed as

λ1z
2
1 + λ2z

2
2 + · · · + λGz

2
G ≤ d�(4.4)

where the λi’s are the eigenvalues of A and z = P(β − β̃)� The transfor-
mation z = P(β − β̃) represents a translation followed by a rotation of β,
so it is clear that Cβ is bounded if and only if (iff) Cz is bounded, where
Cβ = {β :λ1z

2
1 + λ2z

2
2 + · · · + λGz

2
G ≤ d and z = P(β− β̃)} and Cz ≡ {z :λ1z

2
1 +

λ2z
2
2 +· · ·+λGz

2
G ≤ d}� Again it will be convenient to distinguish between three

cases according to the signs of the eigenvalues of A� namely (a) all the eigen-
values of A are positive (λi > 0� i = 1� � � � �G), i.e., A is positive definite; (b) all
the eigenvalues of A are negative (λi < 0� i = 1� � � � �G), i.e., A is negative defi-
nite; (c) A has both positive and negative eigenvalues, i.e., A is neither positive
nor negative definite.

(a) Positive definite concentration matrix. If λi > 0� i = 1� � � � �G� the inequal-
ity (4.4) can be reexpressed as

(
z1

γ1

)2

+ · · · +
(
zG

γG

)2

≤ d�(4.5)

where γi = √
1/λi� i = 1� � � � �G� If d = 0� we have Cz = {0} and Cβ = {β̃}� If

d < 0� Cz and Cβ are empty. If d > 0� Cz is the area inside or on an ellipsoid.
Thus, Cz and Cβ are bounded.

(b) Negative definite concentration matrix. If λi < 0� i = 1� � � � �G� the set Cz

is the set of all values of z that satisfy

(
z1

γ1

)2

+ · · · +
(
zG

γG

)2

≥ −d�(4.6)

where γi = √−1/λi� Since (4.6) holds as soon as any |zi| is large enough,
Cz and Cβ are unbounded sets. In particular, if d ≥ 0� we have Cβ = Cz = R

G�
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(c) Concentration matrix not positive or negative definite. If A has both pos-
itive and negative eigenvalues, we can assume, without loss of generality, that
λi > 0 for i = 1� � � � �p and λi < 0 for i = p + 1� � � � �G� where 1 ≤ p <G� In-
equality (4.4) may then be rewritten

(
z1

γ1

)2

+ · · · +
(
zp

γp

)2

−
(
zp+1

γp+1

)2

− · · · −
(
zG

γG

)2

≤ d�(4.7)

where p is the number of positive eigenvalues of A� γi = √
1/λi for i =

1� � � � �p� and γi =
√−1/λi for i = p+ 1� � � � �G� Then, for arbitrary given val-

ues of z1� � � � � zp and d� it is clear that inequality (4.7) will hold if any of the
values zi� p + 1 ≤ i ≤ G� is small enough (as |zi| → ∞). Consequently, each
component of z is unbounded in Cz� and similarly for each component of β
in Cβ� This entails that Cz and Cβ are unbounded.

4.2. Singular Concentration Matrix

We now consider the case where A is singular with rank r (r < G). First, if
A = 0 (i.e., r = 0)� it is easy to see that the only situation where Cβ can be
bounded is the one where b = 0 and c > 0 (in which case Cβ is empty). So
we can focus on the case where A �= 0� hence r ≥ 1 and G − r ≥ 1� Without
loss of generality, we can assume that the first r diagonal elements of D in
the decomposition A = P ′DP (the first r eigenvalues of A) used in (4.3) are
different from zero, while the G− r other ones are equal to zero. Then we can
write

Q(β)≡ β′Aβ+ b′β+ c =
r∑

i=1

λiz
2
i +

G∑
i=r+1

δizi − d�(4.8)

where the λi are the nonzero eigenvalues of A (λi �= 0� i = 1� � � � � r), δ = Pb�
z = Pβ+µ, and

d = −c +
r∑

i=1

δ2
i

4λi

� µi =
{
δi/(2λi)� if λi �= 0�
0� otherwise.

(4.9)

If b = 0� we have Q(β)= ∑r

i=1 λiz
2
i + c and the values of zr+1� � � � � zG can be as

large as we wish without affecting the value of Q(β)� Then Cβ is either empty
(when c > 0 and λi > 0� i = 1� � � � � r) or unbounded (in all the other cases). If
b �= 0� there is at least one k ∈ {r + 1� � � � �G} such that δk �= 0� Then we can
set zj = 0 for j �= k, and choose zk such that |zk| is arbitrarily large and the
inequality (4.4) is satisfied. This entails that Cβ is unbounded.
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4.3. Necessary and Sufficient Condition for a Bounded Quadric Confidence Set

Following Gleser and Hwang (1987) and Dufour (1997), a valid confidence
set Cβ for β (with level 1 − α) in model (2.1)–(2.5) must be unbounded with
positive probability for any parameter configuration, a probability that should
be large (close to 1 − α) when the matrix Π2 does not have full rank (or is
close to not having full column rank). Given the complicated expressions of
the random matrix A� the random vector b, and the random scalar c� it seems
difficult to evaluate this probability. On putting together the different cases
discussed above, we get the following easy-to-verify necessary and sufficient
condition for a quadric confidence set to be bounded.

THEOREM 4.1: If the matrix A is nonsingular, the set Cβ in (4.1) is bounded if
and only if the matrix A is positive definite. If A is singular, the set Cβ is bounded
only when it is empty, and Cβ is empty if and only if A is positive semidefinite,
b= 0, and c > 0�

It is of interest to note here that the case where A is singular is unlikely to be
met with AR-type confidence sets such as those described in Section 3, because
in this case we have A= Y ′HY� where Y and H are T ×G and T ×T matrices,
respectively. If Y follows a nondegenerate absolutely continuous distribution
(as assumed in Section 2), A will be nonsingular with probability 1 as soon as
the rank of H is greater than or equal to G� In the rest of this paper, we will
thus focus on the case of a nonsingular concentration matrix.4

5. CONFIDENCE SETS FOR TRANSFORMATIONS OF β

We consider now a general confidence set of the form

Cβ = {β0 :β′
0Aβ0 + b′β0 + c ≤ 0}�(5.1)

where c is a real scalar, A is a symmetric G×G matrix, and b is a G×1 vector.
By definition, the associated projection-based confidence interval for the scalar
function g(β) =w′β is

Cw′β ≡ g[Cβ] = {δ0 :δ0 =w′β0 where β′
0Aβ0 + b′β0 + c ≤ 0}�(5.2)

where w is a nonzero G× 1 vector. When the concentration matrix is nonsin-
gular, all the eigenvalues of A are different from 0. Using the transformation
z = P(β− β̃)� Cw′β may then be written:

Cw′β = {
w′β0 :λ1z

2
1 + λ2z

2
2 + · · · + λGz

2
G ≤ d and z = P(β0 − β̃)

}
�

4The case where the concentration matrix is singular is discussed in a companion working
paper (Dufour and Taamouti (2004)).
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Furthermore,

w′β= w′P ′Pβ = w′P ′P(β− β̃)+w′P ′Pβ̃= a′z +w′β̃�(5.3)

where a= Pw� Setting

Ca′z = {a′z :λ1z
2
1 + λ2z

2
2 + · · · + λGz

2
G ≤ d}�(5.4)

it is then easy to see that, for x ∈ R�

x ∈ Cw′β ⇔ x−w′β̃ ∈ Ca′z�(5.5)

hence, Cw′β = R ⇔ Ca′z = R� We will now distinguish three cases that depend
on the number of negative eigenvalues: (i) all the eigenvalues of A are pos-
itive (i.e., A is positive definite); (ii) A has exactly one negative eigenvalue;
(iii) A has at least two negative eigenvalues.

When A is positive definite, Cβ is a bounded set and, correspondingly, its
image g[Cβ] by the continuous function g(β) = w′β is also bounded. The fol-
lowing proposition then provides an explicit form for the projection-based con-
fidence set Cw′β�

THEOREM 5.1: Let Cβ be the set defined in (5.1), d ≡ 1
4b

′A−1b− c� let w be a
nonzero vector in R

G� and suppose the matrix A is positive definite. If d ≥ 0� then

Cw′β = [
w′β̃−

√
d(w′A−1w)�w′β̃+

√
d(w′A−1w)

]
�(5.6)

where β̃= − 1
2A

−1b� If d < 0� then Cw′β is empty.

Proofs are provided in the Appendix. Note the case where A is positive def-
inite is one where the instruments X2 provide additional explanatory power
for Y (with respect to X1): the number of strong instruments is sufficient to
pin down all parameters (which suggests a traditional identification condition
holds). Let us now consider the case where A has exactly one negative eigen-
value.

THEOREM 5.2: Let Cβ be the set defined in (5.1), d ≡ 1
4b

′A−1b − c� w ∈
R

G\{0}� and suppose the matrix A is nonsingular with exactly one negative eigen-
value. If w′A−1w< 0 and d < 0� then

Cw′β = ]−∞�w′β̃−
√
d(w′A−1w)

] ∪ [
w′β̃+

√
d(w′A−1w)�+∞[

�(5.7)

If w′A−1w > 0 or if w′A−1w ≤ 0 and d ≥ 0� then Cw′β = R� If w′A−1w = 0 and
d < 0� then Cw′β = R\{w′β̃}�
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It is interesting to note that Cw′β can remain informative even if it is un-
bounded. In particular, if we wish to test H0 :w′β = r and consider a decision
rule that rejects H0 when r /∈ Cw′β� H0 will be rejected for all values of r out-
side the interval Cw′β in (5.7). This situation suggests that the rank condition
for identification fails, but some parameters may still be identifiable, i.e., some
components (or linear transformations) of β are identifiable while others are
not.

Finally, we consider the case where A has at least two negative eigenvalues.

THEOREM 5.3: Let Cβ be the set defined in (5.1) and let w ∈ R
G\{0}� If the

matrix A in (5.1) is nonsingular and has at least two negative eigenvalues, then
Cw′β = R�

In the latter case, the projection-based confidence set for w′β is equal to
the real line, thus uninformative. No linear combination of the elements of β
appears to be identifiable.

In summary, our recommended method for constructing confidence inter-
vals for a single coefficient can be summarized as follows:

1. Compute A� b, and c as defined in (3.1), and find the eigenvalues of A.
2. If all the eigenvalues of A are positive (which entails that Cβ is bounded),

use (5.6) to compute the confidence intervals of interest Cw′β.
3. If A has exactly one negative eigenvalue, use Theorem 5.2 to com-

pute Cw′β.
4. If A has more than one negative eigenvalue, set Cw′β = R�

6. CONCLUSION

Recent research in econometrics has shown that weak instruments are quite
widespread and should be carefully addressed. Techniques that are robust to
weak instruments typically require one to consider first joint inference prob-
lem on all or, at least, some subvector of model parameters. This leads to
the problem of drawing inference on individual coefficients (or lower dimen-
sional subvectors). In this paper, we studied this problem from a finite-sample
limited-information viewpoint and focused on AR-type tests and confidence
sets.

We observed that AR-type confidence sets belong to a class of sets defined
by quadric curves (which include ellipsoids as a special case). A simple condi-
tion for deciding whether such confidence sets are bounded was derived. On
observing that a projection technique does provide finite-sample confidence
sets for individual coefficients in such contexts (indeed, the only procedure
for which a finite-sample theory is currently available), we derived a closed-
form solution to the problem of building projection-based confidence sets for
individual structural coefficients (or linear combinations of the latter) when
the joint confidence set has a quadric structure in the case with nonsingular
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quadratic form. The confidence sets so obtained turn out to be as easy to
compute as standard Wald-type 2SLS-based confidence intervals. Simulation
evidence on the performance of projection-based confidence sets as well as
empirical illustrations are available in Dufour and Taamouti (2004).
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APPENDIX: PROOFS

PROOF OF THEOREM 5.1: Consider again the decomposition A = P
′
DP

in (4.3). By (5.5), we have, for any x0 ∈ R� x0 ∈ Cw′β ⇔ x0 − w′β̃ ∈ Ca′z , where
a = Pw� Let x = x0 − w′β̃� By definition, x ∈ Ca′z iff there is a vector z ∈ R

G

such that

z′Dz ≤ d and a′z = x�(A.1)

Furthermore, there is a z that verifies (A.1) iff the solution of the problem

min
z

z′Dz s.c. a′z = x(A.2)

verifies the constraint (A.1). If d < 0� it is clear there is no solution that ver-
ifies (A.1)—for D is positive definite—and consequently Ca′z = Cw′β = ∅. Let
d ≥ 0� The Lagrangian of the problem (A.2) is L = z′Dz + µ(x − a′z)� Since
D is positive definite, the first-order conditions are necessary and sufficient.
These are 2Dz = µa and a′z = x; hence, µ = 2x/(a′D−1a)� z = x/(a′D−1a),
and z′Dz = µx/2 = x2/(a′D−1a)� Thus

x ∈ Ca′z ⇔ x2

a′D−1a
≤ d ⇔ |x| ≤

√
d(a′D−1a)

⇔ |x0 −w′β̃| ≤
√
d(a′D−1a)�

On noting that a′D−1a = w′A−1w� this entails that the confidence set for w′β
is given by (5.6). Q.E.D.
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PROOF OF THEOREM 5.2: As in the proof of Proposition 5.1, let us consider
again the decomposition (4.3), the equivalence x0 ∈ Cw′β ⇔ x0 − w′β̃ ∈ Ca′z�

and set x = x0 − w′β̃ and a = Pw� Now, x ∈ Ca′z iff there is a value of z ∈ R
G

such that

a′z = a1z1 + · · · + aG−1zG−1 + aGzG = x�(A.3)

z′Dz = λ1z
2
1 + · · · + λG−1z

2
G−1 − |λG|z2

G ≤ d�(A.4)

where (without loss of generality) we assume that λG is the negative eigen-
value. Let a(G) = (a1� a2� � � � � aG−1)

′� z(G) = (z1� z2� � � � � zG−1)
′� and D(G) =

diag(λ1�λ2� � � � � λG−1)
′�

If aG = 0� then a(G) �= 0 (because w �= 0 entails a �= 0) and w′A−1w =
a′D−1a > 0� In this case, for any x ∈ R� we can choose z such that a1z1 + · · · +
aG−1zG−1 = x and zG is sufficiently large to ensure that (A.4) holds. Hence
Ca′z = R and Cw′β = R�

We will now suppose that aG �= 0� Then, the conditions (A.3) and (A.4) are
equivalent to

zG = x− a′
(G)z(G)

aG

�(A.5)

|λG|
(
x− a′

(G)z(G)

aG

)2

≥ −d + z′
(G)D(G)z(G)�(A.6)

where the latter inequality can also be written as
[|λG|s2

(G) − a2
G(z

′
(G)D(G)z(G))

] − 2|λG|s(G)x+ [|λG|x2 + da2
G] ≥ 0(A.7)

where s(G) = a′
(G)z(G)� Since (A.5) always allows one to obtain (A.3) once the

vector z(G) is given, a necessary and sufficient condition for x ∈Ca′z is the exis-
tence of a vector z(G) that satisfies inequality (A.7). Furthermore, such a vector
z(G) does exist iff we can find a value s such that the supremum (with respect
to z(G)) of the left-hand side of (A.7) subject to the restriction a′

(G)z(G) = s is
larger than zero. Consequently, we consider the problem

min
z(G)

z′
(G)D(G)z(G) s.c. a′

(G)z(G) = s�(A.8)

where s is some real number. Since D(G) is positive definite, the first-order
conditions are necessary and sufficient to characterize a solution of (A.8). The
Lagrangian for this problem is given by L= z′

(G)D(G)z(G) −µ(a′
(G)z(G) − s), and

the corresponding first order conditions are 2D(G)z(G) = µa(G) and a′
(G)z(G) = s;

hence,

µ= 2s
a′
(G)D

−1
(G)a(G)

�
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z(G) = s

a′
(G)D

−1
(G)a(G)

D−1
(G)a(G)�

z′
(G)D(G)z(G) = s2

a′
(G)D

−1
(G)a(G)

�

where a′
(G)D

−1
(G)a(G) > 0� Substituting the solution of (A.8) into (A.7), we get

qs2 − (2|λG|x)s + (|λG|x2 + da2
G)≥ 0�(A.9)

where q = |λG| − [a2
G/a

′
(G)D

−1
(G)a(G)] = δG(w

′A−1w) and δG ≡ |λG|/a′
(G) ×

D−1
(G)a(G) > 0� Thus, x ∈ Ca′z iff there is a value of s such that (A.9) holds. The

discriminant of this second degree equation is ∆ = 4λ2
Gx

2 −4q(|λG|x2 +da2
G)=

4δGa
2
G[x2 − d(w′A−1w)]�

We will now consider in turn each possible case for the signs of
w′A−1w and d�

1. If w′A−1w > 0� then q > 0 and, for any x� we can find a (sufficiently
large) value of s such that (A.9) will hold. Consequently, Ca′z = Cw′β = R� Thus,
w′A−1w > 0 entails Ca′z = Cw′β = R� irrespective of the value of aG (the case
aG = 0 was considered at the beginning of the proof).

2. If w′A−1w < 0 and d < 0� then q < 0 and (A.9) has a (real) solution iff
∆ ≥ 0 or, equivalently, x2 ≥ d(w′A−1w) > 0� Consequently,

Ca′z = ]−∞�−
√
d(w′A−1w)

] ∪ [√
d(w′A−1w)�+∞[

�(A.10)

Cw′β = ]−∞�w′β̃−
√
d(w′A−1w)

] ∪ [
w′β̃+

√
d(w′A−1w)�+∞[

�(A.11)

3. If w′A−1w = 0 and d < 0� (A.9) can be satisfied for any x �= 0; hence,
Ca′z = R\{0} and Cw′β = R\{w′β̃}�

4. Finally, if d ≥ 0� (A.9) is satisfied for any x (on taking s = 0) and we have
Ca′z = Cw′β = R� All possible cases have been covered. Q.E.D.

PROOF OF THEOREM 5.3: We need to show that Ca′z = R� To see this, let
λi1 and λi2 be the two negative eigenvalues of the matrix A� and (without loss
of generality) suppose a1 �= 0� For any real x� we will show that x ∈ Ca′z� which
entails that Cw′β = Ca′z = R�

If λi1 or λi2 is associated with z1 (say it is λi1 ), we can set the compo-
nents of z such that (i) z1 = (x − ai2zi2)/a1; (ii) zi = 0 for i > 1� i �= i2;
(iii) λ1z

2
1 + λi2z

2
i2

≤ d. Since λi1 and λi2 are negative, zi2 does exist. The vec-
tor z verifies (4.4) and a′z = x, hence, x ∈Ca′z�

If none of λi1 and λi2 is associated with z1� we can set z so that (i) z1 = x/a1;
(ii) zi = 0 for i �= i1� i �= i2, and i > 1; (iii) λi1z

2
i1

+ λi2z
2
i2

≤ d − λ1(x/a1)
2 and

ai1zi1 + ai2zi2 = 0� Since λi1 and λi2 are negative, appropriate values of zi1 and
zi2 always exist; hence, x ∈Ca′z . Q.E.D.



INFERENCE IN LINEAR STRUCTURAL MODELS 1365

REFERENCES

ANDERSON, T. W., AND H. RUBIN (1949): “Estimation of the Parameters of a Single Equation in
a Complete System of Stochastic Equations,” The Annals of Mathematical Statistics, 20, 46–63.

DUFOUR, J.-M. (1990): “Exact Tests and Confidence Sets in Linear Regressions with Autocorre-
lated Errors,” Econometrica, 58, 475–494.

(1997): “Some Impossibility Theorems in Econometrics, with Applications to Structural
and Dynamic Models,” Econometrica, 65, 1365–1389.

(2003): “Identification, Weak Instruments and Statistical Inference in Econometrics,”
Canadian Journal of Economics, 36, 767–808.

DUFOUR, J.-M., AND J. JASIAK (2001): “Finite Sample Limited Information Inference Methods
for Structural Equations and Models with Generated Regressors,” International Economic Re-
view, 42, 815–843.

DUFOUR, J.-M., AND M. TAAMOUTI (2004): “Further Results on Projection-Based Inference in
IV Regressions with Weak, Collinear or Missing Instruments,” Discussion Paper, Département
de Sciences Économiques, Université de Montréal.

FORCHINI, G., AND G. HILLIER (2003): “Conditional Inference for Possibly Unidentified Struc-
tural Equations,” Econometric Theory, 19, 707–743.

GLESER, L. J., AND J. T. HWANG (1987): “The Nonexistence of 100(1 − α) Confidence Sets of
Finite Expected Diameter in Errors in Variables and Related Models,” The Annals of Statistics,
15, 1351–1362.

KLEIBERGEN, F. (2001): “Testing Subsets of Structural Coefficients in the IV Regression Model,”
Discussion Paper, Department of Quantitative Economics, University of Amsterdam.

(2002): “Pivotal Statistics for Testing Structural Parameters in Instrumental Variables
Regression,” Econometrica, 70, 1781–1803.

LEHMANN, E. L. (1986): Testing Statistical Hypotheses (Second Ed.). New York: Wiley.
MOREIRA, M. J. (2003): “A Conditional Likelihood Ratio Test for Structural Models,” Economet-

rica, 71, 1027–1048.
PETTOFREZZO, A. J., AND M. L. MARCOANTONIO (1970): Analytic Geometry with Vectors. Glen-

view, IL: Scott, Foresman.
SHILOV, G. E. (1961): An Introduction to the Theory of Linear Spaces. Englewood Cliffs, NJ:

Prentice-Hall.
STAIGER, D., AND J. H. STOCK (1997): “Instrumental Variables Regression with Weak Instru-

ments,” Econometrica, 65, 557–586.
STARTZ, R., E. ZIVOT, AND C. R. NELSON (2003): “Improved Inference in Weakly Identified

Instrumental Variables Regression,” Discussion Paper, Department of Economics, University
of Washington, Seattle.

STOCK, J. H., AND J. H. WRIGHT (2000): “GMM with Weak Identification,” Econometrica, 68,
1097–1126.

STOCK, J. H., J. H. WRIGHT, AND M. YOGO (2002): “A Survey of Weak Instruments and Weak
Identification in Generalized Method of Moments,” Journal of Business & Economic Statistics,
20, 518–529.

WANG, J., AND E. ZIVOT (1998): “Inference on Structural Parameters in Instrumental Variables
Regression with Weak Instruments,” Econometrica, 66, 1389–1404.


