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ABSTRACT

Simple point-optimal sign-based tests are developed for inference on linear and nonlinear regres-
sion models with non-Gaussian heteroskedastic errors. Thetests are exact, distribution-free, robust
to heteroskedasticity of unknown form, and may be inverted to build confidence regions for the
parameters of the regression function. Since point-optimal sign tests depend on the alternative hy-
pothesis considered, an adaptive approach based on a split-sample technique is proposed in order
to choose an alternative that brings power close to the powerenvelope. The performance of the
proposedquasi-point-optimalsign tests with respect to size and power is assessed in a Monte Carlo
study. The power of quasi-point-optimal sign tests is typically close to the power envelope, when
approximately10% of the sample is used to estimate the alternative and the remaining sample to
compute the test statistic. Further, the proposed procedures perform much better than common
least-squares-based tests which are supposed to be robust against heteroskedasticity.

Keywords: sign test; point-optimal test; nonlinear model; heteroskedasticity; exact inference;
distribution-free; power envelope; split-sample; adaptive method; projection.
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1. Introduction

Regression errors in economic data frequently exhibit non-normal distributions and heteroskedastic-
ity. In the presence of several types of heteroskedasticity, usual “robust” tests – such as tests based
on White (1980)-type variance corrections - remain plaguedby poor size control and/or low power.
This is the case, in particular, when there is a break in the disturbance variance or with a GARCH
structure with one or several outliers. Further, the available exact parametrictests typically assume
Gaussian disturbances. The latter assumption is often unrealistic and, in the presence of heavy tails
and asymmetric distributions, the associated tests may easily not perform well in terms of size con-
trol or power. Furthermore, statistical procedures for inference on parameters ofnonlinearmodels
are typically based on asymptotic approximations, which may easily not be reliable in finite samples
[see Dufour (2003)].

The present paper proposes simple point-optimal sign-based tests in linear and nonlinear re-
gression models, which are valid under non-normality and heteroskedascticity of unknown form,
provided the errors have median zero conditional on the explanatory variables. The proposed tests
are exact, distribution-free, robust against heteroskedasticity of unknown form, and may be inverted
to build confidence regions for the vector of unknown parameters. The setup and the type of proce-
dures we consider are motivated in at least two ways.

First, it is well known that hypotheses on means (or moments) are not testable in nonparametric
setups even under the apparently restrictive assumption that observation are independent and iden-
tically distributed (i.i.d.): if a test has levelα for testing the null hypothesis that the mean ofi.i.d.
observations has a given value, then its power cannot largerthan the levelα under any alternative of
the mean; see Bahadur and Savage (1956). Similar results hold for coefficients of regression models;
see Dufour, Jouneau and Torrès (2008). In other words, moments are not empirically meaningful
in many common nonparametric models. This provides a strongreason for focusing on quantile
parameters (such as medians) in nonparametric models – instead of moments – because quantiles
are not affected by such problems of nontestability.

Second, in the presence of general heteroskedasticity, Lehmann and Stein (1949) and Pratt and
Gibbons (1981) show that sign methods are the only possible way of producing valid inference in
finite samples; see also Dufour and Hallin (1991) and Dufour (2003). If a test has levelα for testing
the null hypothesis that observations are independent eachwith a distribution symmetric about zero,
then its level must be equal toα conditional on the absolute values of the observations: in other
words, it must be asign test. For a more detailed discussion of statistical inference impossibilities
in nonparametric models, see Dufour (2003) and Dufour et al.(2008).

A number of sign-based test procedures have been developed in the literature. In the presence
of only one explanatory variable, Campbell and Dufour (1991, 1995, 1997) propose nonparametric
analogues of thet-test, based on sign and signed rank statistics, which are applicable when regres-
sors involve feedback of the type considered by Mankiw and Shapiro (1986). These tests are exact
even when the disturbances are asymmetric, non-normal, andheteroskedastic. Boldin, Simonova
and Tyurin (1997) propose locally optimal sign-based inference and estimation for linear models.
Coudin and Dufour (2008) extend the work by Boldin et al. (1997) to account for serial dependence
and discrete distributions. Wright (2000) proposes variance-ratio tests based on the signs and ranks
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to test the null hypothesis that the series of interest is a martingale difference sequence. For other
sign-based test procedures, the reader can consult Capanu,Jones and Randles (2006) and Gerard
and Schucany (2007) among others.

The present paper focuses on the optimality of sign tests andderives point-optimal tests based on
sign statistics. Point-optimal tests are useful in a numberof ways and they are particularly attractive
when testing an economic theory against another one. An important feature of these tests comes
from the fact that they trace out thepower envelope, i.e. the maximum achievable power for a given
testing problem. The power envelope provides an obvious benchmark against which test procedures
can be evaluated. An early review and discussion of point-optimal tests is available in King (1987-
88). More recently, this technique has been exploited in several papers in order to improve power.
Dufour and King (1991) use point-optimal tests to do inference on the autocorrelation coefficient of
a linear regression model with first-order autoregressive normal disturbances. Elliott, Rothenberg
and Stock (1996) derive the asymptotic power envelope for point-optimal tests of a unit root in the
autoregressive representation of a Gaussian time series under various trend specifications. Jansson
(2005) derives an asymptotic Gaussian power envelope for tests of cointegration and proposes a
feasible point-optimal cointegration test whose local asymptotic power function is found to be close
to the asymptotic Gaussian power envelope. Begum and King (2005) propose a new approach
for testing a composite null against a composite alternative hypothesis based on the generalized
Neyman-Pearson lemma and maximizes average power subject to controlling average size over
different subsets of the null hypothesis parameter space. Liang, Huang and Yang (2008) suggests
locally optimal tests for exponential distributions with type-I censoring.

Since point-optimal sign (hereafter POS) tests depend on the alternative hypothesis, we propose
an adaptive approach based on a split-sample technique [Dufour and Torrès (1998), Dufour and
Jasiak (2001)] to choose an alternative that makes the powercurve of the POS test close to the
power envelope. The idea consists in dividing the sample into two independent parts and use the
first one to estimate the value of the alternative hypothesisand the second to compute the POS
test statistic [Dufour and Taamouti (2003), Dufour and Iglesias (2008)]. The simulation results
show that using approximately10% of sample to estimate the alternative yields a power function
which is typically very close to the power envelope. We present a Monte Carlo study assessing the
performance of the proposed “quasi-POS” test by comparing their size and power to those of some
common tests which are supposed to be robust against heteroskedasticity. The results show that our
procedures work quite well.

The plan of the paper is as follows. In Section 2, we present a general framework for deriving
POS tests. In Section 3, we propose POS tests in the context oflinear and nonlinear regression
models. In Section 4, we study the power properties of the POStests and propose an adaptive
approach to choose an optimal alternative. In Section 5, we discuss the construction of the POS
confidence regions using projection techniques. In Section6, we present a Monte Carlo study
assessing the performance of POS tests by comparing their size and power to those of some popular
tests. We conclude in Section 7. Proofs are presented in Appendix A.
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2. General framework

In this section, we describe a framework for deriving POS tests in the context of general hypothesis
testing problem. The point-optimal tests are useful in a number of ways and they are most attractive
for problems in which the parameter space can be restricted by theoretical considerations. They
would ensure optimal power at given point and, depending on the structure of the problem, they can
have power over the entire parameter space.

We consider here a random sample{yt}n
t=1 such that

y1, . . . , yn are independent with

P[yt ≥ 0] = pt , t = 1, . . . , n. (2.1)

We define the following vector of signs

U(n) =
(

s(y1), . . . , s(yn)
)′

where

s(yt) =

{

1, if yt ≥ 0
0, if yt < 0

, t = 1, . . . , n.

We assume also that theyt have no mass at zero,i.e.

P[yt = 0] = 0 , t = 1, . . . , n, (2.2)

which holds automatically when eachyt has a continuous distribution.
We wish to test the null hypothesis

H0 : P[s(yt) = 1] = pt0, t = 1, . . . , n, (2.3)

where0 < pt0 < 1, t = 1, . . . , n, against the alternative hypothesis

H1 : P[s(yt) = 1] = pt1, t = 1, . . . , n, (2.4)

where0 < pt1 < 1, t = 1, . . . , n. We consider optimal tests (in the Neyman-Pearson sense) which
maximize the power function under the constraintP [rejectH0 | H0] ≤ α; see Lehmann (1959,
page 65). The latter allows one to work with the log-likelihood function and simplify the expression
of POS test statistics. The following theorem gives a POS test to test the null hypothesisH0 against
the alternative hypothesisH1.

Theorem 2.1 Under the assumptions(2.1)-(2.2), let H0 andH1 be defined by(2.3) - (2.4),

Sn[p0(n), p1(n)] =
n

∑

t=1

ln

[

pt1(1 − pt0)

pt0(1 − pt1)

]

s(yt) (2.5)

wherep0(n) =
(

p10, . . . , pn0

)′

andp1(n) =
(

p11, . . . , pn1

)′

, and suppose the constantc1 satis-
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fiesP [Sn[p0(n), p(n)] > c1] = α underH0, with 0 < α < 1. Then the test with critical region

Sn[p0(n), p1(n)] > c1 (2.6)

is most powerful for testingH0 against H1 among level-α tests based on the signs
(

s(y1), . . . , s(yn)
)′

.

PROOF. The likelihood function of the random sample{yt}n
t=1 is

L
(

U(n), p(n)
)

=

n
∏

t=1

{

P[yt ≥ 0]s(yt)(1 − P[yt ≥ 0])1−s(yt)
}

(2.7)

wherep(n) =
(

p1, . . . , pn

)′

. UnderH0, L
(

U(n), p(n)
)

takes the form

L
(

U(n), p0(n)
)

=
n

∏

t=1

p
s(yt)
t0 (1 − pt0)

1−s(yt), (2.8)

while underH1,

L
(

U(n), p1(n)
)

=
n

∏

t=1

p
s(yt)
t1 (1 − pt1)

1−s(yt). (2.9)

The log-likelihood ratio is then

ln

{

L
(

U(n), p1(n)
)

L
(

U(n), p0(n)
)

}

=

n
∑

t=1

at(1|0)s(yt) + b(n) (2.10)

where

at(1|0) = ln

(

pt1

pt0

)

− ln

(

1 − pt1

1 − pt0

)

, b(n) =
n

∑

t=1

ln

(

1 − pt1

1 − pt0

)

. (2.11)

Using the Neyman-Pearson lemma [see Lehmann (1959, page 65)], the most powerful level-α test
of H0 againstH1 rejectsH0 when

n
∑

t=1

ln

[

pt1(1 − pt0)

pt0(1 − pt1)

]

s(yt) > c1 ≡ c − b(n) .

In the case wherept1 = p1, pt0 = p0, for all t, with p1 > p0 > 0, the critical region in (2.6) can
be written as

n
∑

t=1

s(yt) > c1 .
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Similarly, for pt1 = p1, pt0 = p0 and0 < p1 < p0, the critical region (2.6) takes the form

n
∑

t=1

s(yt) < c̄1

for some appropriate constantc̄1. In both cases,i.e. for p1 > p0 > 0 and0 < p1 < p0, the test
statistic is

Sn =

n
∑

t=1

s(yt). (2.12)

UnderH0, Sn follows a binomial distributionBi(n, p0), i.e. P(Sn = k) = Ck
npk

0(1−p0)
n−k, where

Ck
n = n!/[k!(n − k)!] . Since the test statistic (2.12) does not depend on the alternative hypothesis

p1, the above test corresponds to auniformly most powerfultest.

Example 2.1 BACKTESTING VALUE-AT-RISK Consider daily ex post portfolio returns, sayRt,
and daily ex ante Value-at-Risk forecasts, sayV aRt(p), with promised coverage ratep, such that
Pt−1[Rt < V aRt(p)] = p. Define the hit sequence ofV aRt(p) violations as

It =

{

1, if Rt < V aRt(p)
0, otherwise.

Backtesting Value-at-Risk consists in testing whether thecoverage rate of Value-at-Risk (VaR) is
correct [see Christoffersen (1998)]. It is a key part of the internal model’s approach to market
risk management as laid out by the Basel Committee on BankingSupervision (1996). Testing the
unconditional coverage of VaR is equivalent to testing the null hypothesis

H0 : It
iid∼ B(p) (2.13)

against the alternative hypothesis

H1 : It
iid∼ B(p̄) (2.14)

whereB(p) represents a Bernoulli random variable such thatP[B(p) = 1] = 1−P[B(p) = 0] = p.
UnderH0, the likelihood function of the random sequence{It}T

t=1 is given by

L0(I1, . . . , IT , p) =

T
∏

t=1

pIt(1 − p)1−It = pST (1 − p)n−ST

whereST =
∑T

t=1 It. Under the alternative, the likelihood function is

L1(I1, . . . , IT , p̄) = p̄ST (1 − p̄)n−ST .

Using the Neyman-Pearson lemma and the previous results, a test statistic for the null hypothesis
(2.13) against the alternative hypothesis (2.14) is given by ST =

∑T
t=1 It, where underH0, ST

follows a binomial distributionBi(T, p).
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3. POS tests in linear and nonlinear regression models

This section proposes exact POS-based tests in the context of linear and nonlinear regression models
where regressors can be taken as fixed. We consider in turn twoproblems. The first one consists in
testing whether the conditional median of a vector of observation is zero against a linear regression
alternative. The second one tests whether the coefficients of a possibly nonlinear median regression
function have a given value against another nonlinear median regression. The first problem is a
special case of the second one, but it will be useful from an expositional viewpoint to study the
simpler problem first. Both problems can be viewed as specialcases of the general setup in Section
2.

3.1. Testing the zero coefficient hypothesis in linear regressions

Suppose the variableyt can be explained by a linear function of the vectorxt :

yt = x
′

tβ + εt , t = 1, . . . , n, (3.1)

wherext is ak × 1 vector of explanatory variables,β ∈ R
k is an unknown parameter vector, and

the errorsε1, . . . , εn are independent conditional onX with

P[εt > 0 | X] = P[εt < 0 | X] =
1

2
, t = 1, . . . , n, (3.2)

whereX = [x1, . . . , xn]
′

is ann × k matrix. Note (3.2) entails thatεt has no mass at zero,i.e.
P[εt = 0 | X] = 0 for all t.

We wish to test the null hypothesis
H0 : β = 0 (3.3)

against the alternative hypothesis
H1 : β = β1. (3.4)

Under (3.1), the hypothesis testing problem given by (3.3)-(3.4) is a special case of the one defined
by (2.3)-(2.4) where

pt = P[yt ≥ 0 | X] = 1 − P[εt < −β
′

xt | X].

UnderH0,

pt0 = 1 − P[εt < 0 | X] =
1

2
(3.5)

while, underH1,
pt1 = 1 − P[εt < −β

′

1xt | X]. (3.6)

Thus, a POS test for the null hypothesis (3.3) against the alternative hypothesis (3.4) can be deduced
from Theorem2.1using the equations (3.5)-(3.6). We then have the followingresult.
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Proposition 3.1 Under the assumptions(3.1) and(3.2), let H0 andH1 be defined by(3.3) - (3.4),

SLn(β1) =

n
∑

t=1

at(β1) s(yt)

where

at(β1) = ln

[

1 − P[εt ≤ −x′
tβ1 | X]

P[εt ≤ −x′
tβ1 | X]

]

, (3.7)

and suppose the constantc1(β1) satisfiesP [
∑n

t=1 at(β1)s(yt) > c1(β1)] = α under H0, with
0 < α < 1. Then the test that rejectsH0 when

SLn(β1) > c1(β1) (3.8)

is most powerful(conditional onX) for testingH0 againstH1 among level-α tests based on the

signs
(

s(y1), . . . , s(yn)
)′

.

Under the null hypothesis, the signss(y1), . . . , s(yn) are i.i.d. according to a Bernoulli
Bi(1, 0.5). So the distribution of the test statistic only depends on theweightsat(β1) and thus
does not involve any nuisance parameter under the null hypothesis. In view of the nonparametric
nature of assumption (3.2), this means that tests based onSLn(β1), such as the test given by (3.8),
are distribution-free and robust against heteroskedasticity of unknown form. It is a nonparametric
pivotal function. Under the alternative hypothesis, however, the power function of the test depends
on the form of the distribution function ofεt.

An interesting special case is the one whereε1, . . . , εn are i.i.d. according to aN(0, 1) distri-
bution. Then the optimal test statisticSLn(β1) takes the form:

SL∗
n(β1) =

n
∑

t=1

ln

[

Φ(x′
tβ1)

1 − Φ(x′
tβ1)

]

s(yt) (3.9)

whereΦ(·) is the standard normal distribution function.
In view of the above characterization of the distribution ofSLn(β1), its distribution can be

simulated under the null hypothesis and the relevant critical values can be evaluated to any degree
of precision with a sufficient number of replications. It is also possible to run exact Monte Carlo
tests (corrected for the discrete nature of the test statistic) as described in Dufour (2006).

3.2. Testing general full coefficient hypotheses in nonlinear regressions

We consider now a nonlinear regression model:

yt = f(xt, β) + εt, t = 1, . . . , n, (3.10)

wherext is an observablek × 1 vector of fixed explanatory variables,f( · ) is a scalar function,
β ∈ R

k is an unknown vector of parameters, and the errorsε1, . . . , εn are independent conditional
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on X with a distribution that satisfies (3.2). We do not require that the parameter vectorβ be
identified.

We consider the problem of testing the null hypothesis

H(β0) : β = β0 (3.11)

against the alternative hypothesis
H(β1) : β = β1. (3.12)

A test for H(β0) againstH(β1) can be constructed as in Section 3.1. First, we note that model
(3.10) is equivalent to the transformed model

ỹt = g(xt, β, β0) + εt,

whereỹt = yt − f(xt, β0) andg(xt, β, β0) = f(xt, β) − f(xt, β0). Under assumption (2.1) and
conditional onX, ỹ1, . . . , ỹn are independent. Second, testingH(β0) againstH(β1) is equivalent
to testing

H̄0 : g(xt, β, β0) = 0, t = 1, . . . , n,

against
H̄1 : g(xt, β, β0) = f(xt, β1) − f(xt, β0), t = 1, . . . , n.

Finally, the likelihood function of new random sample{ỹt}n
t=1 is given by

L(Ũ (n), β, X) =

n
∏

t=1

{

P[ỹt ≥ 0 | X]s(ỹt)(1 − P[ỹt ≥ 0 | X])1−s(ỹt)
}

where the elements of the sign vectorŨ(n) =
(

s(ỹ1), . . . , s(ỹn)
)

are

s(ỹt) =

{

1, if ỹt ≥ 0
0, if ỹt < 0

, for t = 1, . . . , n.

Thus, we can use the result of Proposition3.1 to derive a sign-based test for the null hypothesis
H(β0) againstH(β1). This yields the following result.

Proposition 3.2 Under the assumptions(3.10) and (3.2), let H(β0) and H(β1) be defined by
(3.11) - (3.12),

SNn(β0|β1) =

n
∑

t=1

ãt(β0|β1) s (yt − f(xt, β0)) (3.13)

where

ãt(β0|β1) = ln

[

1 − p(xt, β0, β1 | X)

p(xt, β0, β1 | X)

]

,

and suppose the constantc1(β0, β1) satisfiesP [
∑n

t=1 at(β1)s(yt) > c1(β0, β1)] = α under
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H(β0), with 0 < α < 1. Then the test that rejectsH(β0) when

SNn(β0|β1) > c1(β0, β1)

is most powerful(conditional onX) for testingH(β0) againstH(β1) among level-α tests based

on the signs
(

s(ỹ1), . . . , s(ỹn)
)′

.

If we consider a linear functionf(xt, β) = x
′

tβ and assume that under the alternative hypoth-
esisεt follows N(0, 1), then the test statistic for the null hypothesisH(β0) against the alternative
hypothesisH(β1) is given by:

SN∗
n(β0|β1) =

n
∑

t=1

ln

[

Φ
(

x′
t(β1 − β0)

)

1 − Φ
(

x′
t(β1 − β0)

)

]

s(yt − x
′

tβ0) (3.14)

whereΦ(.) is the standard normal distribution function. The test statistic SN∗
n(β0|β1) depends on a

particular alternative hypothesisβ1. In practice, the latter is supposed to be unknown which makes
the proposed POS test unfeasible. However, in the next section we propose a new approach which
can be use to choose an optimal alternativeβ1 at which the power of the test is maximized.

4. Choice of the optimal alternative hypothesis

In this section, we study the power properties of the proposed POS test. We derive its power en-
velope and analyze the impact of the alternative hypothesisβ1 on its power function. Since the
latter depends on the alternative hypothesis, we propose anapproach (hereafter adaptive approach)
to choose the alternativeβ1 at which the power of POS test is close to the power envelope.

4.1. Power envelope of POS tests

We derive an upper bound (hereafter power envelope) of the power function of POS test. It is
well known, see for example King (1987-88), that point-optimal tests can be used to trace out the
maximum attainable power envelope for a given testing problem. This power envelope provides a
natural benchmark against which test procedures can be compared.

We know from Section 3 that the POS test statistic is a function of β1

SN∗
n(β0|β1) =

n
∑

t=1

ln

[

1 − p(xt, β0, β1 | X)

p(xt, β0, β1 | X)

]

s
(

yt − f(xt, β0)
)

.

Its power function, sayΠ(β, β1), is also a function ofβ1 :

Π(β, β1) = P [SN∗
n(β0|β1) > c1(β0, β1)]

wherec1(β0, β1) satisfiesP[SN∗
n(β0|β1) > c1(β0, β1) | H0] ≤ α. The following theorem pro-

vides a theoretical formula for power function of POS test.
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Theorem 4.1 Under assumptions(2.1), (3.2) and (3.10), the power function of POS test atβ1 is
given by

Π(β, β1) =
1

2
+

1

π

∫ ∞

0

Im
{

exp (−iuc1(β0, β1)) φSN∗
n
(u)

}

u
du

where, foru ∈ R,

φSN∗
n
(u) =

n
∏

t=1

[

1 +

(

exp

(

iu ln

[

1 − p(xt, β0
, β

1
| X)

p(xt, β0
, β

1
| X)

])

− 1

)

(

1 − p(xt, β0
, β

1
| X)

)

]

p(xt, β0, β1 | X) = P[εt ≤ f(xt, β0) − f(xt, β1) | X], i =
√
−1, andIm{z} denotes the imagi-

nary part of a complex numberz. The critical valuec1(β0, β1) is chosen so thatP[SN∗
n(β0|β1) >

c1(β0, β1) | H0] ≤ α, whereα is an arbitrary significance level.

The proof of this theorem is given in Appendix A. Since the test statisticSN∗
n(β0|β1) is optimal

against the alternativeβ1, the envelope power function, saȳΠ(β), is a function which associates
the valueΠ(β, β1) to each elementβ ∈ R

k:

Π̄(β) = Π(β, β) = P[SN∗
n(β) > c1(β0, β1)]. (4.1)

The objective now is to find a value ofβ1 at which the power curve of POS test remains close to
the relevant power envelope. For a given valueΠ of power function and levelα of POS test, an
alternative, sayβ1(Π,α), can be determined by inverting the power envelope functionΠ̄(β). For
any valueΠ ∈ (α, 1), the family of POS test statistics can be written as follows:

{

SN∗
n(Π) =

n
∑

t=1

ln

[

1 − p(xt, β0, β1(Π,α) | X)

p(xt, β0, β1(Π,α) | X)

]

s (yt − f(xt, β0)) , for Π ∈ (α, 1)

}

.

Although every member of this family is admissible, it is possible that some values ofΠ may yield
tests whose power functions lie close to the power envelope over a considerable range. Past research
suggests that values ofΠ near one-half often have this property, see for example King(1987-88),
Dufour and King (1991) and Elliott et al. (1996). Consequently, one can choose as an optimal
alternative the one which corresponds toΠ = 0.5. From Theorem4.1and equation (4.1), the value
of β1 which corresponds toΠ = 0.5 is the solution of the following equation

∫ ∞

0

Im
{

exp (−iuc1(β0, β1)) φSN∗
n
(u)

}

u
du = 0 (4.2)

wherec1(β0, β1) andφSN∗
n
(u) are defined in Theorem4.1. Using the properties of the cumulative

density function (monotonically increasing, continuous,lim
c→−∞

Pr(z < c) = 0 and lim
c→+∞

Pt(z <

c) = 1) one can show that equation (4.2) has a unique solution. However, an exact solution for
this equation is not feasible, since it is not easy to find an expression forIm{·} and the integral
∫ ∞

0 Im{·}du is difficult to evaluate. The latter can be approximated using results from Imhof
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(1961), Davies (1973, 1980), among others, who propose a numerical approximation for the dis-
tribution function using the

characteristic function. The proposed approximation introduces two types of errors: discretiza-
tion and truncation errors. Davies (1973), proposes a criterion to control for discretization error, and
Davies (1980) proposes three different bounds to control for truncation error. Another alternative
way to solve the power envelope function forβ1 is to use simulations [see Elliott et al. (1996)]. We
can use simulations to approximate the power envelope function and calculate the optimal alterna-
tive which corresponds to the value ofΠ̄(β1) near one-half.

Let us now examine the impact of the alternative hypothesisβ1 on the power function. Using
simulations, we compare the power curves of POS test to the power envelope (PE) under different
alternatives and data generating processes (hereafter DGPs). We consider a linear regression model
with one regressor and an error term which follows one of the following distributions (DGPs):
normal distribution, Cauchy distribution, mixture of normal and Cauchy distributions, and nor-
mal distribution with a break in variance. We also consider other DGPs [normal distribution with
GARCH(1, 1) plus jump variance and normal distribution with non stationary GARCH(1, 1) vari-
ance] which do not satisfy they key assumption (2.1) and the results seem interesting. A more
detailed description of these DGPs is given in Section 6. Thesimulations results [Figures 4.1-4.1]
show that the alternative hypothesisβ1 affects the power function. Particularly, whenβ1 is far from
the null hypothesis, hereβ = 0, the power curve of POS test moves away from the power envelope
curve.

Since the previous approach to finding the optimal alternative is somewhat arbitrary, in the next
subsection we propose an adaptive approach based on split-sample technique to estimate the optimal
alternative.

4.2. An adaptive approach to choose an optimal alternative

Existing adaptive statistical methods use the data to determine which statistical procedure is most
appropriate for a specific testing problem. These methods usually involve two steps. In the first step
a selection statistic is computed that estimates the shape of the error distribution. In the second step
the selection statistic is used to determine an effective statistical procedure for the error distribution.
For more details about the adaptive statistical methods, the reader can consult O’Gorman (2004).

The adaptive approach we consider here is an extension of theadaptive approach suggested in
Dufour and Taamouti (2003) and Dufour and Iglesias (2008) for tests in parametric models involv-
ing nonstandard distributions. We propose a split-sample technique [Dufour and Jasiak (2001)] to
chooseβ1 such that the power of POS test is close to the power envelope.The alternative hypoth-
esisβ1 is unknown and a practical problem consists in finding its independent estimate. To make
size control easier, we estimateβ1 from a sample which is independent of the one used to compute
the POS test statistic. This can be easily done by splitting the sample. The idea is to divide the
sample into two independent parts and use the first one to estimate the value of the alternative and
the second one to compute the POS test statistic.

Let n = n1 +n2, y = (y
′

(1), y
′

(2))
′
, X = (X

′

(1),X
′

(2))
′
, andε = (ε

′

(1), ε
′

(2))
′
, where the matrices

y(i), X(i), andε(i) haveni, i = 1, 2, rows. Whenf(xt, β) is a linear function ofβ (linear regression

11



Figure 1.Power comparisons: different alternatives
Normal and Cauchy error distributions

A. Normal distribution
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B. Cauchy distribution
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Note: These figures compare the power of POS test under different alternatives. Panel A corre-
sponds to the case where the error termεt in the model (6.1) is homoskedastic and normally distrib-
uted. Panel B corresponds to the case whereεt is homoskedastic and follows a Cauchy distribution.
PE corresponds to the power envelop.
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Figure 2.Power comparisons: different alternatives
Mixture and normal error distribution with break

A. Mixture distribution
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B. Normal distribution with break in variance
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Note: These figures compare the power of POS test under different alternatives. Panel A corre-
sponds to the case where the error termεt in the model (6.1) follows a mixture of normal and
Cauchy distributions. Panel B corresponds to the case whereεt follows a normal distribution with
break in variance. PE corresponds to the power envelop.
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Figure 3.Power comparisons: different alternatives
GARCH error distributions

A. Normal distribution with GARCH (1, 1) plus jump variance
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B. Normal distribution with non stationary GARCH (1, 1) variance
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Note: These figures compare the power of POS test under different alternatives. Panel A corre-
sponds to the case where the error termεt in the model (6.1) follows a normal distribution with
GARCH(1, 1) plus jump variance and Panel B corresponds to the case whereεt follows a normal
distribution with non stationary GARCH(1, 1) variance. PE corresponds to the power envelop.
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model), we can use the firstn1 observations,y(1) andX(1), to estimate the alternative hypothesis
β1 using OLS

β̂(1) = (X
′

(1)X(1))
−1X

′

(1)y(1).

Becausêβ1 is independent ofX(2), we can use the lastn2 observations,y(2) andX(2), to calculate
the test statistic and get a valid POS test

SN∗
n(β0|β̂1) =

n
∑

t=n1+1

ln

[

1 − p(xt, β0, β̂(1) | X)

p(xt, β0, β̂(1) | X)

]

s(yt − x
′

tβ0)

wherep(xt, β0, β | X) = P[εt ≤ x
′

t(β0 − β) | X]. However, the OLS estimator is known to
be very sensitive to outliers and non-normal errors, consequently it is important to choose a more
appropriate method to estimateβ1. In the presence of outliers many estimators are proposed to
estimate the coefficients in regression model such that the least median of squares (LMS) estimator
[see Rousseeuw and Leroy (1987)], the S-estimators [see Rousseeuw and Yohai (1984)], and the
τ -estimators [see Yohai and Zamar (1988)].

Now, whenf(xt, β) is a nonlinear function ofβ (nonlinear regression model), the above OLS
method can not be used to estimateβ1. We will need to use for example nonlinear least squares
or maximum likelihood method to estimate the alternative hypothesisβ1. This case will typically
require an iterative procedure for solution. As for linear regression model, we can use the firstn1

observations,y(1) andX(1), to estimate the alternative hypothesisβ1 using nonlinear least squares
method:

β̂1 = arg min
β

1

n1
∑

t=1

[yt − f(xt, β1)]
2

and the second lastn2 observations,y(2) andX(2), to calculate the test statistic:

SN∗
n(β0|β̂1) =

n
∑

t=n1+1

ln

[

1 − p(xt, β0, β̂(1) | X)

p(xt, β0, β̂(1) | X) | X]

]

s (yt − f(xt, β0))

wherep(xt, β0, β | X) = P[εt ≤ f(xt, β0) − f(xt, β) | X]. Different choices forn1 andn2 are
clearly possible. Alternatively, we could select randomlythe observations assigned to the vectors
y(1) andy(2). As we will show latter the number of observations retained for the first and the second
subsamples have a direct impact on the power of the test. In particular, it seems that we could
get more powerful test when we use a relatively small number of observations for computing the
alternative hypothesis and keep more observations for the calculation of test statistic. This point
is illustrated below in the context of a linear regression model. We use simulations to compare
the power curves of split-sample-based POS test (hereafterSS-POS test) to the power envelope
(hereafter PE) under different split-sample sizes and using different DGPs [see Section 6]. The
results [Figures 4.2-4.2] show that using approximately10% of sample to estimate the alternative
yields a power which is typically very close to the power envelope. This is true for all DGPs
considered in our simulation study.
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Figure 4.Power comparisons: different sample splits
Normal and Cauchy error distributions

A. Normal distribution
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B. Cauchy distribution
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Note: These figures compare the power of POS test using different split-samples (SS-POS test);
4%, 10%, 20%, 40%, 60%, and80%. Panel A corresponds to the case where the error termεt in
the model (6.1) is homoskedastic and normally distributed.Panel B corresponds to the case where
εt is homoskedastic and follows a Cauchy distribution. PE corresponds to the power envelop.
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Figure 5.Power comparisons: different sample splits
Mixture and normal distribution with break

A. Mixture distribution
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B. Normal distribution with Break in variance
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Note: These figures compare the power of POS test using different split-samples (SS-POS test);
4%, 10%, 20%, 40%, 60%, and80%. Panel A corresponds to the case where the error termεt in
the model (6.1) follows a mixture of normal and Cauchy distributions. Panel B corresponds to the
case whereεt follows a normal distribution with break in variance. PE corresponds to the power
envelop.
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Figure 6.Power comparisons: different sample splits
GARCH error distributions

A. Normal distribution with GARCH (1, 1) plus jump variance
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B. Normal distribution with non stationary GARCH (1, 1) variance
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Note: These figures compare the power of POS test using different split-samples (SS-POS test);
4%, 10%, 20%, 40%, 60%, and80%. Panel A corresponds to the case where the error termεt

in the model (6.1) follows a normal distribution with GARCH(1, 1) plus jump variance. Panel B
corresponds to the case whereεt follows a normal distribution with non stationary GARCH(1, 1)
variance. PE corresponds to the power envelop.
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5. POS confidence regions

In this section, we briefly describe how to build confidence regions with known significance level
α, sayCβ(α), for a vector of unknown parametersβ using the proposed POS tests. Consider the
regression model (3.10) and suppose we wish to test the null hypothesis (3.11) against the alternative
hypothesis (3.12). The idea consists in finding all the values ofβ0 ∈ R

k such that

SN∗
n(β1)

(0) =
n

∑

t=1

{

ln

[

1 − p(xt, β0, β1 | X)

p(xt, β0, β1 | X)

]

s (yt − f(xt, β0))

}

< c1(β0, β1)

whereSN∗
n(β1)

(0) is the observed value ofSN∗
n(β0|β1) and the critical valuec1(β0, β1) is given

by the smallest constantc1(β0, β1) such that

P[SN∗
n(β0|β1) > c1(β0, β1) | β = β0] ≤ α.

The confidence regionCβ(α) of the vector of parametersβ can be defined as follows:

Cβ(α) =
{

β0 : SN∗
n(β1)

(0) < c1(β0, β1) | P [SN∗
n(β0|β1) > c1(β0, β1) | β = β0] ≤ α

}

.

Further, given the confidence regionCβ(α), we can also derive confidence intervals for the compo-
nents of vectorβ using the projection techniques. The latter can be used to find confidence sets, say
g(Cβ(α)), for general transformationsg of β in R

m. Since, for any setCβ(α),

β ∈ Cβ(α) ⇒ g(β) ∈ g(Cβ(α)) (5.1)

we have
P[β ∈ Cβ(α)] ≥ 1 − α ⇒ P[g(β) ∈ g(Cβ(α))] ≥ 1 − α, (5.2)

where
g(Cβ(α)) = {δ ∈ R

m : ∃ β ∈ Cβ(α), g(β) = δ} .

From (5.1) and (5.2), the setg(Cβ(α)) is a conservative confidence set forg(β) with level1−α. If
g(β) is a scalar, then we have:

P [inf {g(β0), for β0 ∈ Cβ(α)} ≤ g(β) ≤ sup {g(β0), for β0 ∈ Cβ(α)}] > 1 − α.

More details about the projection technique can be find in Dufour (1997), Abdelkhalek and Dufour
(1998), Dufour and Kiviet (1998), Dufour and Jasiak (2001),and Dufour and Taamouti (2005).

6. Monte Carlo study

We present simulation results illustrating the performance of the statistical procedures defined in
the previous sections. Since the number of tests and alternative models is so large, we have lim-
ited our results to two groups of data generating processes (DGPs) which correspond to different
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symmetric and asymmetric distributions and different forms of heteroskedasticity. Further, because
for nonlinear regression models an iterative procedure is required for the estimation ofβ1, which
makes the convergence of our simulations slow, we restrict our simulations to the linear regression
model where only an analytical formula is needed to estimateβ1 (OLS estimator).1 However, other
simulations results using an exponential regression model[f(xt, β) = exp(βxt)], which show that
the proposed tests perform quite well, can be found in Appendix ??.

6.1. Simulated models

We assess the performance of the proposed POS test by comparing its size and power to those of
some other tests, under various general DGPs. We choose our DGPs to illustrate performance in
different contexts encountered in practice. We consider the following linear regression model

yt = xtβ + εt, t = 1, . . . , n, (6.1)

whereβ is an unknown parameter and the errorsε1, ε2, ..., εn are independent and follow different
distributions (DGPs), so they are not necessarily identically distributed. The first group of DGPs
that we examine represents different symmetric and asymmetric distributions of the error termεt:
1. normal distribution:εt ∼ N(0, 1);
2. Cauchy distribution:εt ∼ Cauchy;
3. Studentt distribution with two degrees of freedom:εt ∼ t(2);
4. Mixture of normal and Cauchy distributions:εt ∼ st | εC

t | −(1 − st) | εN
t |, whereεC

t follows
Cauchy distribution,εN

t follows N(0, 1) distribution, and

P (st = 1) = P (st = 0) =
1

2
.

The second group of DGPs represents different forms of heteroskedasticity:
5. break in variance:

εt ∼
{

N(0, 1) for t 6= 25√
1000N(0, 1) for t = 25

;

6. exponential variance:εt ∼ N(0, σ2
ε(t)) andσε(t) = exp(0.5 t);

7. GARCH(1, 1) plus jump variance:

σ2
ε(t) = 0.00037 + 0.0888ε2

t−1 + 0.9024σ2
ε(t − 1) ,

εt ∼
{

N(0, σ2
ε(t)) for t 6= 25

50N(0, σ2
ε(t)) for t = 25

;

1We use GAUSS for the simulations. For nonlinear regression model, it takes around 5 days and 7 hours to calculate
the empirical size and power, whereas for linear model it takes 2 days and 3 hours. Some characteristics of the computer
hardware employed are:
(1) Memory (RAM): 3.00 GB;
(2) AMD Athlon(tm) 64X2 Dual Core Processor 4200+ 2.21 GHz.

20



8. nonstationary GARCH(1, 1) variance:εt ∼ N(0, σ2
ε(t)) and

σ2
ε(t) = 0.75ε2

t−1 + 0.75σ2
ε(t − 1) .

We use POS test and other tests, which are supposed to be robust against heteroskedasticity and
non-normality, to test the null hypothesisH0 : β = 0. We run Monte Carlo simulations to compare
the size and power of10% split-sample POS tests (hereafter10% SS-POS test) to those of T-test, T-
test based on White’s (1980) variance correction (hereafter WT-test), and sign-based test proposed
by Campbell and Dufour (1995) (hereafter CD95 test). In whatfollows, the notations CT-test and
CWT-test refer to the T-test and WT-test after size correction, respectively. For some DGPs, T-
test and WT-test may not control size and we adjust the power functions such that CT-test and
CWT-test control their size. In our simulations the explanatory variablext is generated from a
mixture of normal andχ2 distributions. We performM1 = 10000 simulations to evaluate the
probability distribution of POS test statistic andM2 = 5000 simulations to estimate the power
functions of POS test and other tests. All simulated samplesare of sizen = 50. The sign-based test
statistic of Campbell and Dufour (1995) has a discrete distribution and it is not possible (without
randomization) to obtain test whose size is precisely5%. In our simulations study, the size of this
test is5.95% for n = 50.

6.2. Simulation results

Monte Carlo simulation results are presented in Tables 6.1-6.1 and Figures 6.1-6.1. These results
correspond to different DGPs described in Section 6.1. Tables 6.1-6.1 show the power envelope of
POS test, the size and power of POS test under different alternative hypotheses and using different
split-sample sizes, and size and power of T-test (CT-test), WT-test (CWT-test), and CD95 test.
Figures 6.1-6.1 compare the power of10% SS-POS test, T-test (CT-test), WT-test (CWT-test), and
CD95 test to the power envelope. The results are detailed below.

First, Panel A of Table 6.1 and Panel A of Figure 6.1 correspond to the case where the error term
εt in the model (6.1) is normally distributed. Panel A of Table 6.1 shows that the power of POS test
depends on the alternative hypothesisβ1. When the latter is far from the null hypothesis, the POS
test power’s curve moves away from the power envelope [see also Panel A of Figure 4.1]. However,
using approximately10% of sample to estimateβ1 yields a power which is typically very close to
the power envelope. Thus, split-sample approach represents a good way to select the appropriate
alternative hypothesis at which the power of POS test is maximized.

The T-test based on White’s (1980) variance correction, sayWT-test, does not control size and
its power after size correction is presented in the last column of Panel A of Table 6.1. Panel A of
Figure 6.1 shows that T-test is more powerful than10% SS-POS test, CWT-test, and CD95 test. We
expect to get the latter result, since under normality T-test is the most powerful test. However, the
power of10% SS-POS test is very close to the power envelope and does better than CD95 test.

Second, Panel B of Table 6.1 and Panel B of Figure 6.1 and PanelA of Figure 6.1 correspond
to the cases where the error termεt follows Cauchy distribution and Student’s distribution with two
degrees of freedom, respectively. We see again that the power of POS test depends on the alternative
hypothesisβ1. Particularly, when the alternative hypothesis is far fromthe null hypothesis, the
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Table 1.Power comparisons: different tests
Normal and Cauchy error distributions

A. Normal distribution

POS test SS-POS test Other tests
β PE β

1
= 0.2 β

1
= 0.4 4% 10% 20% 40% CD95 test T-test WT-test CWT-test

0.0000
0.0005
0.0010
0.0015
0.0020
0.0025
0.0030
0.0035
0.0040
0.0045
0.0050
0.0055
0.0060
0.0065

5.20
7.44
9.20
12.78
16.34
21.38
27.74
33.26
38.14
44.68
52.20
57.76
63.92
69.22

5.14 5.34
5.96 6.50
8.24 7.96
11.28 10.24
13.34 11.96
16.36 14.02
20.74 17.62
23.48 20.86
28.28 23.46
32.68 27.68
36.68 29.70
40.78 33.50
45.44 37.26
47.66 40.68

4.82 4.88 5.36 4.78
7.58 7.44 6.62 6.78
9.98 9.82 9.48 8.20
12.60 12.90 12.76 11.04
16.28 16.18 17.26 13.18
20.56 21.80 21.70 15.76
26.08 25.84 27.26 18.74
32.44 32.08 31.42 23.28
36.40 39.08 37.52 24.88
43.28 44.10 44.30 28.14
49.44 51.74 50.60 35.24
55.42 56.68 56.06 38.64
60.78 63.12 62.62 42.44
66.44 68.00 68.90 46.74

5.94 4.88 7.52 4.94
6.96 7.42 10.70 7.30
8.24 11.40 15.40 11.50
10.06 16.24 20.08 16.50
11.02 21.70 26.78 20.68
14.12 29.42 34.42 27.74
17.02 39.32 41.20 34.24
19.22 45.22 49.16 43.48
21.56 55.36 58.52 52.38
23.46 62.38 66.96 57.44
27.50 71.04 73.16 67.32
29.80 79.16 79.92 74.70
32.30 84.18 85.70 80.84
34.78 89.58 89.74 85.06

B. Cauchy distribution

POS test SS-POS test Other tests
β PE β

1
= 0.2 β

1
= 0.4 4% 10% 20% 40% CD95 test T-test WT-test

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065

5.10
34.22
66.38
84.44
92.20
96.44
98.12
99.00
99.36
99.68
99.80
99.98
99.94
99.94

4.88 4.80
25.18 20.94
48.42 39.58
62.56 52.94
74.30 63.08
79.62 69.60
82.86 74.30
86.02 78.36
89.16 79.60
89.92 81.88
91.12 84.24
91.94 86.20
92.50 86.38
93.08 86.84

5.02 5.30 5.48 4.46
26.72 33.30 30.86 23.48
50.46 61.74 62.28 47.86
64.74 76.24 77.02 64.38
74.36 84.90 85.14 73.70
79.06 89.88 88.82 81.78
81.08 92.92 92.58 84.70
82.86 93.70 93.10 88.38
85.62 94.70 94.30 90.76
85.74 94.92 95.74 92.24
86.76 95.92 95.92 93.00
87.14 96.42 96.48 94.56
87.08 97.02 96.18 95.96
88.02 96.86 96.90 96.92

5.78 5.68 3.94
18.44 9.50 15.00
35.16 16.60 28.92
48.90 25.76 43.82
60.36 36.28 54.72
69.58 42.74 62.08
76.60 50.14 67.06
81.88 56.00 70.72
86.42 60.56 73.34
88.84 63.30 77.18
91.18 66.60 78.70
92.98 69.88 81.30
94.16 72.72 82.96
94.68 74.10 83.22

Note: These tables show the power envelope of POS test (PE) and thepower of: (1) POS test under different alternative hypotheses (POS test); (2) POS test

using different split-sample sizes (SS-POS test);(3) sign-based test of Campbell and Dufour (1995) [CD95 test];(4) T-test; (5) T-test based on White’s (1980)

variance correction (WT-test); and(6) WT-test after size correction (CWT-test). Panel A corresponds to the case where the error termεt in the model (6.1) is

homoskedastic and normally distributed and Panel B corresponds to the case whereεt is homoskedastic and follows a Cauchy distribution.
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Figure 7.Power comparisons: different tests
Normal and Cauchy error distributions

A. Normal distribution

0 0.002 0.004 0.006 0.008 0.01
0

10

20

30

40

50

60

70

80

90

100

Beta

Po
we

r

 

 
PE
10% SS−POS test
CD (1995) test
CT−test
CWT−test

B. Cauchy distribution
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Note: These figures compare the power envelope (PE) to:(1) the power curves of10% split-sample
POS test [10% SS-POS test];(2) T-test (or CT-test);(3) sign-based test proposed by Campbell
and Dufour (1995) [CD95 test]; and(4) the T-test based on White’s (1980) variance correction
[WT-test or CWT-test]. Panel A corresponds to the case wherethe error termεt in the model
(6.1) is homoskedastic and normally distributed and Panel Bcorresponds to the case whereεt is
homoskedastic and follows Cauchy distribution.
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Table 2.Power comparisons: different tests
Mixture and normal distribution with break

A. Mixture distribution

POS test SS-POS test Other tests
β PE β

1
= 0.2 β

1
= 0.4 4% 10% 20% 40% CD95 test T-test WT-test CT-test CWT-test

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010
0.011
0.012
0.013

4.96
9.96
15.70
25.26
35.46
46.08
56.68
67.64
75.00
82.06
88.48
90.68
94.38
95.70

5.30 4.90
8.08 8.14
11.52 11.30
18.48 14.24
23.84 18.12
28.70 23.66
35.52 27.56
40.66 32.30
45.32 37.46
50.40 39.64
54.90 43.24
58.48 45.24
62.44 50.78
65.76 53.12

4.58 4.70 5.02 5.18
8.86 9.98 9.16 8.02
14.46 15.90 14.60 12.24
22.00 24.76 24.60 19.64
29.60 34.08 34.28 27.36
39.16 44.14 42.96 34.60
47.44 51.78 52.06 41.22
55.34 61.90 61.84 51.16
60.44 69.48 69.50 60.10
67.28 76.52 75.32 66.68
70.70 80.84 79.90 73.68
73.92 84.16 84.94 79.92
77.44 87.66 87.42 85.18
78.82 90.54 89.22 88.64

5.98 9.92 10.74 5.08 5.04
8.94 11.28 13.12 5.90 7.92
11.76 13.98 18.88 7.50 12.94
15.72 16.90 25.76 10.10 18.74
21.00 20.68 31.76 11.82 25.68
26.24 24.32 40.04 14.64 31.74
29.72 28.24 47.06 18.16 37.82
34.06 33.00 51.22 21.92 44.76
38.96 36.62 56.70 24.56 49.14
44.22 40.16 60.50 30.18 54.60
49.58 45.86 63.74 33.64 58.80
52.40 48.60 66.90 38.06 61.70
58.54 51.16 69.26 39.72 65.62
60.10 55.26 72.16 43.66 67.42

B. Normal distribution with break in variance

POS test SS-POS test Other tests
β PE β

1
= 0.2 β

1
= 0.4 4% 10% 20% 40% CD95 test T-test WT-test

0.0000
0.0008
0.0016
0.0024
0.0032
0.0040
0.0048
0.0056
0.0064
0.0072
0.0080
0.0088
0.0096
0.0104

5.40
9.22
14.78
20.16
29.32
39.04
49.78
59.66
68.88
77.32
83.96
88.76
92.22
95.42

4.98 4.92
7.96 7.90
12.00 10.18
15.88 14.62
22.12 19.60
27.96 25.38
35.70 29.12
41.62 34.12
48.50 39.14
55.90 45.30
61.90 51.68
65.90 55.52
72.94 60.32
78.52 64.48

4.84 5.24 5.10 4.96
8.28 9.32 8.38 7.68
13.12 13.76 12.98 10.42
18.20 20.12 19.86 15.58
25.24 28.34 28.26 19.64
35.72 38.32 38.68 25.24
43.98 47.00 48.06 32.38
52.82 59.16 58.24 39.78
62.30 67.90 67.28 45.96
68.78 75.66 76.50 53.54
76.14 83.14 82.20 60.92
80.14 88.00 88.50 67.46
85.60 91.70 93.02 73.06
87.42 94.68 95.34 79.76

5.78 0.01 0.16
8.24 0.04 0.42
10.44 0.06 0.60
12.98 0.12 1.08
17.34 0.30 1.62
21.40 0.22 1.86
26.12 0.46 2.30
30.42 0.84 3.60
34.78 0.78 4.58
38.38 0.94 4.88
42.72 0.94 5.88
47.04 1.22 6.54
51.76 1.50 8.14
55.02 1.42 7.88

Note: These tables show the power envelope of POS test (PE) and thepower of:(1) POS test under different alternative hypotheses (POS test); (2) POS test using

different split-sample sizes (SS-POS test);(3) sign-based test of Campbell and Dufour (1995) [CD95 test];(4) T-test; (5) T-test based on White’s (1980) variance

correction (WT-test);(6) T-test after size correction (CT-test); and(7) WT-test after size correction (CWT-test). Panel A corresponds to the case where the error

termεt in the model (6.1) follows a mixture of normal and Cauchy distributions and Panel B corresponds to the case whereεt follows a normal distribution with

Break in variance.
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Figure 8.Power comparisons: different tests
Mixture and normal error distribution with break

A. Mixture distribution
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B. Normal distribution with Break in variance

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
0

10

20

30

40

50

60

70

80

90

100

Beta

Po
we

r

 

 
PE
10% SS−POS test
CD (1995) test
T−test
WCT−test

Note: These figures compare the power envelope (PE) to:(1) the power curves of10% split-sample POS test [10% SS-

POS test];(2) T-test (or CT-test);(3) sign-based test proposed by Campbell and Dufour (1995) [CD95 test]; and(4) the

T-test based on White’s (1980) variance correction [WT-test or CWT-test]. Panel A corresponds to the case where the

error termεt in the model (6.1) follows a mixture of normal and Cauchy distributions and Panel B corresponds to the

case whereεt follows a normal distribution with break in variance.
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Table 3.Power comparisons: different tests
GARCH error distributions

A. Normal distribution with GARCH (1, 1) plus jump variance

POS test SS-POS test Other tests
β PE β

1
= 0.2 β

1
= 0.4 4% 10% 20% 40% CD95 test T-test WT-test

0.0000
0.0003
0.0006
0.0009
0.0012
0.0015
0.0018
0.0021
0.0024
0.0027
0.0030
0.0033
0.0036
0.0039

5.07
11.98
21.28
32.80
46.28
53.62
62.24
70.22
74.66
78.28
80.72
84.22
85.42
87.66

5.74 4.98
9.06 9.16
15.50 12.90
21.00 18.14
28.14 23.90
34.62 28.20
39.10 33.74
46.06 38.10
48.74 40.72
50.88 43.94
54.04 47.76
56.12 51.80
58.82 53.44
60.52 54.78

4.70 5.24 5.40 5.04
11.18 11.02 10.76 7.86
19.38 19.20 18.84 10.74
33.12 31.34 32.12 15.98
42.46 42.46 42.72 19.98
53.52 52.70 52.20 24.56
61.36 59.00 60.40 28.80
67.52 66.44 66.14 31.96
73.66 71.94 71.80 36.28
77.36 75.98 75.44 38.98
79.96 79.22 79.66 41.54
82.76 81.38 82.62 44.96
84.46 83.52 84.50 47.00
86.58 85.76 85.94 49.18

6.42 1.22 4.96
8.06 2.36 8.92
12.18 5.00 14.60
17.24 8.90 21.20
21.90 13.36 27.16
25.86 16.76 30.86
30.12 19.06 36.58
34.44 24.20 42.58
37.68 27.26 45.10
40.12 29.22 48.82
44.32 32.40 51.02
46.72 36.10 55.08
47.84 38.32 56.42
51.04 41.22 60.18

B. Normal distribution with non stationary GARCH (1, 1) variance

POS test SS-POS test Other tests
β PE β

1
= 0.2 β

1
= 0.4 4% 10% 20% 40% CD95 test T-test WT-test

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065

5.95
37.34
57.36
67.30
73.46
79.02
81.66
84.58
85.82
88.46
89.02
90.04
91.76
91.82

5.58 6.08
29.68 27.72
44.54 41.36
56.54 53.58
63.76 60.56
67.86 64.70
72.50 69.38
74.72 72.56
77.86 75.08
80.52 77.20
81.48 79.22
83.20 81.00
84.52 81.96
85.22 83.22

6.02 5.76 6.04 6.16
39.04 40.28 39.00 28.78
58.86 56.58 58.04 42.64
67.92 66.54 68.00 49.70
73.64 73.16 73.36 58.74
80.60 77.64 78.04 62.34
82.18 80.88 81.88 66.60
85.40 83.42 82.80 69.18
86.86 85.30 84.82 71.84
87.98 86.90 86.12 75.46
89.92 89.10 88.98 77.84
89.94 89.94 89.22 79.08
91.14 90.10 90.50 80.86
91.30 90.86 91.12 82.38

6.26 0.94 5.00
23.58 14.26 34.18
39.78 27.00 51.22
49.84 35.00 60.44
58.04 42.04 67.28
65.88 47.16 72.36
69.72 50.90 75.14
74.78 54.22 78.24
77.82 57.52 80.04
80.44 61.18 82.96
83.04 62.48 84.34
83.82 64.16 84.88
85.70 67.20 87.26
87.00 68.80 88.22

Note: These tables show the power envelope of POS test (PE) and thepower of:(1) POS test under different alternative hypotheses (POS test); (2) POS test using

different split-sample sizes (SS-POS test);(3) sign-based test of Campbell and Dufour (1995) [CD95 test];(4) T-test; and(5) T-test based on White’s (1980)

variance correction (WT-test). Panel A corresponds to the case where the error termεt in the model (6.1) follows a normal distribution with GARCH(1, 1) plus

jump variance and Panel B corresponds to the case whereεt follows a normal distribution with non stationary GARCH(1, 1) variance.
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Figure 9.Power comparisons: different tests
GARCH error distributions

A. Normal distribution with GARCH (1, 1) plus jump variance

0 1 2 3 4 5 6

x 10
−3

0

10

20

30

40

50

60

70

80

90

100

Beta

Po
we

r

 

 

PE
10% SS−POS test
CD (1995) test
T−test
WT−test

B. Normal distribution with non stationary GARCH (1, 1) variance
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Note: These figures compare the power envelope (PE) to:(1) the power curves of10% split-sample
POS test [10% SS-POS test];(2) T-test (or CT-test);(3) sign-based test proposed by Campbell and
Dufour (1995) [CD95 test], and(4) the T-test based on White’s (1980) variance correction [WT-test
or CWT-test]. Panel A corresponds to the case where the errorterm εt in the model (6.1) follows
normal distribution with GARCH(1, 1) plus jump variance and Panel B corresponds to the case
whereεt follows normal distribution with non stationary GARCH(1, 1) variance.

27



Figure 10.Power comparisons: different tests
Student and normal error distribution with exponential var iance

A. Student distribution
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B. Normal distribution with exponential variance
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Note: These figures compare the power envelope (PE) to:(1) the power curves of10% split-sample POS test [10% SS-

POS test];(2) T-test (or CT-test);(3) sign-based test proposed by Campbell and Dufour (1995) [CD95 test]; and(4) the

T-test based on White’s (1980) variance correction [WT-test or CWT-test]. Panel A corresponds to the case where the

error termεt in the model (6.1) follows a student distribution with degree of freedom 2 and Panel B corresponds to the

case whereεt follows a normal distribution with exponential variance.
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power curve of POS test moves away from the power envelope [see Panel B of Table 6.1]. We also
see that10% represents the appropriate proportion of sample that we need to use for the estimation
of β1. Further, Panel B of Figure 6.1 and Panel A of Figure 6.1 showsthat10% SS-POS test is more
powerful than T-test, WT-test, and CD95 test, and is close tothe power envelope.

Third, Panel A of Table 6.1 and Figure 6.1, Panels A and B of Table 6.1, and Panels A and B of
Figure 6.1 correspond to the cases where the error termεt follows a mixture of normal and Cauchy
distributions, normal distribution with GARCH(1, 1) plus jump variance, and normal distribution
with non stationary GARCH(1, 1) variance, respectively. The results, in terms of the impactof β1

on the power function of POS test and the appropriate proportion of sample to use in estimating
β1, are similar to those of previous cases. Further, Panel A of Figure 6.1 and Panels A and B of
Figure 6.1 show that10% SS-POS test is again more powerful than T-test, WT-test, CD95 test, and
is very close to the power envelope. Whenεt follows the mixture distribution, WT-test and T-test
do not control size and we adjust their power functions such that CWT-test and CT-test control size.
Interestingly, even if GARCH(1, 1) and non stationary GARCH(1, 1) models do not satisfy they
key assumption (2.1), POS test still controls size and has very good power.

Finally, Panel B of Table 6.1 and Figure 6.1 and Panel B of Figure 6.1 correspond the cases
whereεt follows normal distribution with a break in variance and an exponential variance, respec-
tively. In these cases, the powers of T-test and WT-test are very weak and flat, whereas the10%
SS-POS test does well and is more powerful than sign-based test proposed by Campbell and Dufour
(1995).

From the previous results we draw the following conclusions. First, it is clear that the alternative
hypothesis has an impact on the power function of POS test. Second, the adaptive approach based
on split-sample technique allows to choose an optimal valueof the alternative hypothesis at which
the power of POS test is maximized. We should use a small part,approximately10%, of sample
to estimate the alternative hypothesis and the rest,90%, to compute the test statistic of POS test.
Third, when the error termεt follows normal and heteroskedastic distributions, the power of 10%
SS-POS test is close to the power envelope. For non-normal errors this is not the case and the power
of 10% SS-POS test is somewhat far from the power envelope. Finally, except for a normally and
homoskedastic distributed error,10% SS-POS test performs better than T-test (CT-test), WT-test
(CWT-test), and CD95 test.

We also use simulations to compare the power of10% SS-POS test calculated using the true
weights with the power of10% SS-POS test computed using normal weights. The weightsat(β1)
are computed using homoskedastic and normal distribution.The results are presented in Table 6.2.
We see that using the true weights may improve the power of10% SS-POS test. However, the power
loss when we substitute the true weights by normal weights isvery small.

7. Conclusion

We propose exact POS-based tests to test the parameters in the context of linear and nonlinear re-
gression models with fixed regressors. These tests are distribution-free, robust against heteroskedas-
ticity of an unknown form, and they may be inverted to obtain confidence sets for the vector of
unknown parameters.
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Table 4.True weights versus normal weights

A. True weights using Cauchy distribution

SS-POS test using true weights SS-POS test using normal weights
β PE 10% 20% 10% 20%

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065

5.10
34.22
66.38
84.44
92.20
96.44
98.12
99.00
99.36
99.68
99.80
99.98
99.94
99.94

5.16 5.16
33.58 31.18
61.94 62.47
80.32 80.32
89.76 89.76
95.22 95.22
96.98 96.98
98.26 98.26
99.14 99.14
99.30 99.30
99.44 99.44
99.70 99.70
99.82 99.82
99.90 99.90

5.30 5.48
33.30 30.86
61.74 62.28
76.24 77.02
84.90 85.14
89.88 88.82
92.92 92.58
93.70 93.10
94.70 94.30
94.92 95.74
95.92 95.92
96.42 96.48
97.02 96.18
96.86 96.90

B. True weights using mixture distribution

SS-POS test with true weights SS-POS test with normal weights
β PE 10% 20% 10% 20%

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010
0.011
0.012
0.013

4.96
9.96
15.70
25.26
35.46
46.08
56.68
67.64
75.00
82.06
88.48
90.68
94.38
95.70

4.74 5.26
8.96 9.08
14.34 16.70
24.84 24.67
34.52 34.46
44.26 44.06
53.24 54.96
62.92 62.88
71.66 70.14
79.24 79.54
85.52 84.34
88.80 89.22
92.06 91.50
94.32 94.62

4.70 5.02
9.98 9.16
15.90 14.60
24.76 24.60
34.08 34.28
44.14 42.96
51.78 52.06
61.90 61.84
69.48 69.50
76.52 75.32
80.84 79.90
84.16 84.94
87.66 87.42
90.54 89.22

Note: These tables summarize the results of the comparison between the power of10% split-sample POS test (SS-POS

test) calculated using the true weightsat(β1
) with the power of10% split-sample POS test calculated using normal

weights. In Panel A the true weights correspond to the case where the error termεt in the model (6.1) follows a Cauchy

distribution and in Panel B the true weights correspond to the case whereεt follows a mixture of normal and Cauchy

distributions. SS-POS test corresponds to split-sample POS test. PE corresponds to the power envelop.
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Since the proposed POS test maximizes the power at a given value of the alternative, we suggest
an approach based on split-sample technique to choose an optimal alternative such that the power
of POS test is close to the power envelope. The simulation results show that using approximately
10% of sample to estimate the alternative hypothesis and the rest (90%) to compute the test statistic
of POS test, yields a power which is typically very close to the power envelope.

To assess the performance of POS test we run a Monte Carlo simulation study and compare its
size and power to those of some other tests, under various general DGPs. We consider different
DGPs to illustrate different contexts that one can encounter in practice. We use two groups of DGPs
which correspond to different symmetric and asymmetric distributions and different heteroskedas-
ticity forms. The results show that10% split-sample POS test is more powerful than T-test, Camp-
bell and Dufour’s (1995) sign-based test, T-test with White’s (1980) variance correction, and it is
close to the power envelope.

The present paper could be generalized to the case where the explanatory variables are stochastic
by relaxing the assumption (2.1). This issue is the topic of on-going research.

A. Appendix: Proofs

PROOF OFTHEOREM 4.1. Conditionally onX the characteristic function ofSN∗
n(β0|β1) is given

by:
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wherep(xt, β0, β1 | X) = P[εt ≤ f(xt, β0) − f(xt, β1) | X], u ∈ R, ỹt = yt − f(xt, β0) and the
complex numberi =
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(A.1)

Given the conditional characteristic function (A.1), a standard Fourier-inversion formula [see
Gil-Pelaez (1951)] implies that the conditional distribution function ofSN∗

n(β0|β1) evaluated at
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c1(β0, β1), for c1(β0, β1) ∈ R, is given by:

P(SN∗
n(β0|β1) ≤ c1(β0, β1) | X) =

1

2
− 1

π

∫ ∞

0

Im
{

exp (−iuc1(β0, β1)) φSN∗
n
(u)

}

u
du, (A.2)

where,∀ u ∈ R,
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,

andIm{z} denotes the imaginary part of a complex numberz. Thus, the power function of POS
test is given by the following probability function:

Π(β, β1) = P [SN∗
n(β0|β1) > c1(β0, β1)] =

1

2
+

1

π

∫ ∞

0

Im
{

exp (−iuc1(β0, β1)) φSN∗
n
(u)

}

u
du.

B. Appendix: Additional simulation results using nonlinear regres-
sion model

In this appendix, we consider a nonlinear DGP to assess the performance (size and power) of the
proposed POS test:

yt = exp(βxt) + εt, (B.3)

where we assume three different distributions for the errortermεt :
1. Normal distribution:εt ∼ N(0, 1);
2. Mixture of normal and Cauchy distributions:εt ∼ st | εC

t | −(1 − st) | εN
t |, whereεC

t follows
Cauchy distribution,εN

t follows N(0, 1) distribution, andP (st = 1) = P (st = 0) = 1
2 ;

3. GARCH(1, 1) plus jump variance:

εt ∼
{

N(0, σ2
ε(t)) for t 6= 25

50 N(0, σ2
ε(t)) for t = 25

and
σ2

ε(t) = 0.00037 + 0.0888ε2
t−1 + 0.9024σ2

ε(t − 1).

The results are presented in Figure 6.1. The latter show thatthe proposed tests perform quite well
even in the context of a nonlinear model. We also see that10% represents the appropriate proportion
of sample that one needs to use for the estimation of the alternative hypothesisβ1.
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Figure 11.Power comparisons: different sample splits
Normal, Mixture and GARCH with jump error distributions
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B. Mixture distribution
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C. Normal distribution with GARCH (1, 1) plus jump variance
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