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ABSTRACT

We consider the problem of developing practical methods for modelling weak VARMA processes.

We first propose new identified VARMA representations, the diagonal MA equation form and the

final MA equation form, where the MA operator is either diagonal or scalar. Both these representa-

tions have the important feature that they constitute relatively simple modifications of a VAR model

(in contrast with the echelon representation). Second, for estimating VARMA models, we develop

computationally simple methods which only require linear regressions, through an extension of the

regression-based approach proposed by Hannan and Rissanen (1982). The asymptotic properties of

the estimator are derived under weak hypotheses on the innovations (uncorrelated and strong mix-

ing), in order to broaden the class of models to which it can be applied. Third, we present a modified

information criterion which yields consistent estimates of the orders under the proposed represen-

tations. The estimation methods are studied by simulation. To demonstrate the importance of using

VARMA models to study multivariate time series, we compare the impulse-response functions and

the out-of-sample forecasts generated by VARMA and VAR models. The proposed methodology is

applied to a six-variable macroeconomic model of monetary policy, based on U.S. monthly data over

the period 1962-1996. The results demonstrate the advantages of using the VARMA methodology

for impulse response estimation and forecasting, in contrast with standard VAR models.

Key words: linear regression; VARMA; final equation form; information criterion; weak represen-

tation; strong mixing condition; impulse-response function.
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1. Introduction

In time series analysis and econometrics, VARMA models are scarcely used to represent multivari-

ate time series. VAR models are much more widely employed because they are easier to implement.

The latter models can be estimated by least-squares methods. Specification is also easier for VAR

models because only one lag order need be chosen. VAR models, however, have important draw-

backs. First, they are typically less parsimonious than VARMA models [e.g., see Lütkepohl and

Poskitt (1996)]. Second, the family of VAR models is not closed under marginalization and tempo-

ral aggregation [see Lütkepohl (1991)].

It follows that VARMA models appear to be preferable from a theoretical viewpoint, but their

adoption is complicated by identification and estimation difficulties. The unrestricted VARMA

representation is not identified [see Lütkepohl (1991, Section 7.1.1)], and we need to decide on a

set of constraints to impose so as to achieve identification. The dominant representation, i.e. the

echelon form, consist in choosing a set of Kronecker indices which is not as intuitive as choosing the

order of a VAR. Standard estimation methods for VARMA models (such as maximum likelihood)

require nonlinear optimization which may not be feasible as soon as the model involves a few time

series because the number of parameters can increase quickly.

The importance of nonlinear models has been growing in the time-series literature. Impor-

tant classes of nonlinear processes admit an ARMA representation [see Francq and Zakoïan (1998),

Francq, Roy, and Zakoïan (2005)], but involve innovations which may not satisfy the usual i.i.d. (in-

dependent and identically distributed) or m.d.s. (martingale difference sequence) property, though

they are uncorrelated. We refer to these as strong and semi-strong ARMA models respectively, by

opposition to weak ARMA models where the innovations are only uncorrelated. In fact, the Wold

decomposition only guarantees that the innovations are uncorrelated.

In this paper, we consider the problem of modeling weak VARMA processes. Our goal is to

develop a procedure which will ease the use of these models. It will cover three basic modeling

operations: identification, estimation and specification.

First, in order to avoid identification problems and to make VARMA models easier to use,

we introduce three new identified VARMA representations: the diagonal MA equation form, the

final MA equation form, and the diagonal AR equation form. Under the diagonal MA (or AR)

representation, the MA (or AR) operator is diagonal, and the lag operators for different variables (in

the diagonal form) may have different orders. Under the final MA equation form representation the

MA operator is scalar, i.e. the operators are equal across equations.

Second, we consider the problem of estimating VARMA models by relatively simple methods

which only require linear regressions. For this purpose, we consider a multivariate generalization

of the regression-based estimation method proposed by Hannan and Rissanen (1982) for univariate

ARMA models. The method involves in three steps. First, a long autoregression is fitted to the data.

Second, the lagged innovations in the ARMA model are replaced by the corresponding residuals

from the long autoregression, and a regression is performed. Third, the data from the second step

are filtered, which yields estimates with the same asymptotic covariance matrix as their nonlinear

counterparts (maximum likelihood when innovations are i.i.d. Gaussian, or nonlinear least squares

if they are merely uncorrelated).
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Third, we suggest a modified information criterion to choose the orders of VARMA models

under these representations. This criterion is minimized in the second step of the estimation method

over the orders of the AR and MA operators and yields consistent estimates of these orders.

Our results do not require an i.i.d. or m.d.s. assumption on the innovations. We consider strong

mixing conditions [Doukhan (1995), Bosq (1998)], rather than the usual m.d.s. assumption thus

broadening the class of models to which our results apply.

We apply the proposed methodology to U.S. macroeconomic data previously studied by

Bernanke and Mihov (1998) and McMillin (2001). To illustrate the impact of using VARMA models

instead of VAR models to study multivariate time series, we compare the impulse-response func-

tions generated by each model. We show that we can obtain much more precise estimates of the

impulse-response function by using VARMA models instead of VAR models.

The rest of the paper is organized as follows. Our framework and notation are described in

section 2. The new identified representations are presented in section 3. In section 4, we present

the estimation method. In section 5, we describe the information criterion for choosing the orders

of VARMA models under the proposed representations. Section 6 contains results of Monte Carlo

simulations which illustrate the properties of our method. Section 7 presents the macroeconomic

application where we compare the impulse-response functions from a VAR model and VARMA

models. Section 8 contains a few concluding remarks. Finally, an expanded version of this intro-

duction, proofs and lemmas are in an online appendix.

2. Framework

Consider the following K-variate VARMA(p, q) model in standard representation for real-valued

series:

Yt =

p∑
i=1

ΦiYt−i + Ut −
q∑
j=1

ΘjUt−j (2.1)

where Ut is a sequence of uncorrelated random variables with zero mean, defined on some prob-

ability space (Ω,A,P), and t ∈ Z. The vectors Yt and Ut contain the K univariate time series:

Yt = [y1t, . . . , yKt]
′ and Ut = [u1t, . . . , uKt]

′. We can also write the previous equation using

matrix lag operators:

Φ(L)Yt = Θ(L)Ut (2.2)

where

Φ(L) = IK − Φ1L− · · · − ΦpLp , Θ(L) = IK −Θ1L− · · · −ΘqLq. (2.3)

Let Ht be the Hilbert space generated by (Ys, s < t). We consider the following assumptions

on the Yt process.

Assumption 2.1 The process Yt is stable and invertible, i.e. det [Φ(z)] 6= 0 and det [Θ(z)] 6= 0 for

all |z| ≤ 1.
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Assumption 2.2 Yt is a strictly stationary and ergodic sequence and that the process Ut has com-

mon variance Var[Ut] = ΣU and finite fourth moment E[|uit|4+2ζ ] < ∞, for all i and t, for some

ζ > 0.

Assumption 2.3 The innovations Ut constitute a strictly stationary process and satisfy the mixing

assumption
∑∞

h=1 α(h)ε/(2+ε) <∞ for some ε > 0, where α(h) is the α-mixing coefficient of order

h.

Under Assumption 2.1, where det [Φ(L)] represents the determinant of the matrix lag operator

Φ(L), Ut can be interpreted as the linear innovation of Yt:

Ut = Yt − EL[Yt|Ht] . (2.4)

The case of I(1) and cointegrated variables is left to future work. We make the zero mean-mean

hypothesis for Yt only to simplify notation. Being stable and invertible, the process Yt has an infinite

vector autoregressive (VAR) representation,

Π(L)Yt = Ut , (2.5)

Π(L) = Θ(L)−1Φ(L) = IK −
∞∑
i=1

ΠiL
i , (2.6)

and an infinite vector moving average (VMA) representation,

Yt = Ψ(L)Ut , (2.7)

Ψ(L) = Φ(L)−1Θ(L) = IK −
∞∑
j=1

ΨjL
j . (2.8)

We denote by ϕik(L) the polynomial in row i and column k of Φ(L), and the row i or column k of

Φ(L) by:

Φi•(L) = [ϕi1(L), . . . , ϕiK(L)] , (2.9)

Φ•k(L) = [ϕ1k(L), . . . , ϕKk(L)]′. (2.10)

The diag operator creates a diagonal matrix,

diag[ϕii(L)] = diag[ϕ11(L), . . . , ϕKK(L)] =

 ϕ11(L) · · · 0
...

. . .
...

0 · · · ϕKK(L)

 , (2.11)

ϕii(L) = 1− ϕii,1L− · · · − ϕii,pLp. (2.12)

The function deg[ϕ(L)] returns the degree of the polynomial ϕ(L) and the function dim(γ) gives

the length of the vector γ.
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We need to impose some structure on the Ut process. The typical assumption made in the

time series literature is that the Ut’s are either independent and identically distributed (i.i.d.) or a

martingale difference sequence (m.d.s.). In this work, we do not impose such strong assumptions

because we wish to broaden the class of models to which it can be applied. We only assume that it

satisfies the mixing condition in Assumption 2.3; see e.g. Doukhan (1995) or Bosq (1998). This is

a minimal condition that will be satisfied by many processes of interest.1

3. Identification and diagonal VARMA representations

It is important to note that we cannot work with the standard representation (2.1) because it is not

identified. To help us gain intuition on the identification of VARMA models we can consider a more

general representation where Φ0 and Θ0 are not identity matrices:

Φ0Yt = Φ1Yt−1 + · · ·+ ΦpYt−p +Θ0Ut −Θ1Ut−1 + · · ·+ΘqUt−q . (3.1)

By this specification, we mean the well-defined process

Yt = (Φ0 − Φ1L− · · · − ΦpLp)−1(Θ0 +Θ1L+ · · ·+ΘqL
q)Ut . (3.2)

But we can see that this process has a standard representation if Φ0 and Θ0 are nonsingular. To see

this, we premultiply (3.1) by Φ−10 and define Ūt =Φ−10 Θ0Ut:

Yt = Φ−10 Φ1Yt−1 + · · ·+ Φ−10 ΦpYt−p

+Ūt − Φ−10 Θ1Θ
−1
0 Φ0Ūt−1 − · · · − Φ−10 ΘqΘ

−1
0 Φ0Ūt−q . (3.3)

Redefining the matrices, we get a representation of type (2.1). As long as Φ0 andΘ0 are nonsingular,

we can transform a non-standard VARMA model into a standard one.

We say that two VARMA representations are equivalent if the MA operator Ψ(L) =
Φ(L)−1Θ(L) are the same. To ensure uniqueness of a VARMA representation, we must impose

restrictions on the AR and MA operators so that, for given Ψ(L), there is one and only one set of

operators Φ(L) andΘ(L) which can generate this infinite MA representation. This is typically done

by setting a set of parameters equal to zero.

A first restriction that we impose is a multivariate equivalent of the coprime property in the

univariate case. We do not want factors of Φ(L) and Θ(L) to “cancel out” when Φ(L)−1Θ(L) is

computed. This feature is called the left-coprime property [see Hannan (1969), Hannan and Deistler

(1988), Lütkepohl (1993)]. There exist more than one representation which guarantee the unique-

ness of the left-coprime operators. In the econometric literature, the predominant representation is

the echelon form [see Deistler and Hannan (1981), Hannan and Kavalieris (1984), Lütkepohl (1993),

Lütkepohl and Poskitt (1998)]. It requires the selection of Kronecker indices, which conceptually

is not as easy as selecting the orders p and q of an ARMA model.2 This may be a reason why

1See Andrews (1984) for some examples of first-order autoregressive processes that do not satisfy this mixing as-

sumption.
2Specification of VARMA models in echelon form is discussed for example in Hannan and Kavalieris (1984), Lütke-
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practitioners are reluctant to employ VARMA models.

Here, to make the use of VARMA models easier, we propose new VARMA representations

which can be viewed as simple extensions of the VAR model. To introduce these, we first review

another identified representation, the final equation form, which will refer to as the final AR equation

form, under which the AR operator is scalar; see Zellner and Palm (1974), Hannan (1976), Wallis

(1977), and Lütkepohl (1993).

Definition 3.1 (Final AR equation form) We say that the VARMA model (2.1) is in final AR equa-

tion form if Φ(L) = ϕ(L)IK , where ϕ(L) = 1 − ϕ1L − · · · − ϕpLp is a scalar polynomial with

ϕp 6= 0.

The Final AR equation form stands on its own, just like the other three representations we

present below, in that we can directly assume that the series Yt follows one of these representa-

tions. That being said, the intuition behind this formulation proceeds as follows. Take the standard

representation in (2.2). By standard linear algebra, we have

Φ?(L)Φ(L) = Φ(L)Φ?(L) = det [Φ(L)] IK (3.4)

where Φ?(L) is the adjoint matrix of Φ(L). On multiplying both sides of (2.2) by Φ?(L), we get:

det [Φ(L)]Yt = Φ(L)?Θ(L)Ut. (3.5)

This representation may not be attractive for several reasons. First, it is quite far from usual

VAR models by excluding lagged values of other variables in each equation; e.g., the AR part of

the first equation includes lagged values of y1t but no lagged values of y2t, . . . , yKt. Further, the

AR coefficients are the same in all the equations, which will require a polynomial with higher order

pK. Second, the interaction between the different variables is modeled through the MA part of the

model, which may be quite difficult to estimate.

Indeed, we propose here more convenient alternative representations. On multiplying both sides

of (2.2) by Θ?(L), we get:

Θ(L)?Φ(L)Yt = det [Θ(L)]Ut (3.6)

whereΘ(L)? is the adjoint matrix ofΘ(L). We say VARMA models with the form (3.6) are in final

MA equation form.

Definition 3.2 (Final MA equation form) The VARMA representation (2.1) is said to be in final

MA equation form if Θ(L) = θ(L)IK , where θ(L) = 1 − θ1L − · · · − θqLq is a scalar operator

with θq 6= 0.

The above form also raises a parsimony problem similar to the one associated with the final

AR equation form. It is however possible to get a more parsimonious representation by looking

pohl and Claessen (1997), Poskitt (1992), Nsiri and Roy (1992, 1996), Lütkepohl and Poskitt (1996), Bartel and Lütkepohl

(1998). A more general and in-depth discussion of identification of VARMA models can be found in Hannan and Deistler

(1988, Chapter 2).
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at common structures across equations. Suppose there are common roots across rows for some

columns of Θ(L), so that starting from (2.2) we can write:

Φ(L)Yt = Θ̄(L)D(L)Ut , (3.7)

Θ̄∗(L)Φ(L)Yt = det
[
Θ̄(L)

]
D(L)Ut , (3.8)

where D(L) = diag[d1(L), . . . , dK(L)] and dj(L) is a polynomial common to θij(L), ∀i =
1, . . . , K. We see that allowing non-equal diagonal polynomials in the moving average as in equa-

tion (3.8) may yield a more parsimonious representation than in (3.6). We call the representation

(3.8) the diagonal MA equation form representation.

Definition 3.3 (Diagonal MA equation form) The VARMA representation (2.1) is said to be in

diagonal MA equation form if

Θ(L) = diag[θii(L)] = IK −Θ1L− · · · −ΘqLq (3.9)

where θii(L) = 1− θii,1L− · · · − θii,qiLqi , θii,qi 6= 0, and q = max1≤i≤K(qi).

This representation is interesting because contrary to the echelon form it is easy to specify. One

does not need rules for the orders of the off-diagonal elements in the AR and MA operators. The

fact that it can be seen as a simple extension of the VAR model is also appealing. Practitioners are

comfortable using VAR models, so simply adding lags of uit to equation i is a natural extension of

the VAR model which could give a more parsimonious representation. It also has the advantage of

imposing a relatively simple structure on the MA polynomials, the component which complicates

the estimation, rather than the AR component as in the final AR equation form. Notice that in

VARMA models, it is not necessary to include lags of all the innovations u1t, · · · , uKt in every

equation. This could lead practitioners to consider VARMA models if it is combined with a simple

regression-based estimation method. For this representation to be useful, it needs to be identified.

This is demonstrated in Theorem 3.8 below under the following assumptions and using Lemma 3.7

below.

Assumption 3.4 The matrices Φ(z) and Θ(z) have the following form:

Φ(z) = IK − Φ1z − · · · − Φpzp , Θ(z) = IK −Θ1z − · · · −Θqzq .

Assumption 3.5 Θ(z) is diagonal:

Θ(z) = diag [θii(z)]

where θii(z) = 1− θii,1z − · · · − θii,qizqi and θii,qi 6= 0.

Assumption 3.6 For each i = 1, . . . , K, there are no roots common to Φi•(z) and θii(z), i.e.

there is no value z? such that Φi•(z?) = 0 and θii(z
?) = 0.
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Lemma 3.7 Let [Φ(z), Θ(z)] and
[
Φ̄(z), Θ̄(z)

]
be two pairs of polynomial matrices which satisfy

Assumptions 3.4 to 3.6. If R0 is a positive constant such that Φ(z)−1Θ(z) = Φ̄(z)−1Θ̄(z) for

0 ≤ |z| < R0, then

Φ(z) = Φ̄(z) and Θ(z) = Θ̄(z), ∀z .

The proofs of this lemma and other propositions are available in the online appendix. Assump-

tions 3.4 to 3.6 and the conditions in Lemma 3.7 allow det[Φ(z)] and det[Θ(z)] to have roots on or

inside the unit circle |z| = 1. It should be noted that Assumption 3.6 is weaker than the hypothesis

that det[Φ(L)] and det[Θ(L)] have no common roots, which would be a generalization of the usual

identification condition for ARMA models. If invertibility is assumed, condition

Φ(z)−1Θ(z) = Φ̄(z)−1Θ̄(z) (3.10)

in Lemma 3.7 can be replaced by

Θ(z)−1Φ(z) = Θ̄(z)−1Φ̄(z) . (3.11)

We will now show that the diagonal MA representation is unique.

Theorem 3.8 (Identification of diagonal MA equation form representation) Suppose Yt satis-

fies the VARMA model in (2.1) along with Assumptions 2.1, 3.4 -3.6. If the VARMA model is in

diagonal MA equation form, then it is identified.

Similarly, we can demonstrate that the final MA equation form representation is identified under

the following assumption.

Assumption 3.9 There are no roots common to Φ(z) and θ(z), i.e. there is no value z? such that

Φ(z?) = 0 and θ(z?) = 0.

Theorem 3.10 (Identification of final MA equation form representation) Suppose Yt satisfies

the VARMA model in (2.1) along with Assumptions 2.1, 3.4 and 3.9. If the VARMA model is in

final MA equation form, then it is identified.

A strong appeal of the diagonal and final MA equation form representations is that it is easy

to get the equivalent (in term of autocovariances) invertible MA representation of a non-invertible

representation. With ARMA models, we simply have to invert the roots of the MA polynomial

which are inside the unit circle and adjust the standard deviation of the innovations (divide it by the

square of these roots): see Hamilton (1994, Section 3.7). The same procedure could be applied to

VARMA models in diagonal or final MA equation form.

For VARMA representations where no particular simple structure is imposed on the MA part, at

the moment we are not aware of an algorithm to go from the non-invertible to the invertible represen-

tation though theoretically this invertible representation exist and is unique as long as det[Θ(z)] 6= 0
for |z| = 1; see Hannan and Deistler (1988, chapter 1, section 3). So it might be troublesome to use

a nonlinear optimization with these VARMA representations since it is not clear how to go from the

non-invertible to an invertible representation.
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We can also consider the following natural generalization of the final AR equation form, where

we simply replace the scalar AR operator by a diagonal operator.

Definition 3.11 (Diagonal AR equation form) The VARMA representation (2.1) is said to be in

diagonal AR equation form if

Φ(L) = diag[ϕii(L)] = IK − Φ1L− · · · − ΦpLp (3.12)

where ϕii(L) = 1− ϕii,1L− · · · − ϕii,piL
pi and p = max1≤i≤K(pi).

Assumption 3.12 For each i = 1, . . . , K, there are no roots common to ϕii(z) and Θi•(z), i.e.

there is no value z? such that ϕii(z
?) = 0 and Θi•(z?) = 0.

Theorem 3.13 (Identification of diagonal AR equation form representation) Let the VARMA

model be defined by equation (2.1) and let Assumptions 2.1, 3.4 and 3.12 hold. If the VARMA

model is in diagonal AR equation form, then it is identified.

From Theorem 3.8, we can see that one way to ensure identification consists in imposing con-

straints on the MA operator. This can be viewed as an alternative to the approach developed by

Hannan (1971, 1976), where identification is obtained by restricting the autoregressive part to be

lower triangular with deg[ϕik(L)] ≤deg[ϕii(L)] for k > i, or to the final AR equation form where

Φ(L) is scalar. It may be more interesting to impose constraints on the moving average part instead

because it is this part which causes problems in the estimation of VARMA models. Other identified

representations which do not have a simple MA operator include the reversed echelon canonical

form [see Poskitt (1992)] where the rows of the VARMA model in echelon form are permuted so

that the Kronecker indices are ordered from smallest to largest, and the scalar component model

[see Tiao and Tsay (1989)] where contemporaneous linear transformations of the vector process are

considered. A general treatment of algebraic and topological structure underlying VARMA mod-

els is given in Hannan and Kavalieris (1984). For the maximum likelihood estimation of linear

state space models, data driven local coordinates are often used; see e.g. Ribarits, Deistler, and

McKelvey (2004) and McKelvey, Helmersson, and Ribarits (2004). Theorem 2.7.1 in Hannan and

Deistler (1988) provides general conditions for a class of ARMAX models to be identifiable. These

conditions are satisfied by the proposed representations.

4. Estimation

We next introduce elements of notation for the parameters of our model. First, irrespective of the

VARMA representation employed, we split the whole vector of parameters γ in two parts γ1 (the

parameters for the AR part) and γ2 (MA part):

γ =

[
γ1
γ2

]
. (4.1)
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For a VARMA model in diagonal MA equation form,

γ1 =
[
ϕ1•,1, . . . , ϕ1•,p, . . . , ϕK•,1, . . . , ϕK•,p

]′
, (4.2)

γ2 = [θ11,1, . . . , θ11,q1 , . . . , θKK,1, . . . , θKK,qK ]′ , (4.3)

while for a VARMA model in final MA equation form,

γ2 = [θ1, . . . , θq]
′ .

For VARMA models in diagonal AR equation form, we simply invert γ1 and γ2:

γ1 =
[
ϕ11,1, . . . , ϕ11,p1 , . . . , ϕKK,1, . . . , ϕKK,pK

]′
, (4.4)

γ2 = [θ1•,1, . . . , θ1•,q, . . . , θK•,1, . . . , θK•,q]
′ , (4.5)

while for a VARMA model in final AR equation form,

γ1 =
[
ϕ1, . . . , ϕp

]′
. (4.6)

The estimation method involves three steps. The observations go from t = 1, . . . , T .

Step 1. Estimate a VAR(nT ) model to approximate the VARMA(p, q) model, and compute the

residuals

Ût = Yt −
nT∑
j=1

Π̂
(nT )
j Yt−j for t = nT + 1, . . . , T. (4.7)

Step 2. Using the residuals Ût, compute an estimate of the covariance matrix of Ut, Σ̂U =
1
T

∑T
t=nT+1

ÛtÛ
′
t and estimate by GLS the multivariate regression

Φ(L)Yt = [Θ(L)− IK ]Ût + et (4.8)

to get estimates Φ̃(L) and Θ̃(L) of Φ(L) and Θ(L). The estimator is

γ̃ =

[
T∑
t=l

Ẑ ′t−1Σ̂
−1
U Ẑt−1

]−1 [ T∑
t=l

Ẑ ′t−1Σ̂
−1
U Yt

]
(4.9)

where l = nT + max(p, q) + 1. Setting

Y
(p)
t−1 = [y1,t−1, . . . , yK,t−1, . . . , y1,t−p, . . . , yK,t−p] , (4.10)

Û
(q)
t−1 = [û1,t−1, . . . , ûK,t−1, . . . , û1,t−q, . . . , ûK,t−q] , (4.11)

y
(k)
t−1 = [yk,t−1, . . . , yk,t−pk ] , û

(k)
t−1 = [ûk,t−1, . . . , ûk,t−qk ] , (4.12)
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the matrix Ẑt−1 for the various representations is:

ẐDMA
t−1 =

 Y
(p)
t−1 · · · 0 −û(1)t−1 · · · 0
...

. . .
...

...
. . .

...

0 · · · Y
(p)
t−1 0 · · · −û(K)t−1

 , (4.13)

ẐFMA
t−1 =

 Y
(p)
t−1 · · · 0 −û(1)t−1
...

. . .
...

...

0 · · · Y
(p)
t−1 −û

(K)
t−1

 , (4.14)

ẐDARt−1 =

 y
(1)
t−1 · · · 0 −Û(q)

t−1 · · · 0
...

. . .
...

...
. . .

...

0 · · · y
(K)
t−1 0 0 −Û(q)

t−1

 , (4.15)

ẐFARt−1 =

 y
(1)
t−1 −Û

(q)
t−1 · · · 0

...
...

. . .
...

y
(K)
t−1 0 0 −Û(q)

t−1

 , (4.16)

where DMA, FMA, DAR and FAR respectively stand for Diagonal MA, Final MA, Diagonal

AR and Final AR equation form.

Step 3. Using the second step estimates, we first form new residuals

Ũt = Yt −
p∑
i=1

Φ̃iYt−i +

q∑
j=1

Θ̃jŨt−j (4.17)

initiating with Ũt = 0 for t ≤ max(p, q), and we define

Xt =

q∑
j=1

Θ̃jXt−j + Yt , Wt =

q∑
j=1

Θ̃jWt−j + Ũt , (4.18)

initiating with Xt = Wt = 0 for t ≤ max(p, q). We also compute a new estimate of ΣU , Σ̃U =
1
T

∑T
t=l′ ŨtŨ

′
t , with l′ = max(p, q) + 1. Then we regress Ũt +Xt −Wt on Ṽt−1 by GLS, with

Ṽt =

q∑
j=1

Θ̃j Ṽt−j + Z̃t (4.19)

where Z̃t is computed like Ẑt from step 2 with Ũt replaced by Ût. This yields

γ̂ =

[
T∑
t=l′

Ṽ ′t−1Σ̃
−1
U Ṽt−1

]−1 [ T∑
t=l′

Ṽ ′t−1Σ̃
−1
U [Ũt +Xt −Wt]

]
(4.20)
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from which we extract the final estimates Φ̂i and Θ̂j .
The properties of the above estimators are summarized in the following three theorems. Theo-

rem 4.1 is a generalization of results from Lewis and Reinsel (1985) where convergence is demon-

strated for mixing rather than i.i.d. innovations. We denote the Euclidean norm by ‖B‖2 = tr(B′B).

Theorem 4.1 (VARMA first-step estimates) Suppose Yt satisfies the VARMA model in (2.1)
along with Assumptions 2.1, 2.2 and 2.3. If nT / log(T ) → ∞ and nT

2/T → 0 as T → ∞,

then the estimators Π̂
(nT )
j in (4.7) satisfy

nT∑
j=1

‖Π̂(nT )
j −Πj‖ = Op(

√
nT /T ). (4.21)

Theorem 4.2 (VARMA second-step estimates) Under the assumptions of Theorem 4.1, suppose

the parameters of the model are identified. Then the second-step estimator γ̃ in (4.9) converge in

probability to the true value γ, and

√
T (γ̃ − γ)

d−→
T→∞

N
[
0, J−1(2) I(2)J

−1
(2)

]
where

I(2) =
∞∑

j=−∞
E{
[
Z ′t−1Σ

−1
U Ut

] [
Z ′t−1−jΣ

−1
U Ut−j

]′} , J(2) = E
[
Z ′t−1Σ

−1
U Zt−1

]
, (4.22)

and Zt−1 is equal to the matrix Ẑt−1 where Ût is replaced by Ut. Further, if ω(j,mT ) = 1 −
|j|/(mT + 1) with m4

T /T → 0 and mT →∞ as T →∞, we have:

Î(2) :=
1

T

mT∑
j=−mT

ω(j,mT )
T∑

t=l+|j|

[
Ẑ ′t−1Σ̂

−1
U Ũt

] [
Ẑ ′t−1−jΣ̂

−1
U Ũt−j

]′ p−→
T→∞

I(2) , (4.23)

Ĵ(2) :=
1

T

T∑
t=l

Ẑ ′t−1Σ̂
−1
U Ẑt−1

p−→
T→∞

J(2) . (4.24)

Theorem 4.3 (VARMA third-step estimates) Under the assumptions of Theorem 4.2, the third-

step estimator γ̂ in (4.20) converges in probability to the true value γ, and

√
T (γ̂ − γ)

d−→
T→∞

N [0, J−1(3) I(3)J
−1
(3) ] (4.25)

with

I(3) =

∞∑
j=−∞

E{
[
V ′t−1Σ

−1
U Ut

] [
V ′t−1−jΣ

−1
U Ut−j

]′} , J(3) = E
[
V ′t−1Σ

−1
U Vt−1

]
(4.26)
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and Vt−1 is equal to the matrix Ṽt−1 where Ũt is replaced by Ut. Further, if m4
T /T → 0 and

mT →∞ as T →∞, we have:

Î(3) =
1

T

mT∑
j=−mT

ω(j,mT )
T∑

t=l′+|j|

{
Ṽ ′t−1Σ̃

−1
U Ūt

}{
Ṽ ′t−1−jΣ̃

−1
U Ūt−j

}′ p−→
T→∞

I(3) (4.27)

Ĵ(3) =
1

T

T∑
t=l′

Ṽ ′t−1Σ̃
−1
U Ṽt−1

p−→
T→∞

J(3) , (4.28)

where ω(j,mT ) = 1− |j|/(mT + 1) and Ūt are the filtered residuals computed with γ̂.

Proofs of these theorems can be found in the online appendix (part D). In Step 1, if the order nT
of the VAR grows at the appropriate rate, the approximation error from estimating a finite order VAR

when the truth is VAR(∞) will shrink to zero with the sample size.3 In Step 2, the measurement error

problem in using residuals instead of the true innovations as regressors asymptotically disappears

which makes the regression coefficients consistent estimates. Replacing the innovation Ut with a

residual induces a MA structure in the measurement error. Step 3 builds an MA filter to correct it

and improve the efficiency of the estimator.

Notice the simplicity of this estimation method. Only three regressions are needed so we

can avoid all the caveats associated with nonlinear optimizations. This is a central problem with

VARMA models where one typically deals with a high number of parameters and numerical con-

vergence may be hard to obtain. This is especially important when we consider the fact that the

asymptotic distribution of our estimators, on which we would base our inference, may be a bad

approximation to the finite-sample distribution in high-dimensional dynamic models. Because of

this, an estimation procedure which only requires linear methods is interesting since it suggests that

simulation-based procedures – bootstrap techniques for example – should be used, something that

would be impractical if the estimation is based on non-linear optimizations.

It is also important to mention that this procedure is not specific to the representations consid-

ered in this work. The expressions can be easily adapted to other identified representation. Since

our estimation method is only based on linear regressions, we can afford to use a less parsimo-

nious representation, whereas it is critical to keep the number of parameters to a minimum when a

nonlinear estimation method is used. An advantage of the proposed Diagonal MA and Final MA

representations is that if the second step estimates do not correspond to an invertible MA represen-

tation (roots inside the unit circle), it is easy to get the corresponding invertible representation to be

able to perform Step 3.4

A review of existing estimation methods for VARMA models is included in the online appendix

(part B). With the exception of Dias and Kapetanios (2018) who propose an Iterated OLS (IOLS)

estimator where we iterate the second step of our estimator until the convergence, all the articles

reviewed consider data generating processes with innovations that are either i.i.d. or at a minimum

3Our experience is that the specific value of nT does not matter much as long as it is large enough to give residuals

that appear white noise.
4See the comments after Theorem 3.10.
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form a m.d.s. Here, however, we supply a distributional theory which holds under much weaker

assumptions. This allow us to study a broader class of models, e.g. temporally aggregated pro-

cesses, marginalized processes, weak representation of nonlinear models. For example, the test of

Chen, Choi, and Escanciano (2017) for fundamental VMA representations is specifically based on

allowing the innovations Ut to not be a m.d.s. Our results are based on the assumption that the

models are identified. We leave for future work the analysis of our estimator in the context of weak

identification as in Andrews and Cheng (2012).

We can ask ourselves what is the cost of not doing the nonlinear estimation. For a given sample

size we will certainly lose some efficiency because of the first step estimation. We can nonetheless

compare the asymptotic variance matrix of our estimator with the corresponding nonlinear estima-

tor. We have the following results.

Theorem 4.4 (Efficiency of third step estimates under Gaussianity) Under the assumptions of

Theorem 4.3, suppose that the innovations Ut are i.i.d. Gaussian. Then, the asymptotic variance of

the third stage estimator is equal to the asymptotic variance of the maximum likelihood estimator.

Theorem 4.5 (Efficiency of third step estimates under weak innovations) Under the assump-

tions of Theorem 4.3, the asymptotic variance of the third stage estimator is equal to the asymptotic

variance of the quasi-maximum likelihood estimator.

We can see that the asymptotic variance of our three-step linear estimator is the same as non-

linear least squares if the innovations are only uncorrelated or maximum likelihood if they are i.i.d.

Gaussian. To get a feel for the loss of efficiency in finite samples due to replacing the true innova-

tions by residuals from a long VAR we performed Monte Carlo simulations and report the results in

section 6. We can interpret the third step as a Newton-Raphson step in the minimization of the sum

of squared residuals
∑T

t=1 U
′
tUt.

5 It can also be viewed as a GLS correction induced by the MA

structure in the error we make, when the true error term Ut is replaced by the first step residual Ût
[see Reinsel, Basu, and Yap (1992)].

Our proposed estimator of the variance matrices in the asymptotic distribution of the second and

third-step estimators are based on the results of Newey and West (1987), which require the choice

of a bandwidth mT . Beyond the rate requirement to guarantee the consistency of the estimators,

practitioners can use recent results in Lazarus, Lewis, Stock, and Watson (2018) to choose a value

for mT . They favor using a larger bandwidth than typically recommended, mT = 1.3T 1/2 is one of

their recommendation. Different kernel could also be used; see Lazarus, Lewis, and Stock (2019).

5. Order selection

We still have unknowns in our model, the orders of the AR and MA operators. If no theory specifies

these parameters, we have to use a statistical procedure to choose them. We propose the following

information criterion method to choose the orders for VARMA models in the different identified

5See the proof of Theorem 4.5 in the online Appendix. We thank a referee for pointing this out to us.
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representations proposed in Section 3. In the second step of the estimation, we compute for all

p ≤ P and q ≤ Q the following information criterion:

DP (p, q, T ) := log(det Σ̃U ) + dim(γ)
(log T )1+δ

T
(5.1)

for some δ > 0. We then choose p̂ and q̂ as the set which minimizes the information criterion. We

assume that the upper bound P and Q on the orders of the AR and MA part are bigger than the true

values of p and q (or that they slowly grow with the sample size). The properties of p̂ and q̂ are

summarized in the following theorem.6

Theorem 5.1 (Estimation of the orders p and q in VARMA models) Under the assumptions of

Theorem 4.2, suppose that 0 ≤ p ≤ P and 0 ≤ q ≤ Q. If nT = O
(
(log T )1+δ1

)
from some

δ1 > 0 with δ1 < δ, and (p̂, q̂) minimize DP (p, q, T ), then p̂ and q̂ converge in probability to their

true values.

In practice, this procedure can lead to a search over too many models for the diagonal repre-

sentations. A valid alternative is to search for the true orders by proceeding equation by equation.

In the second step of the estimation, rather than a simultaneous estimation, just perform univariate

regressions. For a VARMA model in diagonal MA equation form, we estimate the regressions

yit =

pi∑
j=1

K∑
k=1

ϕik,jyk,t−j −
qi∑
j=1

θii,j ûi,t−j + eit (5.2)

for i = 1, . . . , K, while for a VARMA models in diagonal AR equation form, we consider

yit =

pi∑
j=1

ϕii,jyi,t−j −
qi∑
j=1

K∑
k=1

θik,j ûk,t−j + eit . (5.3)

We then chose p̂i and q̂i as the orders which minimize the following information criterion:

log(σ̂2i ) + g(pi, qi)
(log T )1+δ

T
(5.4)

where δ > 0 and g(pi, qi) = piK + qi or g(pi, qi) = pi + qiK for the diagonal MA or AR

equation form representation respectively. The global order for the autoregressive operator is then

p̂ = max(p̂1, . . . , p̂K) for the diagonal MA representation, and similarly q̂ = max(q̂1, . . . , q̂K)
for the diagonal AR representation. We see that this equation by equation selection procedure is not

only easier to apply, but can lead to more parsimonious representations by identifying rows of zeros

coefficients in Φj or Θj .

Theorem 5.2 (Estimation of the order p and q in diagonal VARMA models) Under the as-

sumption of Theorem 5.1, if the VARMA model is in either the diagonal MA or AR equation form

6Convergence is pointwise to the assumed true value of the orders p and q.
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and the orders are chosen by minimizing DP (p, q, T ) in (5.4), then p̂i and q̂i, i = 1, . . . , K,

converge in probability to their true value.

The criterion DP (p, q, T ) is a generalization of the information criterion proposed by Hannan

and Rissanen (1982). However, these authors later recognized that this criterion should be modified

to yield consistent estimates of the orders p and q. The original criterion was

log σ̃2 + (p+ q)
(log T )δ

T
(5.5)

with δ > 0. Hannan and Rissanen (1983) showed that σ̃2 − 1
T

∑T
t=1 u

2
t is Op(nTT

−1), rather

than Op(T
−1), so that the penalty (log T )δ/T is not strong enough. Two possible modifications

are then considered. The first one is relatively simple and consists in taking (log T )1+δ instead of

(log T )δ in the information criterion, so that the penalty on p+ q dominates log σ̂2 in the criterion.

The second one – which they favor and use in later work [see Hannan and Kavalieris (1984)] –

considers a modification of the first step of the procedure: instead of taking nT = O(log T ), another

information criterion is used to choose the order of the long autoregression, and the whole procedure

is iterated picking potentially different values p and q at every iteration. A similar approach is also

proposed by Poskitt (1987). In this work, we prefer the first solution in order to keep the procedure

as simple as possible.

The online appendix (part C) contains a review of existing methods for specifying VARMA

models under different identified representations, as well as testing if the innovations are uncorre-

lated by analyzing the residuals.

6. Monte Carlo simulations

To illustrate the performance of our estimation method we ran simulations where the innovations are

not independent nor a m.d.s. but merely uncorrelated. We simulate weak VARMA processes by di-

rectly simulating weak innovations, from which we build the simulated series. Different approaches

can be taken to simulate weak VARMA processes. Temporal aggregation of a strong VARMA

process with innovations that have a skewed marginal distribution [see Francq and Zakoïan (1998,

Section 2.2.1)] or of a strong GARCH process [see Drost and Nijman (1993) and Francq and Za-

koïan (2000)] can generate weak innovations. For our simulations we instead employ a specification

presented in Boubacar Maïnassara and Saussereau (2018, equation 27):

Ut =

(
ε21,tε2,t−1ε1,t−2
ε22,tε1,t−1ε2,t−2

)
(6.1)

where εt is i.i.d. N(0, I2). The process Ut is uncorrelated over time but is not a m.d.s. All the

simulated models are bivariate so the results are easier to analyze. We performed 10,000 simulations

for each model.

In these examples, because the innovations are not a m.d.s., we cannot do maximum likelihood.

We instead employ nonlinear generalized least-squares (GLS), i.e. we minimize the nonlinear least
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squares, compute an estimate of the variance matrix of the innovations and then do nonlinear GLS.

We did not iterate this procedure, partly to reduce the estimation time in our Monte Carlo study,

partly because there is no asymptotic gain in iterating.

In these simulations the sample size is 250 observations, which represent about 20 years of

monthly data, a reasonable sample size for macroeconomic data. Table 1 gives results for a VARMA

model in final MA equation form [VARMA(1, 1)], while results for VARMA models in diagonal

MA equation form are given in Tables 2 and 3 [VARMA(1, 1) with q = (1, 1) and VARMA(2,1)

with q = (1, 1) respectively]. We present the results (mean, standard deviations, root mean square

error, 5% quantile, 95% quantile and median) for the second (when the number of parameters does

not exceed five) and third-step estimates, and the nonlinear GLS estimates (using the true value of

the parameters as initial values).

From looking at the RMSE, a first thing to notice is that there can be sizable improvement in

doing the third step. Some of the third-step RMSEs in Tables 1 and 2 are more than 50% smaller than

for the second step. This is an interesting observation considering that the third step basically involve

only one extra regression. Comparing the third-step RMSEs and the RMSEs for the nonlinear GLS

estimates, we see that the former are usually no more than 15% bigger. This is also an interesting

observation. The cost of avoiding a numerical optimization, which can become quite challenging as

the number of time series or the orders of the operators increase, appears to be small.

In the top part of these tables we also present the results for the selection of the order of the

operators using our proposed information criterion. For models in final MA equation form, we have

to select the orders p and q, and for models in diagonal MA equation, the selection is over p, q1
and q2. In Table 1, we see that for VARMA models in final MA equation form the most frequently

chosen orders are the true ones, and the criterion will tend to pick a higher value for q than for p.

This result might partially be skewed by the fact that the simulated models have a highly persistent

moving average (θ1 = 0.9). For VARMA models in diagonal equation form (Tables 2 and 3), we get

similar results, the orders selected with the highest frequency are the true ones. In these simulations,

we set δ = 0.5 for the information criterion. Our experience is that this value, or something smaller

like δ = 0.25 works well.

7. Application to a macroeconomics model of the U.S. monetary policy

Our application is based on McMillin (2001) who compare numerous identification restrictions for

the structural effects of monetary policy shocks using the same dataset as Bernanke and Mihov

(1998).7 The series are plotted in Figure 1. One of the model studied is a VAR applied to the

first difference of the series, in order, gdpm, (psscom-pgdpm), fyff, nbrec1, tr1, psscom. With an

7The dataset consist of the log of the real GDP (gdpm), total bank reserves (tr1), nonborrowed reserves (nbrec1),

federal funds rate (fyff ), log of the GDP deflator (pgdpm), log of the Dow-Jones index of spot commodity prices (psccom).

These are monthly data and cover the period January 1962 to December 1996. The monthly data for real GDP and the

GDP deflator were constructed by state space methods, using a list of monthly interpolator variables and assuming that

the interpolation error is describable as an AR(1) process. Both total reserves and nonborrowed reserves are normalized

by a 36-month moving average of total reserves.
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argument based on Keating (2002), the author state that using this ordering of the variables the

Cholesky decomposition, based on long-run macroeconomic restrictions, which are described in an

appendix, of the variance matrix of the innovations will identify the structural effects of the policy

variable nbrec1 without imposing any contemporaneous restrictions among the variables. Since the

model is in first difference, the impulse-response at a given order is the cumulative shocks up to that

order.

By fitting a VAR(12) to these series we get basically the same impulse-response functions and

confidence bands as in McMillin (2001) They are plotted in Figure 3(a). The impulse-response

function for the output and federal funds rate tends to zero as the order increases which is consistent

with the notion that a monetary variable does not have a long term impact on real variables. The

impulse response of the price level increases as we let the order grow and does not revert to zero.

We next estimate VARMA models. Of the four representations presented in Section 3, we

present results for the Final MA representation, for which the information criterion picked orders

(p̂ = 3, q̂ = 10). The impulse-response functions for this model are plotted in Figure 3(b). The

behavior of the impulse-response function for GDP, the federal funds rate and the price level from

the VARMA models are similar to what we obtained with a VAR. The most notable differences

are that the initial decrease in the federal funds rate is smaller (0.20 versus 0.32 percentage point)

and the GDP is peaking earlier with Final MA. Furthermore, in Figure 3(c) we report the impulse-

response functions for a VARMA model in echelon form.8 They are somewhat similar to the ones

from VAR and Final MA except for two important aspects. For output the IRF is decreasing instead

of having a hump shape. We usually believe that it takes some time for monetary shocks to affect

the real side of the economy. For the price level the IRF has pretty much leveled off after 24 months

instead of still increasing.

It is not surprising that VAR and VARMA models are giving similar impulse-response functions

since they are all ways of getting an infinite MA representation. What is more interesting is the

comparison of the width of the confidence bands for the VAR and VARMA’s impulse-response

functions.9 For GDP and the federal funds rate, we see that the bands are much smaller for the

VARMA model in Final MA equation form, and they shrink more quickly as the horizon increases.

The confidence bands for these two variables should be collapsing around their IRF since there

should be no long-term effect of the policy variable so the uncertainty should decrease as the horizon

increases. The situation is different for the price level. For this variable the confidence band grows

with the order. Again this is not surprising, since we expect that a change in the non-borrowed

reserves should have a long-term impact on the price level. With a non-dying impact it is natural

that the uncertainty about this impact can grow as time passes.

The result that the confidence bands around IRFs can be shorter with a VARMA, in particular

with our proposed representations, than with a VAR could be expected since these models are simple

extensions of the VAR approach. The introduction of a simple MA operator allows the reduction

of the required AR order so we can get more precise estimates, which translate into more precise

8The Kronecker indices are initially selected using the method in Poskitt (1992), which gives [1, 1, 1, 1, 1, 1] using

the BIC information criterion. From these, we looked at IRFs for Kronecker indices slightly different and found through

visual inspection that Kronecker indices equal to [1, 1, 1, 1, 2, 1] give the closest match to the ones from a VAR(12).
9For all models the confidence bands are computed by performing a parametric bootstrap using Gaussian innovations.
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impulse-response functions.

As mentioned at the beginning of this section, another way of comparing the performance of

VAR and VARMA models is to look at out-of-sample forecasts. For this exercise, using the same

dataset as for the IRF above, we compared the RMSE for VAR models, VARMA models in Final and

Diagonal MA equation form and VARMA models in echelon form. We use the first 264 observations

to select the particular specification of each model. This leaves 120 observations for the out-of-

sample evaluation of the forecasts. For the VAR model, we include a VAR(6) and a VAR(12). The

former is the order selected by AIC, the latter is the order used by McMillin (2001) to model this

dataset. For the VARMA in the Diagonal MA form, using our equation-by-equation information

criterion (with δ = 0.5) we get p̂ = 1 and q̂ = [2, 1, 1, 1, 1, 1]. For the Final MA form, our

information criterion (with δ = 0.5) selects p̂ = 0 and q̂ = 1. For the echelon form, using the

method in Poskitt (1992) we select Kronecker indices [1, 1, 1, 1, 1, 1] using BIC and [2, 1, 1, 1, 1, 2]
using AIC.10 As we move through the out-of-sample period, the parameters of all the models are

re-estimated and we compute forecasts up to 12 periods ahead.11 The results are presented in Table

4. We can see that for all forecasting horizons, the Diagonal and Final MA representations achieve

a lower RMSE than the VAR models and the VARMA models in echelon forms. For one step ahead

forecasts, the Final MA representation has a lower RMSE than the Diagonal MA representation.

For horizons 2 to 7 periods ahead, it’s the Diagonal MA that Dominates Final MA. For horizons

greater than 7 periods ahead, Final MA and Diagonal MA have similar RMSEs. Comparing the

RMSEs for the VAR models, and for the VARMA models in echelon form, we see that the more

parsimonious representations perform better.

8. Conclusion

In this paper, we have developed a modeling and estimation method which will make the use of

VARMA models easier and more practical. We first introduced new identified VARMA representa-

tions, the final MA equation form and the diagonal MA equation form. These two representations

are simple extensions of the class of VAR models where we add a simple MA operator, either a

scalar or a diagonal operator. The addition of a MA part can give more parsimonious representa-

tions, yet the simple form of the MA operators does not introduce undue complications.

To simplify the estimation, we proposed relatively simple methods which only require linear

regressions. For that purpose, we considered a generalization of the regression-based estimation

method proposed by Hannan and Rissanen (1982) for univariate ARMA models. Our method has

three steps. First, a long VAR is fitted to the data. Second, the lagged innovations in the VARMA

model are replaced by the corresponding lagged residuals from the first step, and a regression is per-

formed. Third, the data from the second step are filtered, and another regression is performed. We

showed that the third-step estimators have the same asymptotic variance as their nonlinear coun-

terpart (Gaussian maximum likelihood if the innovations are i.i.d., or generalized nonlinear least

10The number of AR and MA parameters is 92 for the representation selected by AIC and 72 for BIC.
11We estimate the VARs by OLS, the Diagonal and Final MA forms using our three-step methods. We use the SSM-

MATLAB toolbox, see Gómez (2015), to estimate the echelon form by conditional likelihood. An alternative would be

the method in Poskitt (2016).
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squares if they are merely uncorrelated). In the non i.i.d. case, we consider strong mixing condi-

tions, rather than the usual martingale difference sequence assumption. These minimal assumptions

on the innovations broaden the class of models to which the method can be applied.

We also proposed a modified information criterion that gives consistent estimates of the orders

of the AR and MA operators of the proposed VARMA representations. This criterion is to be

minimized in the second step of the estimation method over a set of possible values for the different

orders.

Monte Carlo simulation results indicates that the estimation method works well for small sample

sizes, and the information criterion picks the true value of the order p and q most of the time. These

results holds for sample sizes commonly used in macroeconomics, i.e. 20 years of monthly data or

250 sample points. To demonstrate the importance of using VARMA models to study multivariate

time series, we compared the impulse-response functions and the out-of-sample forecasts generated

by VARMA and VAR models when these models are applied to the dataset of macroeconomic time

series used by Bernanke and Mihov (1998).
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Table 1. Estimation of a weak final MA equation form VARMA(1, 1)

The simulated model is a weak VARMA(1, 1) in final MA equation form with ϕ11,1 = 0.5, ϕ21,1 =
0.7, ϕ12,1 = −0.6, ϕ22,1 = 0.3 and θ1 = 0.9. The innovations are simulated according to equation

(6.1). The sample size is 250, the length of the long VAR is nT = 15, the number of repetition is

10,000. The parameter in the criterion is δ = 0.5.

Frequencies of selection of (p̂, q̂) using the information criteria

p \ q 0 1 2 3 4 5

0 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.722 0.074 0.024 0.015 0.012

2 0.000 0.067 0.066 0.005 0.005 0.007

3 0.000 0.002 0.001 0.000 0.000 0.000

4 0.000 0.000 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 0.000 0.000

Value Average Std. dev. RMSE 5% 95% Median

Second step

ϕ11,1 0.5 0.423 0.064 0.101 0.312 0.518 0.427

ϕ21,1 0.7 0.699 0.121 0.121 0.493 0.877 0.706

ϕ12,1 -0.6 -0.587 0.112 0.113 -0.751 -0.392 -0.596

ϕ22,1 0.3 0.233 0.070 0.097 0.112 0.339 0.238

θ1 0.9 0.817 0.062 0.104 0.712 0.916 0.820

Third step

ϕ11,1 0.5 0.498 0.048 0.048 0.420 0.574 0.499

ϕ21,1 0.7 0.694 0.095 0.095 0.534 0.834 0.699

ϕ12,1 -0.6 -0.591 0.088 0.088 -0.717 -0.438 -0.598

ϕ22,1 0.3 0.298 0.050 0.050 0.220 0.375 0.298

θ1 0.9 0.892 0.048 0.049 0.807 0.963 0.897

NLLS

ϕ11,1 0.5 0.494 0.046 0.047 0.416 0.565 0.496

ϕ21,1 0.7 0.700 0.093 0.093 0.541 0.842 0.705

ϕ12,1 -0.6 -0.597 0.086 0.086 -0.724 -0.446 -0.603

ϕ22,1 0.3 0.294 0.045 0.045 0.223 0.363 0.296

θ1 0.9 0.892 0.042 0.043 0.832 0.937 0.898
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Table 2. Estimation of a weak diagonal MA equation form VARMA(1, 1)

The simulated model is a weak VARMA(1, 1) in diagonal MA equation form with ϕ11,1 = 0.5,

ϕ12,1 = −0.6, ϕ21,1 = 0.7, ϕ22,1 = 0.3, θ1,1 = 0.9 and θ1,1 = 0.7. The innovations are simulated

according to equation (6.1). The sample size is 250, the length of the long VAR is nT = 15, the

number of repetition is 10,000. The parameter in the criterion is δ = 0.5.

Frequencies of selection of (p̂, q̂) using the information criteria.

(p, q1, q2) Frequency

1,1,1 0.619

2,1,1 0.126

2,1,0 0.060

1,2,1 0.038

1,1,2 0.029

2,2,1 0.024

1,3,1 0.010

Value Average Std. dev. RMSE 5% 95% Median

Second step

ϕ11,1 0.5 0.414 0.078 0.116 0.276 0.528 0.422

ϕ21,1 0.7 0.695 0.122 0.122 0.490 0.875 0.704

ϕ12,1 -0.6 -0.589 0.111 0.112 -0.754 -0.393 -0.599

ϕ22,1 0.3 0.242 0.077 0.096 0.107 0.359 0.249

θ1,1 0.9 0.803 0.093 0.134 0.640 0.942 0.811

θ2,1 0.7 0.639 0.096 0.114 0.473 0.787 0.644

Third step

ϕ11,1 0.5 0.503 0.083 0.083 0.414 0.589 0.501

ϕ21,1 0.7 0.692 0.107 0.107 0.516 0.843 0.701

ϕ12,1 -0.6 -0.589 0.098 0.098 -0.729 -0.425 -0.598

ϕ22,1 0.3 0.300 0.075 0.075 0.202 0.392 0.298

θ1,1 0.9 0.889 0.069 0.069 0.765 0.980 0.899

θ2,1 0.7 0.695 0.086 0.086 0.548 0.828 0.698

NLLS

ϕ11,1 0.5 0.495 0.046 0.046 0.418 0.564 0.497

ϕ12,1 0.7 0.694 0.100 0.101 0.524 -0.840 0.702

ϕ21,1 -0.6 -0.599 0.088 0.088 -0.734 0.447 -0.605

ϕ22,1 0.3 0.296 0.050 0.050 0.214 0.373 0.298

θ1,1 0.9 0.897 0.054 0.054 0.823 0.959 0.902

θ2,1 0.7 0.699 0.072 0.072 0.579 0.811 0.702
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Table 3. Estimation of a weak diagonal MA equation form VARMA(2, 1)

The simulated model is a weak VARMA(2,1) in diagonal MA equation form with ϕ11,1 = 0.9,

ϕ12,1 = −0.5, ϕ21,1 = 0.3, ϕ22,1 = 0.1, ϕ11,2 = −0.1, ϕ12,2 = −0.2, ϕ21,2 = 0.1, ϕ22,2 = −0.15,

ϕ1,1 = 0.9, and ϕ2,1 = 0.7. The innovations are simulated according to equation (6.1). The

sample size is 250, the length of the long VAR is nT = 15, the number of repetition is 10,000. The

parameter in the criterion is δ = 0.5.

Frequencies of selection of (p̂, q̂) using the information criteria.

(p, q1, q2) Frequency

2,1,1 0.677

2,1,0 0.080

2,1,2 0.066

2,2,1 0.030

3,1,1 0.029

3,1,0 0.022

2,1,3 0.012

Value Average Std. dev. RMSE 5% 95% Median

Third step

ϕ11,1 0.9 0.894 0.057 0.057 0.800 0.980 0.896

ϕ21,1 0.3 0.298 0.118 0.118 0.119 0.484 0.296

ϕ12,1 -0.5 -0.501 0.202 0.202 -0.821 -0.179 -0.501

ϕ22,1 0.1 0.096 0.175 0.175 -0.162 0.353 0.094

ϕ11,2 -0.5 -0.492 0.081 0.081 -0.613 -0.361 -0.494

ϕ21,2 0.1 0.093 0.173 0.173 -0.184 0.320 0.108

ϕ12,2 -0.2 -0.204 0.105 0.105 -0.369 -0.038 -0.206

ϕ22,2 -0.15 -0.137 0.176 0.176 -0.388 0.142 -0.151

θ1,1 0.9 0.889 0.059 0.060 0.785 0.972 0.896

θ2,1 0.7 0.686 0.142 0.143 0.434 0.907 0.699

NLLS

ϕ11,1 0.9 0.892 0.054 0.054 0.803 0.973 0.894

ϕ21,1 0.3 0.298 0.118 0.118 0.117 0.490 0.295

ϕ12,1 -0.5 -0.501 0.196 0.196 -0.809 -0.189 -0.501

ϕ22,1 0.1 0.081 0.118 0.120 -0.126 0.253 0.092

ϕ11,2 -0.5 -0.493 0.076 0.076 -0.608 -0.372 -0.495

ϕ21,2 0.1 0.105 0.129 0.129 -0.111 0.304 0.110

ϕ12,2 -0.2 -0.208 0.099 0.100 -0.367 -0.047 -0.209

ϕ22,2 -0.15 -0.147 0.159 0.160 -0.389 0.118 -0.157

θ1,1 0.9 0.894 0.058 0.058 0.815 0.961 0.899

θ2,1 0.7 0.686 0.113 0.114 0.490 0.837 0.700
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Table 4. RMSE for VAR and VARMA models

RMSE for out-of-sample forecasts for the dataset used in the computation of the impulse-response

functions. The models are recursively estimated starting at observation 264 so the out-of-sample

period consists of 100 observations. The specification of the models is determined at observation

264. VAR(6) is the number of lags chosen by AIC. VAR(12) is the order used to compute the

impulse-response functions. Using our proposed information criterion with δ = 0.5 the orders

of the Diagonal MA (one equation at a time) and Final MA models are respectively p = 1, q =
(2, 1, 1, 1, 1, 1) and p = 0, q = 1. The Kronecker indices of the echelon form are determined

according to the method in Poskitt (1992): (1, 1, 1, 1, 1, 1) and (2, 1, 1, 1, 1, 2) with respectively

BIC or AIC.

Steps ahead VAR(6) VAR(12) Diagonal MA Final MA EchelonBIC EchelonAIC

1 0.1124 0.1181 0.1004 0.0866 0.1074 0.1034

2 0.1260 0.1275 0.0904 0.0917 0.1172 0.1357

3 0.1230 0.1299 0.0869 0.0922 0.1216 0.1524

4 0.1227 0.1263 0.0891 0.0924 0.1209 0.1454

5 0.1127 0.1195 0.0901 0.0911 0.1109 0.1748

6 0.1064 0.1115 0.0907 0.0914 0.1025 0.1558

7 0.0969 0.1030 0.0916 0.0918 0.1086 0.1446

8 0.0964 0.1049 0.0923 0.0923 0.1098 0.1357

9 0.0936 0.1026 0.0909 0.0910 0.1078 0.1162

10 0.0927 0.1057 0.0914 0.0915 0.1033 0.1178

11 0.0911 0.0998 0.0888 0.0888 0.0992 0.1151

12 0.0919 0.1074 0.0892 0.0893 0.0967 0.1217
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Figure 1. Macroeconomic series
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Figure 2. Impulse-response functions for VAR model

and VARMA model in final MA equation form.

VAR(12), VARMA(3,10) in final MA equation form and VARMA in echelon form with Kronecker

indices [1, 1, 1, 1, 2, 1] are fitted to the first difference of the six time series. The confidence band

represent a one standard deviation. The standard deviations are derived from a parametric bootstrap

using Gaussian innovations.
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