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Inference on the autocorrelation coefficient p of a linear regression model with first-order 
autoregressive normal disturbances is studied. Both stationary and nonstationary processes are 
considered. Locally best and point-optimal invariant tests for any given value of p are derived. 
Special cases of these tests include tests for independence and tests for unit-root hypotheses. 
The powers of alternative tests are compared numerically for a number of selected testing 
problems and for a range of design matrices. The results suggest that point-optimal tests are 
usually preferable to locally best tests, especially for testing values of p greater than or equal to 

1. Introduction 

The first-order autoregressive [AR(l)] process is one of the most widely 
used models in econometrics. An important extension is the linear regression 
model with AR(l) disturbances. In this context, one usually meets the 
problem of making inferences about the autocorrelation coefficient. This 
problem can be of interest in itself (e.g., tests of random walk and stationarity 
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hypotheses) or can play a role in making inferences about the regression 
coefficients. In this paper, we develop finite-sample methods for testing 
whether the autocorrelation coefficient has any given value. We consider the 

general linear model 

?’ = xp + Il. (1) 

where )I is an n x 1 vector, X is an II x k matrix of fixed regressors with 
rank(X) = k < ~1, /3 is an unknown parameter vector. and II is an II X I 

vector of disturbances which follow an AR(l) process with normal innova- 
tions: 

u,=pu, , +t,, t=7,....t1, (2) 

with Ed,. . , F,, - INtO, a’), (7’ > 0. Further, it is necessary to make assump- 
tions on the value of p and the distribution of the initial disturbance II,. In 
this paper, we consider two main assumptions: 

Assumption A (stationary process). lpl < 1, II, - N(t). u’/( 1 -- p’)). and II, 
is independent of F~. , F,,. 

Assumption B (unrestricted p). --x <p < +x and II, =d,~,. whcrc tl, is 
unknown, P, - N(0, a’), and P, is independent of F?, , F,,. 

Clearly, Assumption A is a special case of Assumption B. Further, As- 
sumption B includes the case of a random walk (p = I) and explosive 
processes (lpi > 1) in the disturbances. Though most of our derivations will be 
based on these two assumptions, we will consider occasionally the more 
general assumption that U, follows an arbitrary distribution. 

Assumptiorl C. - 3~ < p < + 2, ~1, follows an arbitrary distribution with 
mean zero and u, is independent of t‘?, . t‘,(. 

If x; denotes the tth row of X and we take x, = I, ( I) and (2) also include 
as a special case the simple stationary AR( 1) process 

y,=/..l +py,_, fc-,, t = ?.....n. 

where p =(I -PIP, and y, - N(P,. c~‘/( 1 - I,‘)). By taking x, = (I, t Y. WC 
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can get (under Assumption B) 

Y,=Pl +P*t+PYt-, +E,Y t = 2,...,n, 

where pi = (1 - p)pi +p&, pz = (1 - p)&, and Y, - N(P, + P2, &a*). With 
p = 1, this yields the random walk model 

Yt = P2 + Yt- I + 8, J t=2,...,n, 

where y, N NQ3, + &, d, *a*); the mean and variance of y, and the drift 
coefficient p2 can take arbitrary values. Finally, if we take X, = (1, #), and 
p # 0 and 1, we get (under Assumption B) 

Y,=Pl +py,-, t-&I, t=2,...,n, 

where p, = (1 -p)p, and y, _ N@, + &p, d:a*); in contrast with the sta- 
tionary case, y, has here arbitrary mean and variance. 

Following Anderson (1948) and Durbin and Watson (1950, 19511, many 
authors have studied tests of p = 0; for a survey, see King (1987a). Attention 
has also been devoted to testing the random walk hypothesis p = 1, either in 
linear regressions [Sargan and Bhargava (198311 or in simpler models [Evans 
and Savin (1981, 19841, Bhargava (19861, Nankervis and Savin (198511.’ On 
the other hand, very little has been done on testing whether p has a 
pre-specified value, possibly different from zero or one. For example, one 
may wish to test whether p has a value close to but not equal to one. A more 
basic reason why this problem is important is that tests of p =po can be 
turned into confidence sets for p. Exact tests yield exact confidence sets 
which can be employed to obtain exact inference procedures (tests and 
confidence sets) for the regression coefficients [see Dufour (199011. In this 
context, we need efficient tests because the power of the test determines how 
short the intervals tend to be [see Lehmann (1986, ch. 3)]. Finally, in view of 
the unreliability of asymptotic critical values [see Park and Mitchell (1980) 
and Miyazaki and Griffiths (1984)], there is a potentially large benefit from 
developing finite-sample procedures. 

In this paper, we construct optimal invariant tests of H,: p =pO against 
alternatives of the form HT: p > pa and Hi: p <pO, where p0 is any 
admissible value of p. We derive both locally best invariant (LB11 and 
point-optimal invariant (POI) tests, the latter being constructed as most 

‘Several authors have also studied asymptotic distributions in models with roots equal to or 
greater than one; see, for example, Anderson (19.59), Rao (1978), Dickey and Fuller (1979, 19811, 
Satchel1 (1984), Fuller (19851, Phillips (1987a, 1987b), Phillips and Durlauf (1986), and the survey 
of Diebold and Nerlove (1988). In this paper, we concentrate on finite-sample procedures. 



powerful invariant (MPI) tests against nonlocal point alternatives. We also 
discuss how to obtain two-sided tests against H,,: [J f ~~,,. In section 2. we 
consider the stationary cast (Assumption A). while the cast of a nonstation- 
ary process (Assumption B) is studied in hcction 3. For all the statistics 
considered, we explain how exact critical values can he calculated. For the 
LB1 test of t) = 1. we also show that critical values may be obtained from 
tables of the central E‘ distribution. We give expressions for the L-B1 test 
statistics as exponentially weighted averages of residual autocorrelations. In 
the nonstationary case. we stress the importance of dealing carefully with the 
distribution of the first disturbance. II,. By considering tests invariant under 
appropriate transformation groups. we find LB1 and PO1 tests whose null 
distributions arc not influenced by the distribution of II,. In sections 3 and 5. 
we report the results of power comparisons between L.BI tests. POI tests. and 
Llurbin-Watson (DW) tests based on appropriately transformed data. Among 
other things, the results suggest that PO1 tests can lead to substantial power 
improvements over alternative tests. The advantage of PO1 tests over LB1 
tests is especially strikin g when values of p equal to or greater than one arc 
tested. Section 6, tinally, summarizes our results and contains ;t few conclud- 
ing remarks. 

2. Stationary disturbances 

In this section. WC‘ assume a stationary error process (Assumption A) and 
consider testing H,,: ,0 = i,,1 against the alternatives HT: /j >(J,,. H,,: /J c p,,. 
and H ,(: I) # I’~,. I’,, is arbitrary and such that I/>,,~ ’ I. We dcnotc the 
problem of testing H,, by PA(~~,, ). Under Assumption A. tt - N(C). tr’L(p)), 

whcrc 

I ,, ,,I1 1 
o- 

/’ I /’ 

\‘([I) = I/( I p[,2) ‘: 
i’ 1 

I /’ 
{,‘I 1 ,, 1 

The above problems arc invariant to transformations of the form 

?‘I = y,,?’ t xy. (<iI) 

where y. > 0 and y is k X 1. Gl is the transformation group used by Durbin 
and Watson (1971) to establish optimal properties of the DW test. This 
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suggests studying tests of p = pn that are invariant under Gl. For a general 
discussion of invariant tests, see Lehmann (1986). 

Let 

B(P) = 

&F 0 0 . . . . . . 0 

-P 1 0 0 

0 -P 1 

1 0 

0 0 . . . . . . 
-P 1 

B,, = B(p,,), and X,, = Zpo). We can transform (1) by premultiplying by the 
nonsingular transformation B,,, so that 

y* =x*p + u*, (3) 

where y * = B,,y, X* = B,,X, u’ = B,,u, and under H,,, u* * NCO, a2ZJ. 
When p #p,, u* - N(0, a’B,C(p)B$ and the transformed disturbances 

follow the ARMA(1, 1) scheme, u,* - pu,?, = F, - pc+_ ,, f = 2,. . . , II. Also 
note that if Gl is transformed by premultiplying by B,, we get 

( Y*)' = YoY* + x*y, (4) 

so that Gl and (4) are equivalent groups of transformations. The distur- 
bances of (3) remain autocorrelated when p f p. which suggests that p = ptr 
may be tested by checking whether the residuals of (3) are independent; see 
Dufour (1990). Any test for first-order autocorrelation in (3) may in principle 
be employed. Though they may have computational advantages, these proce- 
dures have no known optimal properties. For this reason, we study here tests 
with clear optimal properties against local and nonlocal alternatives. Note 
that King and Evans (1988) have shown that the DW test is approximately 
uniformly LB1 against ARMA(1, 1) disturbances. This is for H,,: p = C#J = 0 in 
24, - pu,-, = &t - &_ ,. Here we are interested in a different problem which 
involves testing H,,: p = C#J when C/J is known. 

Theorem 1, which follows from King and Hillier (1985) [see Shively, 
Ansley, and Kohn (1989) for an alternative statement of the King-Hillier 
result], gives LB1 tests of p = p. against one-sided alternatives.2 

‘Detailed proofs of the theorems that follow are available in an earlier version of this paper 
[Dufour and King (1989)]. 
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Theorem I. Under (I), (2), and Assumption A. a LBI test qf’ p = p. against 
p > p,, ( p < p,,) is to reject H,, for small (large 1 l,alues of 

D,( pll) = ?A,$?/?&, ‘t;. (7) 

where e^ is the generalized least-squures (GLS ) residual r’ector ,from ( I) COIW- 
spending to col’ariance matrix S,, and 

A,,=dZ‘(p) ‘/i,pi,,_ ,,,, = m-7( 1 -p,,)!,,+A, -7p,,C,. 

in which A, and c’, are the n x II matrices 

1 -1 0 ‘.’ 
-1 :! .._ 1 

if,= 0 -1 7 

(; () 

and 

C’, = diag( l.O,O.. . . ,O, 1). 

0 
0 

3 I’ 
-1 7__ 

(0) 

(7) 

Note that because B,,e^ = 2”. where i --+ is the OLS residual vector from the 
transformed model (3), (5) can also be written as 

= u~Q~,,( B,; ‘)‘A,,R,,‘M,,cr”/lr”“M,,u”‘, 

where M,, = I,, -X*(X”‘X”‘) ‘X”“. Under H,,, II”’ - N(O.cr’f,,)so that D,(p,,) 
is a ratio of quadratic forms in normal variables and its distribution function 
can be computed using numerical methods developed for the DW test such 
as described by King (1987a. pp. 27-28) and Shively. Ansley. and Kohn 
(1989). 

For the case p,, = 0, the statistic U,(p,,) takes the form 

L),(O) =z’A,z/z’z - 2 = -2r,, 

where z is the OLS residual vector from (1) and r, is the first-order 
autocorrelation coefficient of these residuals. More generally, it is possible to 
express DJp,,) in a more intuitive form. After some tedious algebra (see 
appendix A), we can find two alternative expressions. The first relates D,(p,,) 
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to the first-order autocorrelation of the GLS residuals 2: 

Dl(PO) = -2q[WPo) -PO13 (8) 

where 

n-1 Ill-1 n-l 

R,(p,) = c e^,e^,+, c 2: and q = c e^:/z*‘z*. 
t= 1 I t=2 t=2 

R,(p,,) is approximately the first-order autocorrelation of 6, while q can be 
viewed as an estimator of var(u,)/a2 = l/(1 -pi>. When p =pO, q con- 
verges to l/(1 - pi> under fairly general regularity conditions. Roughly, H, 

is rejected against p > p0 (p <pa) when R&I,) -p. is large (small). The 
second expression relates D,(p,) to the autocorrelations of the OLS residu- 

als, z*, from the transformed model (3): 

n-l 

D,(P,,) = -2 c PP,* +77> 
k=l 

(9) 

where 

n-k 

t-2 = C z,*z,*+~ 
t=1 

0" s 1, 

and 

77 = -2 p()(l -pi))‘(z$+ {(1-p;)-“2- l}z,* &2z1* 

[ Ii Z*‘Z*. 

t=2 

In large samples, n is negligible (under standard regularity conditions on X), 
so that D,(p,) is proportional to an exponentially weighted average of all the 

autorcorrelations, rk*. When p. = 0, (9) reduces to - 2r,, but not otherwise. 
This shows that looking only at low-order autocorrelations is not generally 

efficient. 
While LB1 tests have optimal power in the neighbourhood of Ho, they may 

have poor power away from Ho, i.e., when accepting Ho is most damaging 
from the point of view of making reliable inferences. Power can even fall 
below the level of the test; see, for example, Kramer (1985). An attractive 
alternative is to use a point-optimal test, i.e., a test that optimizes power at a 
pre-determined point under the alternative hypothesis. The next theorem, 
which follows directly from King (19801, gives the MPI test of p = p. against 
a given alternative p =p,, where lpol < 1, lp,l < 1, and 2, =-%p,). 



Theorem 2. Under ( I ), (2 ), arid Assumption il. LI MPI test qf‘ p = p,, aguinst 

p = p, is to rt+ct H,, .fbr .smaN rwlues of 

To obtain a test of I, = p,, against ij > II,,, wc select a value of /I, such that 

PII cl), i I and apply the test based on .S,(t~,,,p,). For example. we may 
choose p, close to one or an intermediate value like 11, = t/j,, + 1)/Z. Simi- 
larly, against p < p,,, we select p, such that - I < p, < (I,,. Tests obtained in 
this way optimize power at p = p, and are known as PO1 tests. A survey by 
King (1987b) reveals that such tests often have substantially better power 
than LB1 tests. Let H, = B(p, ) and let 

?‘ 
i I p/j + I,1 (11) 

denote (I) transformed by premultiplying by H,. The statistic .S,(o,,. I),) is 
easy to compute because it can also be written as S,(f),,. /I,) = z”zi /‘z”z ‘. 
where 1’ and :” are the OLS residual vectors from ( I I) and (3). respectively. 

Further. we can write 

.C,( (‘,,.p,) = llq( H, H,, ‘}‘M, H, H,, ’ 1 Ll+/Ll-'~'M,,rl i 

1 

where II+ - N(0, tr-l,,) under H ,, and M, == I,, ~~ ,Y ‘( X “X ) ‘A’ “. Thus 

s ( , p,,. p, ) is a ratio of quadratic forms in normal variables and its distribution 
function can be computed in ;I similar way to the DW test. 

Theorems I and 2 describe tests against one-sided alternatives. ‘1‘0 obtain 
confidence sets, one typically needs two-sided tests of fj =/j,, against p f [I,,. 
It is certainly possible to obtain LB1 unbiased tests for this problem [see King 
and Hillier (IYXS)], although the test criterion does not reduce to a ratio of 
quadratic forms in normal variables. Instead, one gets forms of order 3 whose 
finite-sample distribution is unknown. For this reason, WC suggest the com- 
bining of optimal one-sided tests. 

Let 0 < (1, < I and 0 <N? < 1 such that (Y, + CY-, = ~1. e.g.. CY, = (Y? = N/Z. 
Using LB1 tests, it is natural to reject H,,: p = p,) against Hi,: p f p,, when 

where c, and c; are chosen so that P[D,(p,,) <c,] = Q, and P[II,(p,,) > c;] = 
(Y 2 under H,,. Clearly this test has level fly. Similarly, it is also possible to 
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construct two-sided tests from PO1 tests. Choose p, and p2 so that - 1 < 

p, <p. <pZ < 1. We reject H,, against H, when 

where cZ and c; are chosen so that P[S,(p,, p,> < c21 = cr, and P[S,(p,,, p2) < 
c;] = cr2 under H,,. By the Bonferroni inequality, this test has level less than 

or equal to (Y. 

3. Nonstationary disturbances 

Assumption A is restrictive because it excludes p = 1 or ]p] > 1 and 
requires the variance of u, to be (r*/(l -p2>. Even if Ip] < 1, we may wish to 
allow more flexibility for the distribution of u,. For example, the process may 
not have run long enough to become stationary. To obtain exact tests, it is 
important to take these difficulties into account. In this section, we do not 
impose any restriction on the value of p and simply assume that ui follows a 
normal distribution with arbitrary unknown variance (Assumption B). The 
normality assumption of u, is used mainly to derive tests with clear optimal 
properties. However, the procedures obtained in this way have correct sizes 
under weaker conditions (Assumption 0. 

Let C(p) denote B(p), with the top left element taking the value 1 instead 

of dg and let J, E,, and E,, be n x n matrices defined as J = 

diag(d,, 1, 1,. . . , l>, E, = diag(l,O,O,. . ,O>, and E, = diag(O,O,. . . ,O, 1). Un- 
der Assumption B, C(p>u = JE, where E - N(O, a*Z,> so that u - 
N(0, a*R(p, d,)) in which fl(p, d,) = C(p>-‘J2[C(p)~‘l’. Observe that 

= (1 -~)~1, +tpA, -p’E,, + (dF2 - l)E,. 

If d: = (1 -p*>, 0(p, d,) = C(p), while if d, = 1, the covariance matrix of u 
is identical to that used by Berenblut and Webb (1973). The assumption 
d, = 1 is, however, very stringent and usually implausible. We thus prefer to 
use fXp, d,) with d, taken as unknown. 

Under (11, (21, and Assumption B, y N N(X/3, u*R(p, d,)). We denote the 
problem of testing H,,: p =po against Hz: p > pa or H;: p <p. in this 
context by Pf?(p,,). It is invariant to transformations in the group Gl. 
Theorem 3, which again follows directly from King and Hillier (1985) and 
King (1980), gives LB1 tests and PO1 tests of p = p. assuming d, is known. 
Even though such tests are rarely applicable, they provide useful benchmarks 
in the power comparisons that follow. 
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Theorem 3. Let (I), (2), and Assumption B hold with the exception that d, is 

assumed known and d, # 0. A LBI test of p = p,, against p > p. (p < po) is to 
reject H,, for small (large) r,alues qf 

&( p,,) = &‘A,il/ci’R( p,,, d,) ‘il. 

where ci is the GLS residual ~‘ector ,from ( I) corresponding to co~~ariance matrix 

Mp,,, d,) and 

Al= -2(1 -p,,)f,,+A, --2p,,E,1. ( 17) 

A PO1 test of p = p,, against p 3 p,, (p < p,,) that optimizes power at p = I’, 
is to reject H,, for small values of S,(p,,, p,) = ii’R(p,, d, )P’fi/fi’JI(p,,, d, 1~ ‘2. 
where ii is the GLS residual vector from (1) corresponding to covariance 

matrix n(p,, d,). 
The D,(p,,) and s,(po,p,) tests can be implemented like the tests of 

Theorems 1 and 2. In particular, both statistics can be written in forms 
involving OLS residuals from the transformed regression 

.I ‘C(p)y=J -‘C(p)x+J~-‘C(p)u. 

in which p takes the value p,, or ~1,. In practice. cr’, is usually unknown. To 
deal with this problem, we will try to find test statistics that satisfy two 
conditions: 

(a) The value of d, is not required to compute the test statistic. 
(b) The null distribution of the test statistic does not depend on tl, 

Let C,, = C(po) and consider the transformed regression model 

C’,,!’ = c,,xg + c,,u. ( 14) 

Observe that under H,, and Assumption B. C,,y - N(C’,,Xp, &.I’). Thus, if 
we consider testing H,,: p = p,, in the context of (14), conditions (a) and (b) 
above would be satisfied if the test statistic does not depend on d, and is 
invariant to the value of the first element of Cou. The testing problem 
expressed in terms of (14) is invariant to transformations of the form 

(c,,y)* = y&4’ + c,,xy. (15) 

where y,, is a positive scalar and y is a k x 1 vector. To make the test 
statistic invariant to the first element of C,,u, it is sufficient to consider a 
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statistic that is invariant to transformations of the form 

where yk + , is an arbitrary scalar and 1, is the IE X 1 vector of zeros with one 
as the first element. Note that we are not claiming that the testing problem is 
invariant under G2.’ However, we wish to consider tests invariant under G2 
because such tests are invariant’under (15) and satisfy (b).4 In terms of y, 
transformations in the group G2 are equivalent to transformations of the 
form y’= y,y +Xy + yk+,Ci’l,. Further, C,‘I, = (l,p,,, . ..,pz-‘Y. Thus 
tests invariant under G2 are invariant to transformations bf the form y,” = 
Y,+Yk+,P;-‘, t=L..., IZ. The results of the test should not change when a 
solution of the homogeneous equation 2, - pJ_ i = 0 is added to y. 

A maximal invariant for the group G2 is u/(c’u)‘/~, where L’ is the OLS 
residual vector from the regression of C,,y on [C,,X,l,]. One can get c by 
adding a dummy variable for the first observation into the transformed model 
(14), or by introducing the regressor (1, po,. . . , pi-‘) into (1). Note that the 
extra regressor is not used because we believe it is a regressor in the model 
but simply to find a test that satisfies (b). 

The matrix [X, Cc; ‘I,] may not always have full column rank; an example 
being when p. = 1 and X contains a constant regressor. Let % denote 
[X, Cl’/, I where, if necessary, columns have been deleted until it has full 
column rank and let x,, = C,,x denote [C,,X, I,] with the analogous columns 
deleted. Then 

1’ = Ecoy = Mu, (16) 
-- 

where a= I,, -&(X,;X,,)-‘x6 and E = C,,u. Theorem 4, which can be 
proved along similar lines to King and Hillier’s (1985) result, gives LB1 tests 
of p = p0 against one-sided alternatives. 

Theorem 4. Under (I), (2), Assumption B, and assuming d, + 0, a LBI test of 
p = p,, against p > p. (p < po> under the transformation group G2 is to reject H,, 
for small (large) values of 

D,( po) = u’( C, ‘)‘A2C; ’ U/L~L~ = ?A,C’/C;‘Q( po, 1) - ‘E, (17) 

-‘A referee has pointed out to us that, because the normal distribution is complete, this is a 
necessary as well as sufficient condition provided the mean of the first element of C,,y is 
unknown. 

‘A similar technique was used by Dufour and Dagenais (1985) to obtain optimal autocorrela- 
tion tests in regression models with missing observations. 



where AZ is gicen by (12) and I: = CC; ‘I’ is the GLS residual r?ector.kom 

\‘=xs + II, ( Ito 

assuming col,ariance rnatriw Up,,, I ). 

Critical values and critical levels for tests based on Dz(f),l) can be obtained 
by noting that 

DZ( p,,) = E’M(C,r ‘)‘A&‘,, %E/i7’& 

where U - N(0, v’J “) when p = p,,. As a consequence of I, being a regressor, 
the first row and column of &? are zero so that I‘ = fii? is not a function of 

u, = U,, and hence under H,, the distribution of D,(o,,) does not depend on 
d, or indeed on the distribution of II, (Assumptron 0. The test is thus 
applicable, in the sense that its level is correct, under the weaker Assumption 
C. Furthermore, when computing critical values and critical levels. one can 
assume d, = 1 or ii - N(0, cr’I,,). Also observe that L’, = 0. 

As in the stationary case, we can rewrite D&p,,) in the form of (8) where 

now 

Also D,(p,,) = -2c;i_ Ipk ‘7, where Th = 1: :13,,.,+k,/(.‘(,. Thus 1)1(~),,) is 
proportional to an exponentially weighted average of all the autocorrcla- 

tions FL. 
For p(, = 0, D,(O) = -2F, where ?, is the first-order autocorrclation of the 

OLS residuals from the regression J’ =X/3 + pa + ,I, + II. For I),, = 1 (random 
walk), the test statistic takes the form 

We reject p = I against I’ > I (p < 1) when the sum of all the autocorrela- 
tions of the OLS residuals is large (small). Critical values of D,(l) may be 
obtained from tables of the central F distribution. Provided Ml,,-# 0. 

whereI,,=(I,I,...,I)‘,k,=rank[~],and~(r~~I\,~I,l)isarandomvari- 
able that follows a central F distribution with (n - k, ~ I, 1) degrees of 
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freedom; see appendix B for the proof. When MI,, = 0, we have D,(l) = 1 
and the test is not applicable. This corresponds to a linear trend regressor 
in (1). 

It is worth noting that Sargan and Bhargava (1983) considered the related 
problem of testing p0 = 1 under Assumption B against the alternative hy- 
pothesis of Assumption A. As well as suggesting the use of the DW and 
Berenblut and Webb (1973) tests applied to (1) in a first-differenced form, 
they derived an approximately LB1 test that is also approximately uniformly 
most powerful when the column space of X is spanned by k eigenvectors of 

(A, - C,) where A-, and C, are given by (6) and (71, respectively. 
As in the stationary case, LB1 tests are not necessarily optimal against 

nonlocal alternatives. Theorem 5 allows the construction of PO1 tests that 
are invariant under G2 and thus have correct size for any d, value. 

Theorem 5. Under (I), (2), Assumption B, and assuming d, f 0, a MPI test at 
p = p,, against p = p,, under the transformation group G2, is to reject H,, for 
small calues of 

where i? and F are the GLS residual vectors from (18) assuming cocariance 
matrices fi(p,,d,) and fl(p,,, l), respectitlely, and L’ and fi* are the OLS 
residual ejectors defined by (16) and the regression of Jn-‘C(p,)y on .I,-‘C(p,)x, 
respectinely. Further, if p = p. and d? is any real number such that d: f 0, the 
null distribution of S&p,, , p , , d f > does not depend on d, . 

The proof of the first part of Theorem 5 follows directly from King (1980, 
1987b) and the fact that L’/(L:‘c)‘/* is a maximal invariant for the group G2. 
Let Q=J *-qq)C,‘, in which J* denotes J with d, = d,*, and define 
M,, = Z,, - Qx,,(x,;Q’Q~~,>-‘x,;Q~. Then we can write 

S,( p,,, p,, d:) = U’ti?Q’M,,Qk+i’ki = L”Q’M,,Qv/L”L’, (20) 

so that S,(p,,, p,, d:) depends on u only through c =&k When p = p,), 
S,(p,, p,, d,Y) is not a function of E, = u, given that the first row and column 
of M are zero. 

When applying Theorem 5, one needs to specify both p, and a value of d,, 
say cl;“. The resultant test is POI, optimizing power at (p, d,)’ = (p,, d;F)I. It 
is not necessary that dy be the true value of d, to get a valid test. Critical 
values can be computed from (20) in the usual way because we can assume 
U - N(0, a*Z,> when p = po. As for the LB1 test, this test remains applicable 
under Assumption C because it depends on u only through u = a. For the 
special case in which p1 = 1 and the model contains an intercept, C(p,)x 



contains I, as a regressor so that Qjf;], &‘M(,Q, and thus S2(po, 1. [IT) are 
invariant to the value of d? selected. In this case Sr(po. 1. d,*) = S&p,,. 1. cl,) 
and the choice of d,‘” is irrelevant. 

The determination of dy in S&p,,, p,, rl,Y;) is usually arbitrary so it would 
be convenient to have a test that does not require specifying a value of cr’;“. A 
way to do this is to consider a larger invariance group such that the MPI test 
of p = p,) against p = p, does not depend on rl,. Such a group is 

?‘*=y,,4’+ty+y~+,c(P,,) ‘~,+Yx+1wJ ‘4. (G3) 

where y,), yk+ ,, yktZ are arbitrary scalars, such that y. > 0 and y is a k x I 
vector. It can be shown that the MPI test of p = p. against /I = p, under the 
transformation group G3 does not require specifying an arbitrary value of tl, 
and has a null distribution that does not depend on the true value of d,. 
However, power comparisons suggested that the power of this procedure is 
very inferior to that of the test based on S,(~>o,p,, d,+). For this reason, we 
do not elaborate here on PO1 tests under G.3. 

Theorems 3. 4, and 5 all provide optimal one-sided tests for testing p = p,,. 
Corresponding two-sided tests may be obtained in a way analogous to the 
one used in the stationary case. 

4. Empirical power comparisons 

In order to study the small-sample properties of the above tests. their 
powers were calculated for testing problems PA(O.S), PA(O.9). PB(O.5). 
PB(O.9 1. f’B( 1 .O). PB( 1. I ), and design matrices: 

X1; (!I x 1; H = 20,6(l). The constant dummy as the only regressor. 
X2: (n X 3: II = 20.60). The first II observations of Durbin and Watson’s 

(1951, p. 1.59) consumption of spirits example. 
X.3: (II x 3; 17 = 20.60). A constant, the quarterly Australian Consumer Price 

Index commencing 1959( 1) and the same index lagged one quarter. 
X4: (11 X 4; II = 20,601. A constant. quarterly Australian private capital 

movements, the same series lagged one quarter and quarterly Australian 
Government capital movements commencing 1968( 1). 

X5: (n X 3; II = 20,60). Watson’s X matrix with an intercept, i.e.. (I,. ( cl1 + __ 
II,,)/ 6, (a, + a,,_ ,I/ 42 as regressors where a,, . . . u,, arc the eigen- 
vectors corresponding to the eigenvalues of the DW matrix (A, ~ C’,) 
arranged in ascending order where A, and C, are defined by (6) and (7). 

These design matrices cover a range of applications. Xl is the special case 
of the Gaussian time-series model with unknown mean. XZ is based on 
annual data, while X3 is quarterly with a slight seasonal pattern. The two 



Problem 

PA(0.5) 

PA(0.5) 

PA(0.9) 

PA(0.9) 

PB(0.5) 

PB(O.5) 

PB(0.9) 

PB(0.9) 

PB(l.0) 

PB(1.0) 

PB(l.l) 

PB(l.l) 
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Summary of the empirical power comparison. 

Alternative 
hypothesis Tests 

H,i 

HH 

HZ 

H, 

HZ 

H, 

H,+ 

H, 

HZ 

H, 

HZ 

H, 

DW,(OS), D,(O.S), S,(O.5,0.75), 
S,(O.5,0.999). 

DW,(O.S), D,(O.5), S,(O.5,0.25), 
S,(O.S, 0). 

DW,(O.9), D,(O.9), 3(0.9,0.95), 
S,(O.9,0.999). 

DW,(O.9), D,(O.9), &(0.9,0.45), 
S,(O.9,0). 

Dw,(OS), z&(0.5). S,(O.5,0.75), 

s,(O.5,1.0), DW,(O.5), D,(O.5), 
s,(O.5,0.75, d;C), S,(O.S, 1.0, d:). 

Dw,(O.5), fi,(OS), @0.5,0.25), 
&(0.5,0), DW,(O.5), D,(O.5), 
S,(O.5,0.25, d:), S,(O.5,0, d:). 

Dw,(O.9), &(0.9), S,(O.9,0.95), 
&(0.9,1.0), DW,(O.9), D,(O.9), 
s,(0.9,0.95, d:), S,(O.9,1.0, d:). 

Dw,(O.9), z&(0.9), 5,(0.9,0.45), 
$(0.9,0), DW,(O.9), D&0.9), 
s,(0.9,0.45, d:), S,(O.9,0, d:). 

DW,(l.O), D,U.O), S,(l.O, l.l,d;“), 
S,(l.O, 1.2, d,*). 

SB, DW,(l.O), D,(l.O), 
s,(l.O, 0.5, d;” ), S,(l.O,O, d:). 

Dw,(l.l). &Cl), S,(1.1,1.15), 
&(1.1,1.2), DW,(l.l), D,(l.l), 
S,(l.l,l.l5,d,*), S,(1.1,1.2,d:). 

Dw,(l.l), E,(l.l), S,(l.l, l.O), 
$(1.1,0.5), DW,(l.l), D,(l.l), 
s,(l.l, l.O,d;“), S,(1.1,0.5,d;“). 

Values of p at which 
power computed 

0.6, 0.7, 0.8, 
0.9,0.999. 

0.4, 0.3, 0.2. 
0.1.0. 

0.92, 0.94, 0.96, 
0.98, 0.999. 

0.8, 0.7, 0.6, 
0.3, 0. 

0.6, 0.7, 0.8, 
0.9, 1.0. 

0.4, 0.3, 0.2, 
0.1, 0. 

0.92, 0.94, 0.96 
0.98, 1.0. 

0.8, 0.7, 0.6. 
0.3, 0. 

1.025, 0.05, 1.1 
1.115, 1.2. 

0.9, 0.75, 0.5, 
0.25, 0. 

1.12, 1.14, 1.16, 
1.18, 1.2. 

1.05, 1.0, 0.9, 
0.5, 0. 

capital movement series which make up X4 are strongly seasonal with two 
seasonal peaks per year plus some large fluctuations. Watson (1955) found 
that within the class of orthogonal X matrices, OLS has minimum efficiency 
relative to the BLUE for X5. We therefore expect X5 to show an extreme in 
the behaviour of the tests. 

A summary of the tests and the p values at which their powers were 
calculated is given in table 1. For PA(p,) and against H,f (Hz), DW,(p,) 
denotes the one-sided DW test against positive (negative) autocorrelation 



applied to (3). In the case of PHcJ,,). two sets of power comparisons were 
made. The first involved applying each test assuming rf, is known. This is 
unlikely to happen in practice. so these powers were oddly calculated to 

provide benchmarks. The tests in this cast’ are based on D,(t),,), .?,([I,,. 0, ). 
and DW,(p,,) which is the DW statistic applied to (13) with /I =lj,,. These 
tests are invariant under Gl. but not necessarily under G?. The second set 
involved applying the tests D,(p,,). s,(i),,, 0,. (1; ). and I)If”,([J,,) constructed 
to be invariant under G?.’ This required ( 1. p,,. . p11 ’ Y to be added as an 

additional regressor to (1) before the test was applied. For PR( 1.0). the two 
sets of tests are identical (provided the model contains an intcrccpt ). Also in 
this case, Sargan and Bhargava’s ( lY8.3) approximately LB1 text denoted SB 
was also included in the comparison. For the remaining PM,,,,) testing 
problems except when p, = 0, the .S,(,I,,, p,. ~1;) tests require a choice of ci; 
value. The values used were (IF = 0.1, 1.0, I().(). Although powers vary with 

rl,, in order to keep the computations manageable. all calculations wcrc 
performed with d, = 1.0. 

All test statistics can be expressed as ratios of quadratic l’orms of the 
disturbance vector, being of the form ~r’Au/rl’fI~r. where .4 and H arc known 
II X II matrices. In order to calculate exact critical values and powers ot’ tests 
based on such statistics, we need to hc able to compute 

where c:’ is the critical value. \ = E(ul/‘). A ,, . A,, are the cigenvaiues ot 
(\““)‘(A ~ c,“B)~‘:~. and i= ({ ,.__ ..{‘,,)I - N(0, I,, ). (31 ) mav bc evaluated 
using Imhof’s (1961) algorithm, coded versions of which arc &en by Kocrts 
and Abrahamse ( IYhY) and Davies (1980). All power calculations wcrc made 
using exact critical values at the five pcrccnt level. 

We began by computing (31) using a modified version of Kocrts and 
Abrahamsc’s FQUAD suhroutinc with maximum integration and truncation 
errors of IO “. This worked well for PR(p,,) and /‘H(~I,,) with I,,, = 0.5.O.Y but 
for PR( 1.0) and PH( 1. I ). especially under I-1 ,: , it frcqucntlv failed to converge 
despite increasing the number of iterations. The lack of &vcrgcnce seemed 
to be caused by there being one very large positive (negative) eigcnvaluc 
balanced by a number of smaller negative (positive) eigenvalues. A Fortran 
version of Davies’ (1980) algorithm worked slightly better but also had similar 
problems. For the cases of nonconvergence, it seems that the numerical 
integration problem WC were trying to solve is ill-conditioned and so accurate 
answers may not be possible. We succcssivcly lowered the maximum integra- 
tion and truncation errors until convergence was achieved. This sometimes 



P= 

DW 
0,CO.S) 
S,(OS, 0.25) 
.s,(O.5,0) 

DW 

D Jo.5) 
s,(o.5,0.25j 

S,(O.5,0) 

P= 

DW 
D JO.5) 
S,(O.5,0.75) 
S,(O.5,0.999) 

DW 
DJO.5) 
S,(O.5,0.75) 
S,(O.5,0.999) 
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0.5 

0.050 
0.050 
0.050 
0.050 

0.050 
0.050 
0.050 
0.050 

0.5 

0.050 
0.050 
0.050 
0.050 

0.050 
0.050 
0.050 
0.050 

Against H; 

0.4 0.3 0.2 0.1 0.0 

n = 20 

0.080 0.125 0.190 0.275 0.381 
0.083 0.134 0.208 0.305 0.422 
0.083 0.134 0.210 0.311 0.433 
0.083 0.134 0.209 0.311 0.437 

n = 60 

0.149 0.334 0.574 0.788 0.921 
0.169 0.400 0.677 0.878 0.968 
0.169 0.401 0.681 0.883 0.971 
0.168 0.399 0.680 0.884 0.972 

Against Hz 

0.6 0.7 0.8 0.9 0.999 

n = 20 

0.094 0.163 0.254 0.357 0.452 
0.104 0.188 0.296 0.411 0.508 
0.103 0.189 0.300 0.418 0.516 
0.102 0.187 0.298 0.418 0.520 

n = 60 

0.187 0.455 0.744 0.914 0.969 
0.219 0.532 0.814 0.946 0.981 
0.219 0.534 0.818 0.949 0.983 
0.215 0.528 0.815 0.949 0.984 

meant integration and truncation errors as large as lo-“. As a final check, 
the Monte Carlo method with ten thousand replications was used to re- 
calculate all powers computed for the X2 design matrix. We could find no 
significant difference between the two sets of results. 

5. Results on power 

In this section we discuss the results of the power comparison. A more 
detailed discussion can be found in an earlier version of this paper [Dufour 
and King (198911. We begin by discussing the results for PA(p,). Calculated 
powers for design matrix X3 and PA(O.5) and PA(O.9) are given in tables 2 
and 3, respectively.6 

‘To save space, only results for one design matrix are tabulated although this section discusses 
the results for all design matrices. 



p = 

DW 
LJ,(O.Yl 
SJ0.Y. O.‘tS) 
S,(O.Y. 0) 

D W’ 
D,(O.Y) 
.S,(O.Y, 0.3s) 
.S,(O.Y. 0) 

p = 

DW’ 
D,(O.Y) 
S,(O.Y, 0.95) 
S,(O.Y. O.YYY 1 

Dl4’ 

D,Ul.Y,, 

S,Ul.Y. O.YS) 

s,(o.Y.o.YYY) 

0.‘) 

o,osll 
0.050 

0.050 
O.(I?;O 

o.oso 
O.lrii) 

0.050 
0.050 

0.Y 

o.oso 
0.050 

0.0.50 
0.050 

0.050 
0.050 
0.050 
o.oso 

,s\gainat Cl,, 

0,s 0.7 

II = 20 

O.Of,7 l).OY? 
r1.07.i I). I IO 
0.073 0.1 IO 
0.1172 0. I OS 

II =~ f,U 

(1. I I I O.‘lll 
0.IH-l (1.158 
0.1x1 O.lhS 
11.175 0.137 

,\gainst I I ,; 
0.Y2 1104 

,I -- 70 

O.OSh O.l)hl 
O.OhO O.ll7 I 
Il.060 0.071 
O.O~>O 0.071 

I, =~- Oil 

O.Oh5 lI.OX I 
O.OXh 0. 136 
0.0Hh II. 130 
O.OXS l1.I.v 

l1.b 

0. I76 
O.lhl 
I). Ihh 
O.lhl 

0.352 
0.747 
0.7x1 
0.7hi 

I).‘h 

I I.( bS 
O.lhS4 
0.0X1 
0.0X1 

0. IO’ 
O.lYh 
0. I Yls 
O.lYh 

II 

1)..57Y 

0.07h 
0.7SS 
O.XOh 

I).YY.? 
O.YYY 
I .ootI 
I .ooo 

i1YYY 

O.llSli 
0. I I I 
(I.1 I3 
0.1 I-l 

Il.l.LS 
0.311) 
fI.ilX 
0.322 

The powers of all tests increase as p moves away from H ,,: {J = (J,,. Also. 
ceteris puribus, there is a noticeable drop in power going from Xl to any of 
the other design matrices, reflecting the addition of extra regressors. With 
one minor exception, the DWJp,,) test always has inferior power to the other 
tests. Generally the PO1 tests have almost identical power which is typically 
slightly higher than that of the D,(p,,) test. The spread of powers is greatest 
for pA(O.9) against Hi, particularly for X2-X.5. As expected, the D,(p,,) test 
is most powerful near p,,, while the S,(p,,, p,) test is most powerful at p 
values near p,. The best overall test is typically a PO1 test with p, taking a 
middle value. 

Turning to the nonstationary case, we begin by discussing the results for 
PB(O.5) and PB(O.9). Calculated powers for X3 and PB(O.9) are given in 
table 4. With occasional exceptions for the S,(O.9,0.45, 10.0) test, the powers 
of all tests nearly always increase as p moves away from p,,, ceteris puribus. 
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Table 4 

Calculated powers for PB(O.9) and X3 against H; and H,C with d, = 1.0 

P= 

m,co.9, 
&(0.9, 
$(0.9.0.45) 
S,(O.9,0.0) 
DW*CO.9, 
D,(0.9) 
S,(O.9,0.45,0.1) 
s,(0.9.0.45,1.0) 
s~(0.9,0.45,10.0) 
S2(0.9,0.0, 0.1) 

&(0.9,0.0,1.0) 
s~(0.9,0.0,10.0) 

mv,(O.9) 
zq0.9) 
$(0.9,0.45) 
S,(O.9,0.0) 
DW*CO.9, 
D,(O.9) 
s,(0.9,0.45,0.1) 
S,(O.9,0.45, 1.0) 

s,(0.9,0.45,10.0) 
s,(0.9,0.0.0.1) 
S,(O.9,0.0,1 .O) 

s,(0.9,0.0,10.0) 

P= 

0.9 

0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 

0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 

0.9 

Against H; 

0.8 0.7 0.6 0.3 0.0 

n = 20 

0.067 0.093 

0.073 0.110 

0.073 0.111 

0.072 0.107 

0.065 0.086 

0.070 0.100 

0.069 0.100 

0.069 0.099 

0.042 0.036 

0.069 0.098 

0.068 0.097 

0.062 0.080 

n = 60 

0.127 0.299 0.577 

0.161 0.391 0.650 

0.166 0.45 1 0.773 

0.160 0.446 0.800 

0.114 0.254 0.503 

0.140 0.324 0.557 

0.141 0.342 0.613 

0.142 0.352 0.647 

0.033 0.038 0.056 

0.138 0.337 0.626 

0.136 0.348 0.678 

0.105 0.258 0.562 

0.112 0.212 0.352 0.832 0.992 

0.183 0.434 0.690 0.954 0.990 

0.177 0.448 0.760 0.999 1 mo 

0.169 0.427 0.739 0.999 1 .a00 
0.103 0.193 0.324 0.807 0.990 

0.155 0.381 0.660 0.981 0.999 

0.154 0.385 0.682 0.995 1.000 

0.153 0.384 0.686 0.997 1.000 

0.136 0.330 0.614 0.995 l.OQO 

0.150 0.373 0.668 0.995 1.000 

0.147 0.366 0.663 0.997 1 .OQo 

0.143 0.351 0.642 0.997 l.OQU 

Against Hz 

0.92 0.94 

0w,CO.9, 0.050 

CJO.9) 0.050 

$(0.9,0.95) 0.050 

S,(O.9,1 .O) 0.050 

DW,CO.9, 0.050 

D,(0.9) 0.050 

S,(0.9.0.95,0.1) 0.050 

S,(O.9,0.95,1 .O) 0.050 

S,(0.9,0.95,10.0) 0.050 

Sz(0.9,1.0, d:) 0.050 

Dw,(O.9) 

&(0.9) 

;,co.s 0.95) 

S,(O.9,1.0) 

Di4’,(0.9) 

D&0.9) 
S,(O.9,0.95,0.1) 

S,(0.9,0.95,1.0) 

S,(0.9,0.95,10.0) 

s,(0.9,1.0, d:) 

0.050 

0.050 

0.050 

0.050 

0.050 
o.osn 

0.050 

0.050 
0.050 

0.050 

n = 20 

0.055 0.061 

0.059 0.068 

0.058 0.068 

0.058 0.067 

0.054 0.058 

0.058 0.065 

0.058 0.065 

0.058 0.065 

0.057 0.065 

0.058 0.065 

II=60 

0.067 0.074 0.085 

0.078 0.092 0.112 

0.080 0.096 0.122 

0.079 0.097 0.126 

0.062 0.066 0.070 

0.072 0.079 0.089 

0.072 0.079 0.089 

0.072 0.079 0.089 

0.072 0.079 0.089 

0.072 0.079 0.089 

0.065 0.085 0.113 0.152 0.204 

0.089 0.148 0.226 0.316 0.403 

0.089 0.148 0.229 0.324 0.418 

0.087 0.144 0.224 0.324 0.429 

0.061 0.074 0.088 0.101 0.117 

0.077 0.110 0.146 0.181 0.221 

0.077 0.110 0.146 0.183 0.225 

0.077 0.110 0.146 0.183 0.225 

0.075 0.107 0.141 0.179 0.227 

0.076 0.108 0.144 0.182 0.230 

0.96 0.98 1.0 
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Each tests shows a loss of power going from Xf to any other design matrix. 
ceteris paribus, reflecting the cost of including regressors. With the single 
exception’ of the DJO.9) test against H;, the Gl-invariant tests, DW,(p,,). 
D,(p,,), and s,(po, p, 1. which require knowledge of n,, are almost always 
more powerful than their respective G2-invariant tests. It also appears that 
knowledge of d, has greater potential to improve the power of a test, the 
further pI, is away from zero. Because Gl-invariant tests are typically nonop- 
erational, our interest is in the G2-invariant tests. 

In some circumstances, the choice of d,+ in S,(p,,,p,, ri:) has almost no 
effect on power, while in other situations such as testing against H;. the 
choice of d,*. particularly that of dy = 10.0, can cause a severe loss of power. 
The choice seems to be less critical in large samples. In fact for ?I = 60. 

setting d, * = 0.1 can result in a slight power improvement for /-J values close 
to p,). An explanation is that setting dy at a lower than true value seems to 
have a similar effect on power as moving p, closer to p,,. In all cases. the 
results suggest that a good strategy if cl, is unknown is to attempt to set ri; 
to a value that is likely to be below, but hopefully near. the true d, value. Of 
the tests that remain after exclusion of the PO1 tests with d,* = 10.0, the 
DW,(p,,I test is nearly always the least powerful. For f%(O.S), the powers of 
the D,(O.5) and Sz(O.5, p,, d,*) tests with d y = 0.1 or 1.0 are nearly identical. 
particularly when n = 60 against H;. Against Hz, the results indicate that 
the S,(O.5,0.75,0.1) and S,(O.S,O.75, 1.0) tests have the best overall power 

properties. For PB(O.9) and against H:. the powers of the SJO.9, p,. ~1:: ) 
tests with d; = 0.1 or 1.0 are almost identical and are typically slightly higher 
than those of the DZ(0.9) test. Against Hi, the power differences are more 
distinctive with the S&0.9.0.45, dy) tests with cl? = 0.1 and I .O possibly 
having the best overall power. 

We now discuss the results of most interest, those for f’f3( 1.0). Table 5 
gives calculated powers for design matrix X4 which are more representative 
than those for X3. This is because some tests exhibit uncharacteristic bc- 
haviour only for X3 and occasionally also X2. For example, the S,t 1 .O, 1.1, d(r ) 
tests are found to be biased, but only for X3 when n = 60. 

Crteris paribus, the powers nearly always increase as p moves away from 
p,,. Each test typically shows a loss of power going from Xl to any other 
design matrix, ceteris puribus. A feature of the results against H,, is the poor 
performance of the D,(l.O) test. Across all design matrices and p values, its 
maximum power is 0.217 when n = 20 and 0.369 when II = 60. In contrast, all 
other tests have maximum powers above 0.72 and 0.98, respectively. Once 

‘Although puzzling, situations in which knowledge of a parameter value can reduce the power 
of a test are not unknown. A related example is given by Kramer (1985) who shows that for 
certain regressions fitted through the origin, the power of the DW test can he improved hy 

adding a superfluous intercept to the regression. n,(O.Y) is most powerful (among GI-invariant 
tests) only in the neighbourhood of /I = 0.9, not against 0 = 0.0. 
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P= 

Table 5 

Calculated powers for PB(1.0) and X4 against Hi and H,+ with d, = 1.0.” 

DW2(l.0) 
D,(l .O) 
ss 
S,(1.0,0.5,0.1) 
S,(l.O,O.S, 1.0) 
s;(l.o,o.s, 10.0) 
s,(1.0,0.0,0.1) 
S,(l.O,O.O, 1.0) 
S,(l.O,O.O, 10.0) 

DW,(l.O) 
D,(l.O) 
SB 
s,(1.0,0.5,0.1) 
S,(l.O, 0.5,l.O) 
S,(l.O, 0.5,lO.O) 
S,(1.0,0.0,0.1) 
&(I .o. 0.0, 1 .O) 
&(I .o, 0.0,10.0) 

P= 

DW,(l.O) 0.050 0.072 0.124 0.381 0.684 0.857 
D,(l.O) 0.050 0.120 0.238 0.533 0.75 1 0.871 
SB 0.050 0.106 0.202 0.464 0.685 0.816 
S2(l.0, 1.1,O.l) 0.050 0.111 0.232 0.577 0.803 0.908 
S,(l.O, 1.1,l.O) 0.050 0.110 0.231 0.577 0.804 0.909 
S,(l.O, 1.1,lO.O) 0.050 0.107 0.224 0.574 0.807 0.913 
.s2(1.0, 1.2,O.l) 0.050 0.078 0.135 0.465 0.802 0.921 
S2(1.0,1.2,1.0) 0.050 0.079 0.140 0.48 1 0.804 0.921 
S,(l.O, 1.2,lO.O) 0.050 0.081 0.148 0.501 0.805 0.920 

DW,(l.O) 0.050 0.175 0.662 0.977 1.000 1.000 
D,(l.O) 0.050 0.417 0.789 0.981 1.000 1.000 
SB 0.050 0.361 0.743 0.971 1.000 1.000 
S,(1.0,1.1,0.1) 0.050 0.085 0.555 0.991 0.999 1.000 
S,(l.O, 1.1,l.O) 0.050 0.093 0.648 0.991 1.000 1 .Ooo 
S,(l.O, 1.1,lO.O) 0.050 0.125 0.757 0.991 0.999 1 .ooo 
S,(l.O, 1.2,O.l) 0.050 0.033 0.025 0.961 0.999 1.000 
S,(l.O, 1.2,l.O) 0.050 0.036 0.030 0.979 1.000 1.000 
S,(l.O, 1.2,lO.O) 0.050 0.039 0.038 0.982 0.999 1.000 

1.0 

0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 

0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 

1.0 

Against H; 

0.9 0.75 0.5 0.25 0.0 

n = 20 

0.077 0.124 0.252 0.451 0.673 
0.091 0.122 0.148 0.166 0.184 
0.097 0.193 0.450 0.708 0.862 
0.104 0.213 0.433 0.614 0.738 
0.102 0.211 0.476 0.729 0.879 
0.056 0.080 0.205 0.431 0.667 
0.100 0.200 0.437 0.677 0.836 
0.096 0.188 0.442 0.738 0.917 
0.086 0.155 0.379 0.681 0.891 

n = 60 

0.102 0.235 0.613 0.921 0.996 
0.150 0.196 0.223 0.239 0.256 
0.261 0.799 0.997 1.000 1.000 
0.301 0.750 0.921 0.962 0.983 
0.273 0.816 0.999 1.000 1.000 
0.217 0.734 0.999 1 .ooo 1.000 
0.279 0.739 0.936 0.974 0.990 
0.236 0.749 0.999 1.000 1.000 
0.221 0.724 0.999 1.000 1.000 

Against Hz 

1.025 1.05 1.1 1.15 1.2 

n = 20 

n = 60 

S~or pB(t.O), the tests DW,(l.O), D&.0), and S,(l.O, p,, 1.0) are identical to DWJt.O), 
D,(l.O), and s,(l.O, p,), respectively. 



again, in order to apply a PO1 test when d, is unknown. it seems setting (1;” 
to a value near or below the true ti, value would be a sensible strategy, 
particularly if n is small. Against H;. the SB test is clearly superior to the 
DW,(l.O) test. For most design matrices, the power of the S,tl.O, 0.5. 1.0) test 
dominates that of the SB test. The powers of the SB and Sztl.O,O.O, 1.0) tests 
are identical for XI. We conclude that against H;, the SB test has good 
power which can be improved by the use of an SL(l.O, 0.5. ~1:) test with dy 
chosen to be near or below the true d, value. 

A feature of the PBtl.0) results against H,: is the relatively good perfor- 
mance of the D,tl.O) test which almost totally dominates that of the SR and 
DW tests. Another feature is the insensitivity of the .S,( 1.0. p,, d: ) tests to 
the choice of dy when II = 20. At first sight. a surprising result is the general 
dominance, when II = 60, of the S,( 1.0, 0,. 10.0) tests over PO1 tests with d? 
set to 1.0 or 0.1. An explanation Ls that against HI. an S,( 1 .O, p,, 10.0) test 
has power properties similar to an SJ 1 .O. pf’. 1 .O) test where (17 < p,. The 
Sz( 1 .O, 1.1, d;“) test has better overall power than the S,( I .O, I .I, t/y) test fog 
d: = 1.0, 10.0. When II = 20. both the .S,( I .O, 1.1. LIT ) tests can he described 
as superior to the DJl.0) test, although the picture is reversed when tr = 60. 
In summary, against H:. the D,( 1.0) test has good power properties which 
can bc improved upon by the use of an .S,( 1 .O, p,. dy ) test with p, = 1. I for 
II = 20 and a lower value, say 1.025. when II = 60. The rly value should be set 
near or above the true d, value. 

Finally we discuss the results for PBt 1.1). Calculated powers for X.? arc 
given in table 6. A feature is that not all tests increase in power as p moves 
away from /I,~. For example, the power of nearly a11 the G2-invariant tests 
against H;, either first increases and then decreases, or first decreases and 
then increases, with the point of inflection being around p = 1.0. Also, when 
n = 60, the powers of the D,tl.l) test against H; and the DJl.1) test against 
HI always decrease rapidly to zero. Further calculations at i values closer to 
1.1 showed that the powers of both tests first increase and then decrease. 
Increasing n does not always improve power. In general. if a test’s power 
when n = 20 is below (above) 0.05, then its power when II = 60 is further 
below (above) 0.05. Typically. all tests show a loss of power going from Xl to 
any other design matrix, cxccpt when the power is below 0.05 in which case it 
invariably increases. The Gl-invariant tests are generally more powerful than 
their respective G2-invariant tests. Against H;, the S1( 1.1. 1.0, “I;: ) test is 
invariant to the choice of d;‘; value, while for the S,( l.l,O.S. d:) test, the 
choice can have a substantial impact on power when II = 20. In view of these 
results, we recommend a choice of cl; near or below the true d, value when 
n is small, and near or above when n is large. Against H:. the power 
functions of the SZ(l.l, p,, cl,*) tests are insensitive to the choice of (1: value 
and this insensitivity increases with sample size. 
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Table 6 

Calculated powers for PE(1.1) and X3 against Hi and H: with d, = 1.0. 

rn,,(l.l, 
q(1.1) 
g1.1,1.0, 
S,(l.l,OS) 
DW*Cl.l, 
Lql.1) 
S,(l.l. I.O,d:) 
s,(1.1,0.5,0.1) 
s,(1.1,0.5,1.0) 
S~(l.l,O.S, 10.0) 

lm,(I.I) 
a,c1.1, 
g1.1, 1.0) 
s,(l.l,o.5) 
DW’,(l.l) 
D>U.l) 
S,(l.l,l.O,d~) 
s,(1.1,0.5,0.1) 
s,l1.1,0.5.I.0) 
s,(1.1,0.5,10.0) 

P= 

0.050 

0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 

0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 
0.050 

I.1 

Dw,(l.l) 
rq1.1, 
gl.l,l.15) 
S,(l.l. 1.2) 
DW’,Cl.l, 
D,(l.l) 
S,(l.l, 1.15,O.l) 
S,(l.l, 1.15,i.O) 
S,(l.O, 1.15,lO.O) 
S,(l.l, 1.2,O.l) 
S,(l.l, 1.2,l.O) 
S,(l.l, 1.2,lO.O) 

zm,(l.l) 
L7,(1.1, 
gl.l,1.15) 
S,(l.l. 1.2) 
DW2(l.l) 
DJl.1) 
&(1.1,1.15,0.1) 
S,(l.l, 1.15.1.0) 
S,(l.l, 1.15,lO.O) 
s,(1.1,1.2,0.1) 
S,(l.l, 1.2,l.O) 
S,(l.l, 1.2,lO.O) 

Against H; 

1.05 I .o 

n = 20 
0.066 0.072 

0.097 &Oh6 

0.120 0.182 

0.098 0.143 
0.046 0.046 
0.069 0.063 
0.069 0.064 
0.045 0.045 
0.045 0.045 
0.053 0.053 

n = 60 

0.017 0.035 

0.000 o.ow 

I.OiK) I .oof.l 
0.998 0.982 
0.014 0.028 
0.551 0.136 
0.620 0.222 
0.013 0.024 
0.012 0.023 
0.012 0.026 

Against H,: 

1.12 1.14 

,I = 20 

O.OY7 O.ZOK 

0.174 0.352 

0.1 h9 0.369 

0.135 0.316 
0.047 0.061 
0.053 to47 
0.049 0.087 
0.04X 0.086 
0.045 0.07X 
0.046 0.083 
0.046 0.0X3 
0.045 0.08 I 

n = 60 
0.935 0.987 

0.X85 0.927 

0.170 I .ooo 
0.026 0.988 
0.93x 0.9xx 
0.011 0.002 
O.Y69 0.994 
0.969 0.994 
0.969 0.994 
0.967 0.994 
0.968 0.994 
0.96X 0.994 

0.9 0.0 

0.082 

0.034 

O.lXX 

0.195 
0.052 
0.042 
0.043 
0.052 
0.052 
0.04h 

0.203 0.599 

OSHJh 0.000 

0.107 0.026 

0.600 0.951 
0.134 0.4X3 
0.009 0.000 
0.005 OmO 
0.15x Il.528 
0. I hl 0.57h 
0.030 0.030 

0.070 

O.000 

I .000 
I SIOI) 
0.056 
0.032 
Ml31 
O.OhI 
O.060 
0.054 

0.546 I).')')3 

0.000 O.OGiJ 

I .000 l.OOo 

I .oi~O I SMnl 
0.4Y3 0.9XY 
0.0~19 0.001 
0.000 ImxJ 
0.x.55 11.996 
O.Yl I I .innl 
0.X56 I .GiH) 

1.16 LIX I.2 

0.374 OS41 0.67X 

0.521 O.h.52 0.74X 

0.559 O.h9X 0.791 

0.538 0.702 0.805 
0.140 0.330 0.539 
0.032 0.020 0.012 
0.233 0.459 0.65 1 
0.240 0.475 O.hh.5 
0.234 0.474 O.hhh 
0.241 0.479 O.hh9 
0.240 O.47Y O.hhY 
0.238 0.47x O.hh9 

0.997 

0.000 

I .ooo 
I.000 
O.YY7 
0.000 
0.999 
0.999 
0.999 
lJ.YY9 
0.909 
0.999 

0.99') 

O.O(HJ 

I .OM 
I mo 
0.999 
O.OOiJ 
I .wo 
I .00(1 
I .0(K) 
1 .ooo 
1.000 
I .(1(K) 

1.w 

o.oMJ 

I.000 

1.0Oa 
1.000 
0.000 
1.000 
I.000 
I.000 
I .004 

1.000 
I.000 
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Against Hi. no one G2-invariant test performs well over both the suhre- 
gions RI: 1.0 up < 1.1 and R2: 0 sp < 1.0. When n = 20, the power curves 
of the Dz( 1 .l) and S,(l. I, 1.0. ti; ) tests are almost identical. whiie, for 
II = 60, the Sz(l.l,l.O, d::) tests have a definite power advantage. These tests 
dominate the DW,(l.lI and S,(l.l,OS, dy) tests over RI, while the reverse is 
the case over R2. The S,( 1.1,0.5, I .OI test can be regarded as the best test 
over R2. While we have found that no test performs well over both RI and 
R2, it may be that a better choice of p, in the SJ 1.1, p,, d;: ) test will produce 
such a test. For example, the most stringent PO1 test which involves choosing 
p, to minimize the maximum power difference with the power envelope could 
be such a test. 

A feature of the G2-invariant results against H .T is the poor performance 

of the D&1.1) test. It seems that while the powers of the other tests tend to 
one as n increases, the power of the L),f 1.1) test tends to zero. The powers 
of the remaining G2-invariant tests arc very similar when II = 60 with the 
POI tests being slightly superior. Overall, we recommend the use of the 
S&1.1, l.lS,cly) test, with (1: chosen to bc close to or above the true I/, 
value, for testing p = 1. I against p > 1.1. 

6. Concluding remarks 

In this paper, we considered the linear regression model with AR(l) 
disturbances and derived optimal invariant tests for the hypothesis that the 
autoregressive coefficient p has any given value. In the nonstationary cast. 
we stressed the importance of getting test statistics that do not depend on the 
distribution of the first disturbance (which is typically unknown). WC dealt 
with this problem by considering tests invariant under a larger transformation 
group than the one used by Durbin and Watson (19711. In practice. this can 
be done in a simple way by adding an artificial ‘regressor’. which dcpcnds on 
/I,,. to the X matrix. 

We also presented power comparisons between alternative tests. For the 
stationary models, our results suggest that both LB1 and PO1 tests are usually 
superior to DW tests (based on transformed data under H,,), sometimes by 
wide margins, while the power differences between LB1 and PO1 tests arc 
relatively small. with the biggest difference favouring PO1 tests. For the 
nonstationary models, the same situation seems to hold when testing values 
of p less than (and not too close to) one. On the other hand, when testing 
values of p equal to or greater than one, LB1 tests (under G2) have poor 
power relative to other tests. An exception is the LB1 test of p = 1 against 
(1 > 1. The advantage of using PO1 tests (under G2) is especially strong for 
testing values of p equal to or greater than one. However, the results indicate 
that choosing a test which optimizes power at a particular point gives no 
guarantee about power at nonneighbouring points. In fact. when testing 
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p = 1.1 against p < 1.1, our results suggest it is extremely difficult, if not 
impossible, to find a test which has good power over both 1.0 <p < 1.1 and 
0 < p < 1.0. Concerning the choice of d:, our results suggest that it can have 
a sizable effect on the performance of PO1 tests. In general, selecting d$ 
below the true d,, rather than above it, appears to be a wise choice. Further 
research on whether this extends to di+ = 0 is currently planned. It is also 
useful to note that G2-invariant point-optimal tests of p = p0 against p = 1, 
based on the statistic S,(p,, 1, d:), are invariant to the value of d;, provided 
the model contains an intercept. 

Given a general procedure for testing hypotheses of the form p = pO, we 
can obtain confidence regions for p by finding the set of admissible values p0 
that are acceptable at a given significance level (Y [see Dufour (199011. It is 
easy to see that the probability that the true value p be contained in this set 
is 1 - cy. Numerical methods for constructing these confidence sets and 
comparisons between alternative testing procedures are the topic of on-going 
research. 

Appendix A: Alternative forms of LB1 tests 

We show here how the LB1 test statistic, D,(p,), can be put into the forms 
(8) and (9). From (5), 

= -2q[R,bo) -PoL (A.11 

which establishes (8). Because i?* = p,,e”,_, + z,*, t = 2,. . . , II, we have 

1 

n-1 n-l 

R,(PlJ = PO c e+ c e^,z,*,, 
t= 1 f=l :i 

n-1 

c e (A.2) 
t=2 

Let w, = e^, and w, = zp, t = 2,. . . , n. Then (setting 0’ = 1) we have 

f-1 

e^, = c P;W,-k, t= l,...,n, 
k=O 



and 

where 

II oh 

C,(w) = c W,w,+h = [w, - *fqzc, , + “xhz;*Z,‘., 
I -7 I ,~I 

From (A.2). (A.31, and (A.4). WC get 

1 i i 
+(I ’ ‘2 PO 

h I I’ :i: 
h 

h-1 
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Then, using (A.0, 

i 

n-1 

D,(P”) = -2 c &‘rk* +p(#/z*Y] 
k=l 

+ [(l -p;)-“2 - 1]*: 
[ 

&,;-Q:,Z*lZ* Ii 
n-l 

= -2 C p,“-‘r,* +rj, 
k=l 

so that expression (9) is thus proved. 
In the nonstationary case, analogous expressions for D,(p,) can be derived 

in a similar way and by noting that c, = 0. 

Appendix B: Distribution of the LB1 statistic in the nonstationary case 
with p,, = 1 

From (191, we have D,(l) = 1 - 4, where 

in which p,, = 1 so that U = C(l)u N N(0, a2Z,,> when p = 1. (Since the distri- 
bution of c’ does not depend on d,, we can take d, = 1.) If al, = 0, we have 
I,!J = 0 and the test is not applicable. This corresponds to the case where the 
untransformed model contains a linear trend. If we exclude this case and 

suppose that El,, z 0, we have 

where qi = U’Mjii, i = 1,2, M, = ~l,l,!,M/[l:,~l,], M, = I%? - M,. M, and M, 
are idempotent matrices with M,M, = 0. Further, because Z,f,!, has rank 1 
and I%, # 0, M, has rank 1 and 

rank[ M2] = tr[ M2] = n - rank[ I] - 1. 

Thus, q, and q2 are independent chi-square random variables with 1 and 
n - k, - 1 degrees of freedom, respectively, where k, = rank[ xl. Hence 
q/q, _ (n - k, - l)F(n -k, - l,l), where F(n -k, - l,l> is a random vari- 
able that follows a central F distribution with (n -k, - 1, 11 degrees of 
freedom. 
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