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Abstract

Hill estimation (Hill, 1975), the most widespread method for estimating

tail thickness of heavy-tailed financial data suffers from two drawbacks: one

of them is that the unknown number of observations in the tail is involved

in the estimation, which diminishes the empirical relevance of the Hill esti-

mation. The other is that the hypothesis test for finite samples whether the

underlying data lie in the domain of attraction of an α-stable law (α < 2) or

of a normal law (α ≥ 2) is performed on the basis of the asymptotic distribu-

tion, which can be different from those for finite samples. In this paper, using

the Monte Carlo technique, we propose an exact test method for the stability

parameter of α-stable distributions which is able to provide exact confidence

intervals for finite samples. Our exact test method includes automatically an

estimation procedure which does not need the assumption of a known number

of observations on the distributional tail. Empirical applications demonstrate

the advantages of the MC method in comparison with the Hill estimation.
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1 Introduction

Since the influential work by Mandelbrot (1963), α-stable distributions have often

been considered a more realistic distribution for high-frequency variables, such as

financial data, than the normal distribution, because asset returns, for example, are

typically heavy-tailed and excessively peaked around zero—phenomena that can be

captured by α-stable distributions with α < 2.

Statistical inferences for estimations and hypothesis tests under the α-stable

distributional assumption depend crucially on α (DuMouchel, 1971).1 Therefore,

one of the most important tasks in using the α-stable distribution is to precisely

estimate α and to find exact confidence intervals for finite samples for estimated α.

To discriminate α < 2 (domain of attraction of an α-stable law, Paretian case) from

α ≥ 2 (domain of attraction of normal law), or rather α = 2 (Gaussian case), would

be one example of how important it is to know what the exact confidence interval

for the estimated α is.

Because of its well-developed asymptotic properties, the Hill estimator (Hill,

1975) is the most popular method for estimating tail thickness of empirical data, the

stability parameter in the context of α-stable distributions. It is a simple nonpara-

metric estimator based on order statistics. A severe drawback of the Hill estimator,

however, is that the number of the observations on the distributional tails must be

known. In practice, the number of observations on the distributional tail is generally

unknown and depends on an unknown α. One more drawback is that its confidence

interval for finite samples can be given only based on the asymptotic distribution,

which generally differ from the finite sample distributions. The Pickands (Pickands,

1975) and Dekkers, Einmahl and de Haan estimator (Dekkers et al., 1989) are varia-

tions on the Hill estimator. For a rough check, the quantile estimation of McCulloch

(1986) may be also used. Some modifications are also considered by some authors:

Huisman et al. (2001), for example, propose a weighted Hill estimator that takes

into account the trade-off between bias and variance of the Hill estimator. However,

for all the modified estimators of the Hill estimator, say Hill-type estimators, the as-

sumption of a known number of observations on the distributional tail is necessary,

and confidence intervals for finite samples can be given only based on the asymptotic

1Kurz-Kim and Loretan (2007), for example, revisit the CRSP data used in Fama and French

(1992) and show that the empirical conclusion about the Capital Asset Pricing Model driven

by Fama and French (1992) is not robust depending on the distributional assumption for the

underlying data.
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distribution.

In this paper, using the Monte Carlo (MC) technique, we propose an exact test

method which automatically includes an estimation procedure2 (henceforth referred

to as the MC test or the MC estimation) for the stability parameter of α-stable

distributions. This is because an exact confidence interval for finite samples can be

constructed in the estimation procedures, or rather an estimate in the test procedure.

Our MC method therefore improves on the Hill estimation in two ways: first, the

number of observations on the distributional tail does not need to be assumed to be

known for our estimator. Second, our estimator provides exact confidence intervals

for finite samples.

The rest of the paper is structured as follows. Section 2 gives a brief summary

of α-stable distributions and the Hill estimator. In Section 3, the MC estimation

and test procedure are explained. In Section 4, we perform simulations to study the

size of the usual asymptotic test and power of the MC test for finite samples. An

empirical application is given in Section 5. Section 6 summarizes the paper.

2 Framework

2.1 A brief summary of α-stable distributions

A random variable (r.v.) X is said to be stable if, for any positive numbers A and B,

there is a positive number C and a real number D such that AX1 +BX2
d
= CX +D,

where X1 and X2 are independent r.v.s with Xi
d
= X, i = 1, 2; and “

d
= ” denotes

equality in distribution. Moreover, C = (Aα + Bα)1/α for some α ∈ (0, 2], where

the exponent α is called a stability parameter. A stable r.v., X, with a stability

parameter α is called α-stable. The α-stable distributions are described by four

parameters denoted by S(α, β, µ, σ). Although the α-stable laws are absolutely

continuous, their densities can be expressed only by a complicated special function

except in three special cases.3 Therefore, the logarithm of the characteristic function

of the α-stable distribution is the best way of characterizing all members of this

2An estimation procedure which is based on the MC method is termed a Hodges-Lehmann

estimation in the literature. See Hodges and Lehmann (1963) for the basic idea.
3The three special cases, in which the densities are expressible via elementary functions, are

(i) the Gaussian distribution S(2, 0, µ, σ) ≡ N(µ, 2σ2), (ii) the symmetric Cauchy distribution

S(1, 0, µ, σ), and (iii) the Lévy distribution S(0.5,±1, µ, σ); see Zolotarev (1986).
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family and is given as

ln

∫

∞

−∞

eistdP(S < s)=

{

−σα|t|α[1 − iβ sign(t)tanπα
2

] + iµt, for α 6= 1,

−σ|t|[1 + iβ π
2

sign(t) ln |t|] + iµt, for α = 1.

The shape of the α-stable distribution is determined by the stability parameter α.

For α = 2 the α-stable distribution reduces to the normal distribution, which is the

only member of the α-stable family with finite variance. If α < 2, moments of order

α or higher do not exist and the tails of the distribution become thicker, i.e. the

magnitude and frequency of outliers (from the viewpoint of the Gaussian) increase

as α decreases. Skewness is governed by β ∈ [−1, 1]. If β = 0, the distribution

is symmetric. The location and scale of the α-stable distributions are denoted

by µ and σ. The standardized version of the α-stable distribution is given by

S((x − µ)/σ; α, β, 0, 1).

A strong argument in favor of the α-stable distribution as a distributional as-

sumption for heavy-tailed empirical data is that only the α-stable distribution can

serve as the limiting distribution of sums of independent identically distributed

(i.i.d.) r.v.s, which is proved by Zolotarev (1986). For more details on the α-stable

distributions, see Zolotarev (1986) and Samorodnitsky and Taqqu (1994); and for

discussions of the role of the α-stable distribution in financial markets and macroe-

conomic modelling, see McCulloch (1996), Kim et al. (1997) and Rachev et al.

(1999).

2.2 Hill estimator and choice of the number of observations

on the distributional tail

2.2.1 Hill estimator

The most popular estimation for α is the Hill estimator (Hill, 1975), which is a

simple nonparametric estimator based on order statistics. Because of its simplicity

and popularity, we use the Hill estimator for constructing our test statistic.4 Given

a sample of n observations, X1, X2, . . . , Xn, the Hill estimator is given as

α̂H =

[

k−1

k
∑

j=1

(ln Xn+1−j:n − ln Xn−k:n)

]−1

, (1)

4Basically, any consistent estimator can be used to formulate our test statistic.
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with standard error

SD(α̂H) =
kα̂H

(k − 1)
√

(k − 2)
, (2)

where k is the number of observations which lie on the tails of distributions of

interest and Xj:n denotes the j-order statistic of the sample size n. As pointed

above, the Hill estimation contains an unknown value of k. The k is to be chosen

depending on the sample size, n, and the stability parameter, α, as k = k(n, α). In

empirical works, however, the α is again unknown. The asymptotic properties of

the Hill estimator have been studied by many authors and are now well developed:

Mason (1982) and Hsing (1992) consider weak consistency of the Hill estimator for

independent and dependent cases, respectively. The strong consistency is proved by

Deheuvels et al. (1988). Goldie and Smith (1987) prove asymptotic normality of

the Hill estimator, i.e. √
k(α̂−1

H − α−1) ∼ N(0, α̂−2). (3)

The confidence interval of an estimated stability parameter for a finite sample is

based on the asymptotic distribution in (3) as is given in (2).

2.2.2 Choice of optimal k

Before we estimate the stability parameter using the Hill estimator, one practical

problem needs to be solved: how to choose optimally the number of observations

on the distributional tail, k, which are used for the Hill estimation. Note that the

choice of k involves a trade-off, because it must be small enough for the observation,

Xn−k:n to be the first (smallest) observation in the tail of the distribution. If it is

too small, however, the estimator will lack precision. The theoretical relationship

between k and α can be derived from the second-order property as (see de Haan

and Peng, 1998)

k = n
α − 1

Γ(2 − α) sin(π ∗ α/2)
, α ∈ (1, 2). (4)

One problem with using this relationship for empirical work is that k is again a

function of the unknown α. In practice, the true value of α is generally unknown,

which means that the relationship between k and α is only of theoretical interest. In

practice, the k is determined more or less by intuition or rather arbitrarily in the Hill

estimation. This is a severe drawback for the Hill estimator in terms of empirical

relevance and, as far as we know there is no statistical consensus to determine k.

DuMouchel (1983) proposes a 10% fraction of samples as k independent of alpha
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and n, which, as will be shown, can be only optimal when α is very small and n

is very large. Therefore, from the practical point of view, our MC estimation for

which k does not need to be known is of empirical relevance.

In order to demonstrate the problem of the dependence of k on the unknown α,

we show the so-called ‘Hill horror plot’. Figure 1 shows Hill estimates for which the

data come from an α-stable distribution with index α = 1.75 and a sample size of

1,000.5 The rule of choosing the k for the Hill estimation is to take the ten largest

observations in the first estimation and to add the ten (1% of the 1,000 observations)

next largest observations recursively until 990 (99% of the 1,000 observations) are

used as the tail area. For every 99 cases, 100,000 replications are made.

Figure 1 somewhere here.

The solid line shows mean of the 100,000 estimates for each k and the dashed

lines over and upper of the decreasing solid line shows 95% Monte Carlo confidence

intervals. The straight solid line means the true value of α is 1.75.

Figure 1 shows clearly that the Hill estimate is extremely sensitive to the choice

of k. On the other hand, Figure 1 shows also that estimates of tail index (stability

parameter) greater than 2 in empirical works are, therefore, not evidence against

infinite-variance stable distributions (α < 2), as is pointed out in McCulloch (1997).

A bad choice of k is often misleading about the true tail-thickness.

3 MC estimation and test procedure

In this section, we introduce the MC estimation and test procedure. The technique

of the MC method was originally proposed by Dwass (1957) for implementing per-

mutation tests and was later extended by Barnard (1963), and has recently been

revisited by Dufour (2005). It provides an attractive method of building exact tests

from statistics whose finite sample distribution is intractable but can be simulated.

The most promising advantage of the MC method – unlike bootstrap techniques

and other conventional test methods, which have only asymptotic justification – is

that an exact finite-sample inference can be obtained. Consequently, the validity

5The results for other α values and sample sizes are the same as that for 1,000 with respect to

the main conclusion.
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of this MC-method-based exact randomized test does not depend on the number of

replications made. For more details on the MC method, see Birnbaum (1974), and

Dufour (2005).

We now test our random sample, {X1, X2, . . . , Xn}, from a symmetric α-stable

(SαS) distribution6 for

H0(α0) : α = α0. (5)

To perform this test, we need a test statistic which is free of nuisance parameters

under the null hypothesis. A possible statistic can be given as

ST = α̂ − α0, (6)

where α̂ may be any consistent estimator for α. The fact that α̂ may be any

consistent estimator for α means that our MC method can provide any consistent

estimator with an exact confidence interval for finite samples.

Specifically, we apply the Hill estimator to our test statistic as

STH = α̂H − α0. (7)

The MC estimate can be given as

α̂H(α0) =



k−1

k(α0)
∑

j=1

(

ln |X̃n+1−j:n| − ln |X̃n−k:n|
)





−1

, (8)

with X̃i := Xi − Xmed, where X̃j:n stands for the j-th order statistic of the sample

size n. Note that the distributional tail of the Hill estimator in (8) no longer depends

on an unknown α as in (1), but on α0 under the null hypothesis. This enables us

to use the theoretical relationship between k and n as in (4) and/or the optimal

k/n ratio tabulated in Rachev and Mittnik (2000, p. 114). In this sense, the MC

estimation is optimal.

Two practical points in the test statistic above should be mentioned: the use of

absolute values and the median centering. The use of absolute values after a median

centering enables us to deal with asymmetric cases. This is because, as we will see in

the following proposition, it avoids the dependence of the stability parameter α on

the skewness parameter β. The other practical problem is how to choose a centering

6In case of asymmetric data, our procedure can be also applied in the same way, as in the Hill

estimation, for only one tail. Based on the Kolmogorov-Smirnov statistic, Dufour et al. (2007)

propose an estimation and test for the asymmetric parameter of α-stable distributions.
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parameter in order to relocate the empirical data for the Hill estimator. Note that

the Hill estimator is scale-invariant, but not location-invariant, which means X has

to be centered properly at the beginning of the estimation. Despite the existence

of the first moment for 1 < α < 2, the mean often cannot serve optimally as a

centering parameter because of its fluctuation; especially α is small. Therefore, the

median is an alternative choice as a centering parameter.

Regarding centering, we perform a simulation study. The simulation shows the

efficiency of the Hill estimator among three centerings; true mean, sample mean

and sample median. The case for true mean is not of empirical relevance, but

it serves as a benchmark for the other two sample statistics. The simulation is

designed as α = 1.0, 1.25, 1.5, 1.75, 1.95, 2, β = 0, µ = 0 and σ = 1 with sample size

of n = 100, 250, 500, 1, 000, 5, 000. For each combination, 10,000 replications were

made. For estimation we use the usual Hill estimator, where the sample is relocated

by true mean, by estimated sample mean and by the estimated sample median. The

pseudo-α-stable r.v.s were generated with the improved algorithm of Chambers et

al. (1976) by Weron (1996).7 The results of the simulations are summarized in Table

A in the Appendix. Table 1 shows that using the median as a centering parameter is

almost as efficient as using the true mean for all α and n adopted in the simulation.

Furthermore, it is clearly shown that using the median as a centering parameter is

more efficient than using the mean in the sense of mean square error for all α and n

adopted in the simulation. The difference of the two root mean squares for the case

median and mean is larger as α becomes smaller, which is expected because of the

large fluctuation of sample means for small values of α, and the difference remains

even for a large sample size (n = 5,000). For this reason, in the literature a trimmed

mean as a centering is also recommended. But, the median centering seems to be

mostly appropriate for our purpose.

To estimate the stability parameter using our MC method, the test statistic in (7)

should be nuisance-free. Because the estimator in (8) is location and scale-invariant,

the test statistic in (7) is pivotal as proved in the following lemma.

Proposition 1 [Invariance] Let X1, X2, . . . , Xn be i.i.d. random variables which

follow a S(α, β, µ, σ) distribution, and let

α̂ = a(X1, X2, . . . , Xn)

7The same random generator will be used for all the following simulations.
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be an estimator of α. If the estimator α̂ is scale-invariant, i.e.

α̂ = a(cX1, . . . , cXn) = a(X1, X2, . . . , Xn) , for all c > 0 , (9)

then the estimator α̂ has a distribution which depends only on α, β and µ/σ. If,

furthermore, α̂ is location-scale-invariant, i.e.

α̂ = a(cX1+d, . . . , cXn+d) = a(X1, X2, . . . , Xn) , for all c > 0 and d ∈ R, (10)

then the estimator α̂ has a distribution which depends only on β.

Proof 1 To obtain the first result, we observe that

Xi/σ ∼ S(α, β, µ/σ, 1) , i = 1, . . . , n .

Then, using the scale-invariance property (9) with c = 1/σ, we can write

α̂ = a(X1/σ, . . . , Xn/σ) ,

from which we see that the distribution of α̂ depends only on α, β, and µ/σ. Simi-

larly, under the location-scale invariance condition (10), we observe the following:

(Xi − µ)/σ ∼ S(α, β, 0, 1) , i = 1, . . . , n.

Hence, taking c = 1/σ and d = −µ/σ,

α̂ = a(X∗

1 , . . . , X∗

n) ,

where X∗

i = (Xi − µ)/σ, i = 1, . . . , n.

The MC estimation and test procedure can be summarized in six steps as follows,

given a random sample {X1, X2, . . . , Xn} from a SαS distribution.

1 Determine the set of possible α under the null hypothesis. From the viewpoint

of empirical relevance it stands to reason that α0 ∈ [1 2].

2 Calculate test statistics (α̂H − α0) for every α0, where the step length of two

neighborhoods of α0 may be 0.01, for example.

3 Generate typically 99 or 999 samples for every element of the set by a stable

random variable generator and calculate the test statistics.
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4 Compute p-values under all possible null hypotheses.

5 Take the α̂H(α0) as the estimate of α at which the (1−p) value has its minimum

(usually zero). This is a Hodges-Lehmann estimate.

6 Take the α̂l and α̂r as the left and right limit of the η% confidence interval

at which the p-value is (1 − η)/100, where α̂l < α̂r. This is now the exact

confidence interval for the Hodges-Lehmann estimate in step 5.

4 A simulation study: exact and asymptotic con-

fidence interval

4.1 Size distortion

A strong advantage of the MC method is that it provides exact confidence intervals

for finite samples. In practice, the asymptotic normality as given in (3) is usually

used for finite samples. In order to see size distortion of the asymptotic test, we

perform a simulation study. The simulation is designed as α = 1.0, 1.25, 1.5, 1.75, 2,

β = 0, µ = 0 and σ = 1 with a sample size of n = 100, 250, 500, 1, 000, 5, 000. For

each combination, 10,000 replications were made. We use the usual Hill estimator

relocating the sample by true mean, by estimated sample mean and by the estimated

sample median. The result of the simulation is summarized in Table 1, where the

numbers in the table are percentage points of rejection. Although we only report

for the 95% significance level, the other usual confidence levels show very similar

results.

Table 1 somewhere here.

The result of the asymptotic test is somehow surprising: a Hill estimation with

a centering of true mean or median shows a (relatively) good size. However, a Hill

estimation with a centering of sample mean shows size distortion if α is small. Note

that the confidence intervals from the MC method are, by construction, exact.
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4.2 Power function of the Monte Carlo method based test

The theoretical size and power of the MC test is considered in Dufour (2005). Al-

though the discrepancy of the correct size and the superior power of the MC test

over the conventional test goes to zero as the sample size approaches infinity, the

behavior of the power function for the finite sample is usually of interest.

To check the power of our MC test, we perform a simulation study by drawing

from symmetric α-stable pseudo-r.v.s relocated by the median. As pseudo-empirical

data we use the same α-stable random sample generated earlier, and test H0 : α =

α0, where α0 is assumed to take on values from 1.0 to 2.0 in steps of 0.1. Sample sizes

of n = 100, 250, 500 1,000, 2,000, 5,000 and 10,000 are selected, and the number

of replications is 10,000. To calculate the test statistic in (6) containing the Hill

estimator, we use the ratios tabulated in Rachev and Mittnik (2000, p. 114) as the

optimal k/n. To demonstrate the power function, we select a usual significance level

of 95%. Figure 1 shows the power functions for the selected α, n and percentage

points as described above.

Figure 2 somewhere here.

As expected, the power converges to the corresponding ideal value for each given

significance level as the sample size grows. A sample size of 2,000 gives a rather

satisfactory power. A large loss of power can be observed for extremely small sample

sizes.

5 Empirical applications

To illustrate the use of the Monte Carlo method in practice, we employ the German

stock index from its beginning (1 October 1959) to 30 September 2006, (47 years).

For a deeper look, we consider them in three different frequencies, namely daily

(11,796 observations), weekly (2,453 observations) and monthly (564 observations),

where the observations for the weekly and monthly data are those of the end of the

period, i.e., the Friday values for the weekly data and the value at end of the each

month for the monthly data. Figure 3 shows the empirical data.

Figure 3 somewhere here.
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The volatility cluster looks –to a large extent– similar in three different frequen-

cies. But, a careful look reveals that many of single outliers in the daily returns

are no longer seen in the weekly returns and vice versa. The same is also valid be-

tween the weekly returns and the monthly ones. This is because the weekly and/or

monthly data do not come from a moving average of the daily data. (Even if the

low frequency data come from a moving average of a higher frequency data, the two

dynamics are not necessarily the same or very similar.)

Figure 4 shows the empirical densities of the three time series (solid line) com-

pared with the normal density (dotted line).

Figure 4 somewhere here.

Each of the empirical densities appears excessively peaked around the mean and,

at the same time, the tails are thicker than those of the normal density, which are

the typical features of α-stable densities. This phenomenon is the most striking in

the daily data, namely high-frequency data, as usually observed and reported in the

literature. The pseudo-kurtosis8 for the three data are 10.67 for the daily returns,

5.36 for the weekly returns and 5.60 for the monthly returns.

Next, we estimate the confidence interval and the stability parameter of the three

times series by means of our MC estimation and test procedure. Figure 5 illustrates

the estimates and the corresponding confidence intervals, where the solid line gives

1 − p values at given H0 : α = α0 of the empirical data and the three dashed lines

(from bottom to top) give simulated quantiles of 90%, 95% and 99% for the estimate

α̂ = α0.

Figure 5 somewhere here.

The results of the estimates are numerically summarized in Table 2 again.

Table 2 somewhere here.

8Under the assumption of α-stable distributions with α < 2, there exists no fourth moment.
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Some comments on the empirical results are in order. First, the changes in the

probability at given H0 : α = α0 shown in Figure 5 are the smoother as T increases.

For a very small sample size, one can even observe a non-monotone probability

curve. This is because (even if the same unit and exponential r.v. are used in the

transformation into α-stable r.v.) for different α values the k changes for each α.

Second, the increasing and decreasing of the probability around H0 : α = α0 are not

necessarily symmetric. This means that, as the results show, the exact confidence

intervals from the MC test for finite samples can be asymmetric, which is another

advantage of our exact confidence interval for finite samples. Note that the asymp-

totic distribution of the Hill estimate, namely the normal distribution, is symmetric

for all sample sizes and all quantiles. And there is no statistical background that

the distribution of estimates for finite samples must be symmetric. Third, the es-

timated stability parameter for the daily data is 1.69, but it reduces to 1.84 when

the observation frequency decreases to a weekly interval, where both of the two

estimates are via our exact confidence intervals highly significant for α < 2. Theo-

retically, however, the stability parameter should not change depending on sample

size and/or observation frequency. This is only the case when the data are i.i.d.

However, most of empirical financial data do not conform to this condition and are

highly correlated in the second moment, as is well known. The changes of frequency

from weekly to monthly, however, are not the case. The estimate for the monthly

data, via the exact confidence interval is not (strongly) significant for the hypothe-

sis α < 2, and, probably the increasing of estimation inefficiency is more dominant

than the effect of dependency in the data. Fourth, the confidence intervals becomes

smaller and smaller as sample size increases, as it should be. The comparison of

the two confidence intervals from our method and the normal distribution shows

that the densities of the MC estimates and, hence, the confidence intervals for small

sample sizes seem to be (right-skewed) asymmetric. This can be seen for the sample

of the monthly (563 observations) and still somehow the weekly data (2,452 observa-

tions) because the right limits of the exact confidence intervals (90%, 95% and 99%

or rather equally speaking 95%, 97.5% and 99.5% quantiles) are larger than those

of the normal distribution, although the left limits of the two confidence intervals

are approximately the same. This asymmetry vanishes when the sample size is very

large. This (right-skewed) asymmetry can often be observed in the density of the

Hill-type estimations, such as Hill-, Pickands- and Dekkers, Einmahl and de Haan

estimate, as documented in Rachev and Mittnik (2000, Ch. 3).
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The main result from the empirical application, which should be emphasized

with respect to our exact confidence intervals, is that the hypothesis of α < 2 for

the monthly data cannot be accepted by the exact confidence intervals, but, by the

asymptotic confidence interval, the hypothesis is still valid at a significance level of

97.5%. This means that results of the hypothesis for or against α < 2 for finite

samples, especially small sample sizes, can be misleading if they are concluded by

the asymptotic normal distributions. As already discussed, for large samples (here,

daily data with a size of 11,795) the usual confidence intervals from the exact test

method and the normal distribution are almost the same, whereas for middle-large

size (here, weekly data with size of 2,452) the two confidence intervals are slightly

different, especially in the right limits.

Now, we turn to the problem of choice of k in empirical works. In order to

demonstrate the behavior of the Hill estimation especially depending on the choice

of the optimal k, we estimate the three empirical data sets using the Hill estimation

with k := τn, τ ∈ (0, 1) and n being sample size. Specifically, we choose τ =

0.1 : 0.0001 : 0.5.9 Figure 6 shows the 4001 Hill estimates (solid line) and the MC

estimate (dashed line) for each set of the empirical data, where the y-axis shows the

estimated α and the x-axis shows the chosen k for the Hill estimation.

Figure 6 somewhere here.

Figure 6 demonstrates again that the hill estimation could be empirically almost

useless, unless the k is known, because it is so sensitive to the choice of the k. The

bias seems to have a linear relationship to k for large samples. In the case of the

daily (weekly, monthly) data, we have a positive [negative] bias if we have chosen τ

smaller [larger] than 0.4243 (0.4345, 0.4336).

In the second part of our empirical applications, we apply the test for constancy

of tail thickness suggested by Quintos et al. (2001) to the same weekly return

data as before. The aim of this part is again to demonstrate that empirical results

can crucially depend on the choice of unknown k. In other words, because our

MC procedure automatically uses an optimal k it is able to provide correct results

regarding underlying tail thickness parameter.

9As the Hill horror plot (Figure 1) shows it seems to make no sense to consider τ < 0.1 and

τ > 0.5 when the α is relatively high, say α > 1.5.
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Quintos et al. (2001) propose three tests for the constancy of tail thickness,

namely recursive, rolling and sequential tests. We only employ the rolling test10, by

which we can expect the largest fluctuation in the estimates for the tail thickness.

This is because the Hill estimator is conditional on the largest k observations, so

that, for the recursive and the sequential test, the outlier behavior that appears in

the initial sample remains in the selection of the k largest observations in the latter

part of the sample, whereas, for the rolling test, the k largest observations can more

probably change from one subsample to the next subsample. Under the assumption

of an optimal k they formulate a statistic for the rolling test as

VT (i) =
nik(ni)

T

(

α̂i

α̂T

− 1

)

, (11)

where ni, i = 1, 2, ..., N is size of N subsamples; k(ni) is the number of the obser-

vations on the distributional tail in a subsample; T is size of the whole sample; α̂i

is the estimate of α for the i-th sample; and α̂T is the estimate of α for the whole

sample. The test statistic for the rolling test focuses on the maximum of the statistic

(11) for k(ni)/T ∈ IRπ := [π; 1 − π], where π represents some small value (usually

0.1) commonly used in the construction of structure constancy tests, see Andrews

(1993), and is given as

Q∗ = supr∈IRπ
VT ([Tr])

d−→ supr∈IRπ
W̄ (r, γ0), (12)

where W̄ (r, γ0) = W (r, γ0)− (r− s)W (1, 1) with W (r) denoting a standard Wiener

process. The statistic in (12) converges to a non-standard distribution and the

critical values from the non-standard distribution are tabulated in Quintos et al.

(2001).

Specifically, we choose two rolling subsamples: 10-years and 20-years subsample,

i.e., our first subsample for the 10-years (20-years) subsample contains the weekly

return from October 1959 to September 1969 (September 1979), and our last sub-

sample contains the weekly returns from October 1996 (October 1986) to September

2006. Therefore, the number of subsamples is 37 and 27 for the 10-years and 20-

years subsample, respectively. The size of subsamples is either 523 (27 times) or

522 (10 times) for the 10-years subsample and (1044) (14 times) or 1043 (13 times)

for the 20-years subsample. For calulation of the test statistic, therefore, we take

523 and 1044 as size of a rolling sample for the 10-years subsample and the 20-years

10The recursive and sequential test show mainly the same result.
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subsample. Figure 7 and 8 show empirical test statistics based on the MC method

and the Hill estimation, where Figure 7 (8) corresponds to the 20-years (10-years)

subsample.

Figure 7 and 8 somewhere here.

For both graphs, the mountain-looking solid curve shows the empirical test statis-

tic in (12) based on the 4001 Hill estimates for τ = [= .1 : 0.001 : 0.5] and the dashed

line based on the MC estimates. The three straight solid lines show 99%, 95% and

90% critical values of 3.075, 2.25 and 1.865 for the 20-years subsample in Figure 7

and 2.37, 1.81 and 1.54 for the 10-years subsample in Figure 811.

Figures 7 and 8 show that, according our MC estimate, the stability of tail

thickness of the DAX weekly returns seems to be constant during the whole period

for both subsample lengths. However, the results of Hill estimate for both cases

depend crucially on which k(= 2452τ), or rather τ is chosen for the estimation. If τ

is chosen smaller 0.3740 and 0.3862 (except some very small τ values for both cases)

for the 20-years and 10-years subsamples, respectively, we would not accept the null

hypothesis of constancy of the tail thickness at a significance level of 95%.

When comparing the two cases, the results for the 10-years subsample, i.e., a

sample size of 523 (Figure 8) is more erratic than those for the 20-years subsample,

i.e., a sample size of 1044. This can be seen in the range of even relatively higher

k/n, say k/n > 0.4.

6 Summary

In this paper we have considered an exact test and estimation method for the stabil-

ity parameter of α-stable distributions using the Monte Carlo technique. Specifically,

we have employed the Hill estimator for constructing the MC test statistic. Using

our MC test and estimation, we improved the Hill estimation in two ways: our MC

estimation does not need to assume that the number of observations on the distri-

butional tail is known. Moreover, our MC test provides exact confidence intervals

for finite samples.

11The critical value is calculated by a linear interpolation from the table in Quintos et al.

(2001) p. 662.
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The empirical applications demonstrate that empirical conclusions about the

hypothesis test for α < 2 for finite samples and/or for constancy of tail thickness

depend crucially on the choice of the number of observations on the distributional

tail and the exact confidence intervals.
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Appendix

Table A. Root mean square error of Hill estimator

with different centering

Centering True Mean Median

α Sample size

1.0 100 0.1660 0.3338 0.1654

250 0.1235 0.2890 0.1234

500 0.0953 0.2697 0.0952

1000 0.0727 0.2711 0.0727

5000 0.0442 0.1763 0.0442

1.25 100 0.1616 0.2488 0.1625

250 0.1063 0.2090 0.1063

500 0.0762 0.1845 0.0764

1000 0.0546 0.1771 0.0545

5000 0.0253 0.1263 0.0253

1.5 100 0.1808 0.1958 0.1813

250 0.1126 0.1306 0.1135

500 0.0806 0.0949 0.0809

1000 0.0579 0.0761 0.0578

5000 0.0263 0.0368 0.0262

1.75 100 0.2048 0.2053 0.2068

250 0.1291 0.1306 0.1299

500 0.0909 0.0912 0.0903

1000 0.0640 0.0655 0.0641

5000 0.0290 0.0294 0.0290

1.95 100 0.2258 0.2261 0.2259

250 0.1421 0.1414 0.1419

500 0.0985 0.0987 0.0992

1000 0.0696 0.0698 0.0699

5000 0.0318 0.0317 0.0317

2.0 100 0.2303 0.2292 0.2313

250 0.1463 0.1452 0.1455

500 0.1004 0.1010 0.1016

1000 0.0716 0.0714 0.0711

5000 0.0330 0.0328 0.0327

20



Table 1. Asymptotic test at 95% significance level

α

n Centering 1 1.25 1.5 1.75 2

100 mean 8.55 6.43 3.53 4.13 3.47

median 4.08 4.48 4.31 4.97 4.26

200 mean 12.47 10.54 4.68 3.60 3.84

median 4.26 4.62 4.26 3.85 4.08

500 mean 15.34 13.25 5.12 3.80 3.77

median 4.49 4.76 3.96 3.82 3.70

1000 mean 19.39 16.23 5.44 4.08 3.56

median 5.24 4.43 4.11 4.05 3.40

5000 mean 16.53 20.04 5.73 4.27 4.02

median 4.95 4.71 4.39 3.94 4.02



Table 2. Estimated stability parameters and exact confidence intervalsa

Quantile 0.5% 2.5% 5% α̂H(α0) 95% 97.5% 99.5%

Data

Daily 1.66 1.67 1.67 1.69 1.72 1.72 1.74

(1.65) (1.66) (1.66) (1.72) (1.72) (1.73)

Weekly 1.74 1.76 1.78 1.84 1.91 1.93 1.98

(1.74) (1.77) (1.78) (1.90) (1.91) (1.94)

Monthly 1.61 1.66 1.69 1.82 2 2 2

(1.62) (1.67) (1.69) (1.95) (1.97) (2)

aThe values in parentheses are corresponding confidence intervals based on the normal distribution

given in equation (2).
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Figure 1: Hill horror plot
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Figure 2: Power function for selected values of α and n
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Figure 3: DAX returns in difference frequencies
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Figure 4: Empirical densities
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Figure 5: Exact confidence intervals and estimates
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Figure 7: Rolling test for 20-years subsamples
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Figure 8: Rolling test for 10-years subsamples


