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1. Introduction1

Optimization-based macroeconomic models, in particular structures derived from dy-2

namic stochastic general equilibrium (DSGE) assumptions, are routinely used for analyzing3

macroeconomic issues. In this respect, the solutions of log-linearized versions of these mod-4

els are frequently taken to the data in order to obtain realistic quantitative answers to the5

questions studied. Classical and Bayesian estimations have both been used for this pur-6

pose, including methods that consider jointly all model restrictions (full-information [FI]7

approaches), and methods that focus on matching only some aspects of the data (limited-8

information [LI] approaches). However, finding reliable estimates for the parameters of such9

models is a challenging problem, regardless of the estimation strategy. In a recent sur-10

vey, Schorfheide (2010) discusses, among others, two important (and related) reasons for11

this: weak identification and assumptions which are auxiliary to the theory yet necessary12

to complete a model, such as restrictions on disturbance distributions and information sets.13

This paper studies both problems, proposes econometric tools designed to overcome their14

consequences, and applies these tools to the New Keynesian model.15

A number of studies have documented identification problems in well-known estimated16

models such as the New Keynesian Phillips Curve (NKPC) [see, for example, Dufour, Kha-17

laf and Kichian (2006, 2010), Ma (2002), Mavroeidis (2004, 2005), Nason and Smith (2008),18

Kleibergen and Mavroeidis (2009)]; Taylor-type monetary policy rules [Mavroeidis (2010),19

Inoue and Rossi (2011)]; and the Euler equation for output [Fuhrer and Rudebusch (2004),20

Magnusson and Mavroeidis (2010)]. For multi-equation models, several studies have ex-21

plored identification difficulties, the proper recovery of macroeconomic dynamics from struc-22

tural VARs, and the role of added measurement errors; see Kim (2003), Beyer and Farmer23

(2007), Fernandez-Villaverde, Rubio-Ramirez, Sargent and Watson (2007), Ruge-Murcia24

(2007), Canova and Sala (2009), Chari, Kehoe and McGrattan (2009), Consolo, Favero and25

Paccagnini (2009), Chevillon, Massmann and Mavroeidis (2010), Iskrev (2010), Magnusson26
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and Mavroeidis (2010), Moon and Shorfheide (2010), Cochrane (2011), Komunjer and Ng1

(2011), Andrews and Mikusheva (2011), and Granziera, Lee, Moon and Schorfheide (2011).2

Macroeconomists are rarely dogmatic in favour of a fully-specified model as an end in3

itself. Rather, models are viewed mainly as quantitative benchmarks for the evaluation of4

substantive economic issues. While there is a consensus that certain models are useful for5

this purpose, there is less agreement on how such models should be parameterized when6

taken to the data. Ideally, one would like to focus on implications of interest conforming7

with micro-founded structures while allowing the data to speak freely on the dimensions8

along which these may lack fit. In particular, the following features can affect identification9

and inference validity. First, an important challenge consists in minimizing the effects of10

auxiliary assumptions. For instance, innovations arising from measurement errors are usu-11

ally non-fundamental. Alternatively, the existence of a unique rational expectation solution12

may challenge theory [see Cochrane (2011)]. Second, DSGE-VAR methods broadly assess13

the structural form against an unrestricted VAR where the included variables are deter-14

mined by the DSGE. The literature is witnessing a growing awareness on the possibility of15

misspecifying the benchmark and its consequences. Variable omission is a third recognized16

difficulty, since by construction and because of their specificity, DSGE models may exclude17

empirically relevant data. For all these reasons, the consequences of spuriously completing18

models should be taken into account.19

This paper proposes identification-robust inference methods, i.e. methods which are20

valid whether identification is weak or strong, for DSGE setups. For definitions and surveys21

of the relevant econometric literature, see, for example, Stock, Wright and Yogo (2002),22

Dufour (2003), and Kleibergen and Mavroeidis (2009). Despite the considerable associated23

econometric literature, identification-robust methods for multi-equation systems are still24

scarce [see Moon and Shorfheide (2010), Granziera, Lee, Moon and Schorfheide (2011),25

Guerron-Quintana, Inoue and Kilian (2009), Magnusson and Mavroeidis (2010) and Andrews26
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and Mikusheva (2011)]. We introduce two system-based identification-robust methods which1

can address either all of the restrictions implied by the model [“full-information” inference],2

or only some of those restrictions [“limited-information” inference]. So the latter approach3

(implicitly) considers a more general setup, though it retains basic features of the original4

model. We argue these approaches should be viewed as complementary, rather than mutually5

exclusive. Comparing LI with FI inference provides a useful specification check, and our6

incomplete-model alternative allows the researcher to draw inferences which are more robust7

to auxiliary model assumptions (such as the information used by economic agents to form8

their expectations). Both methods rely on estimation and test procedures whose statistical9

validity is not affected by identification issues and questionable auxiliary assumptions.10

We apply these tools to an illustrative three-equation New Keynesian model, estimated11

from U.S. data. This fundamental structure has been extensively studied and forms the12

building block of many other more complex models; see Clarida, Gali and Gertler (1999),13

Woodford (2003), Christiano, Eichenbaum and Evans (2005), Linde (2005), Benati (2008),14

Del Negro, Schorfheide, Smets and Wouters (2007), to mention a few. Three features of the15

New Keynesian model are addressed. First, inflation persistence is studied within the NKPC,16

given the on-going debate in this regard [see the survey by Schorfheide (2008)]. Second, the17

output gap coefficient in the NKPC and the real interest parameter in the output equation are18

analyzed, as currently available results lead to conflicting conclusions on the impact of these19

variables [see Schorfheide (2010)]. For clarity, these are called the forcing variables of the20

corresponding equations. Third, the implications of imposing a unique rational expectation21

solution on the feedback coefficients in the Taylor rule are revisited, in light of serious issues22

arising from determinacy underscored, for example, by Mavroeidis (2010) and Cochrane23

(2011). Comparisons between our FI and LI assessments of these questions are discussed.24

Our findings can be summarized as follows. When a stable and unique equilibrium is25

imposed to complete the model, it is rejected by the data. This is an important sense in which26
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our analysis can be seen as an exploration of the pervasiveness of auxiliary FI assumptions. In1

contrast, although insignificant forcing variables in the NKPC and the output curve cannot2

be ruled out, our LI multi-equation results provide realistic conclusions on the nature of the3

NKPC, and yield precise estimates of feedback coefficients which appear consistent with the4

Taylor principle. It is shown that such conclusions cannot be reached via single-equation5

methods. These results indicate that a multi-equation estimation of the considered model can6

still utilize the information in the contemporaneous relationship between output, inflation,7

and interest rates, which positively affects identification and inference.8

In section 2, our framework and empirical model are described. Section 3 presents the9

methodology. Empirical results are provided in section 4. Section 5 offers some conclusions.10

2. Framework11

Consider the general structural form12

Γ0Xt = Γ1Xt−1 + C + ωνt + ψηt (1)13

where Xt is vector of m∗ variables, C is a vector of constants, νt is an exogenous shock,14

and ηt is a vector of expectation errors such that Et(ηt+1) = 0. Collect all the parameters15

of (1) in the vector ϑ. Typically, only a vector [denoted Yt] of n∗ components of Xt is16

observable. Time-t expectations for some of the variables may also be included in Xt. Using17

standard techniques [see Anderson and Moore (1985), King and Watson (1998), Sims (2002),18

Anderson (2008)] and appropriate restrictions on ϑ [denoted as ϑ ⊂ Θ], (1) can be solved19

into Xt = C0 + C1Xt−1 + Gνt, where C0, C1 and G are functions of ϑ. If the model has no20

solution for a given parameter value ϑ = ϑ0, this means ϑ0 is not consistent with a rational-21

expectation model where the information set is restricted to information variables included in22

the model; so we can determine whether any given value ϑ0 is admissible (for such a model)23

by checking whether a solution does exist. Focusing on a unique stable rational expectation24
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solution, Yt is an infinite VAR that can be approximated [see Fernandez-Villaverde, Rubio-1

Ramirez, Sargent and Watson (2007) and Ravenna (2007)] by the restricted form2

Yt = B0 (ϑ) +B1 (ϑ) Yt−1 + · · · +Bp (ϑ) Yt−p + Σ (ϑ)ut, ut ∼ N (0, In∗) , (2)3

where B0 (ϑ) , . . . , Bp (ϑ) are constructed by truncation or by population regression as in Del4

Negro, Schorfheide, Smets and Wouters (2007). Most standard DSGE models are covered5

by (1). Special cases may also admit finite-order VAR representations for which (2) holds.6

The proposed partial specification is analogous to GMM. Define ǫit (Y, θ), i = 1, . . . , n,7

where Y denotes observable data on endogenous and exogenous variables and θ [which may8

be equal to ϑ, a subset of ϑ, or some transformation of the latter] the parameters of interest,9

such that if (1) holds then ǫit (Y, θ) is orthogonal to a vector of ki instruments Zit at the true10

θ. Collecting all different variables from each of the Zit into a k-dimensional vector Zt so11

that Zit = AiZt where Ai is a ki×k selection matrix, we propose to map the n orthogonality12

conditions into estimating and testing the multivariate regression of ǫit (Y, θ) on Zt with13

i.i.d. or serially dependent Vt :14

ǫt (Y, θ) = ΠZt + Vt, ǫt (Y, θ) = (ǫ1t (Y, θ) , . . . , ǫnt (Y, θ))′ . (3)15

That is, at the true θ and letting Πi
′ refer to the ith row of Π, we have:16

AiΠi = 0. (4)17

Our empirical analysis focuses on a prototypical New Keynesian model [see Clarida, Gali18

and Gertler (1999) and Linde (2005)] where, for t = 1, ..., T :19

πt = ωfEtπt+1 + (1 − ωf )πt−1 + γyt + επt , (5)20

yt = βfEtyt+1 +
4
∑

j=1

(

1 − βf

)

βyjyt−j − β−1
r (Rt − Etπt+1) + εyt , (6)21

Rt = γπ

(

1 −
3
∑

j=1

ρj

)

πt + γy

(

1 −
3
∑

j=1

ρj

)

yt +
3
∑

j=1

ρjRt−j + εRt , (7)22
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πt is aggregate inflation, yt is the output gap, Rt is the nominal interest rate, and the1

disturbance vectors εt = (επt, εyt, εRt)
′ have zero-mean with covariance matrix Ω. Parameters2

γ and β−1
r are referred to as the coefficients on the forcing variable in the NKPC and the3

output equation, respectively. Let4

θ =
(

ωf , γ, βf , βr, γπ, γy, ρ1, ρ2, ρ3

)′
, φ =

(

θ′, βy1, βy2, βy3, βy4

)′
(8)5

refer to model “deep” parameters, and let Θ and Φ denote the associated parameter spaces.6

Our FI method assumes (επt, εyt, εRt)
′ iid
∼ N(0,Ω) with Ω invertible. Model (5)-(7) may7

be represented as in (1) by replacing expectation variables with actual values plus errors, and8

then solving forward into (2) with Yt = (πt, yt, Rt)
′, p = 4, B1 (ϑ) = B1 (φ) , . . . , Bp (ϑ) =9

Bp (φ) and Σ (ϑ) = Σ (φ, Ω).10

From a LI perspective, (5)-(7) imply that ǫt (Y, θ) = (ǫπt (Y, θ) , ǫyt (Y, θ) , ǫRt (Y, θ))′ is11

uncorrelated with available instruments for the true θ, where Y stacks Yt, t = 1, . . . , T and12

ǫπt (Y, θ) = πt − ωfπt+1 − (1 − ωf )πt−1 − γyt , (9)13

ǫyt (Y, θ) = yt − βfyt+1 + β−1
r (Rt − πt+1) , (10)14

ǫRt (Y, θ) = Rt −

(

1 −
3
∑

j=1

ρj

)

(

γππt + γyyt

)

−
3
∑

j=1

ρjRt−j . (11)15

The predetermined variables in the system, denoted the “intra-model” instruments are:16

Żt = (πt−1, Rt−1, Rt−2, Rt−3)
′ , Z̈t = (yt−1, yt−2, yt−3, yt−4)

′ . (12)17

The information set can also be expanded using (lags of) non-modelled variables as extra18

instruments. These are grouped in a vector denoted Z̃t.19

3. Methodology20

Whereas traditional estimation methodology involves first finding a point estimate and21

its distribution, from which confidence intervals and tests are then built, we proceed here22
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in the reverse order: we start from a test procedure for different parameter values, build1

confidence regions from these, and finally get a point estimate. A confidence region with2

level 1− α is obtained by “inverting” an LI or FI identification-robust test with level α, i.e.3

a test whose level α is controlled without identification conditions. A test is “inverted” by4

finding the set of parameter values which are not rejected by the test procedure. Depending5

on circumstances, this can be done either analytically or numerically. A point estimate may6

then be obtained by picking from the confidence region the parameter value associated with7

the largest test p-value. The confidence set covers the parameter of interest with the stated8

probability (at least 1−α). Under identification failure (or weak identification), the set will9

be noninformative (possibly unbounded), as it should be [see Dufour (1997)]. The set can10

also be empty, which implies that the structural model is rejected at the considered level.11

3.1. Structural limited-information method12

In the context of (1)-(4), consider H01 : θ = θ0 (θ0 known) and the artificial regression13

ǫt (Y, θ0) = ΠZt + Vt ⇔ ǫ (θ0) = zb+ v, z = (In ⊗ Z) , (13)14

where Z is the T×k matrix of instruments with t-th row equal to Z ′
t, v is the nT -dimensional15

vector that stacks Vt, t = 1, . . . , T , b = vec(Π′) and ǫ (θ0) is the nT -dimensional vector of16

structural errors evaluated at θ0. We propose to assess H∗
01 : AiΠi = 0 ⇔ Ab = 0 where17

ǫt (Y, θ), Π, Ai and A conform with (3)-(4). A is the selection matrix with rank m (the18

total number of tested coefficients) that imposes (4). Indeed, if H01 is true, H∗
01 should hold;19

in other words, if θ0 represents the true parameter vector, then additional information from20

predetermined variables should be irrelevant.21

Because the right-hand-side regressors in (13) are not ‘endogenous’, standard statistics22

can be applied. A multivariate statistic is used whose approximate [assuming homoskedas-23
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ticity] null distribution is F (m,n(T − k)), even with weak instruments:1

W (θ0) =
n(T − k)

m

(

Ab̂ (θ0)
)′ [

A
(

Σ̂V (θ0) ⊗ (Z ′Z)−1
)

A′
]−1 (

Ab̂ (θ0)
)

(

ǫ (θ0)−zb̂ (θ0)
)′ (

Σ̂−1
V (θ0) ⊗ In

)(

ǫ (θ0)−zb̂ (θ0)
) (14)2

where b̂ (θ0) and Σ̂V (θ0) are the unrestricted OLS and covariance estimators from (13).3

The test inversion itself must be conducted numerically. One can sweep, for example,4

economically meaningful choices for θ0, and for each choice considered, compute W (θ0)5

and its p-value. The parameter vectors for which the p-values are greater than the level α6

constitute the identification-robust confidence region with level 1 − α. Confidence sets for7

each individual component of θ may then obtained by projection, i.e. by finding all values of8

the relevant component for which at least one vector in the confidence set has this component9

value. Projection-based confidence intervals (which may be wider than the previous sets) can10

also be built by finding the smallest and largest values of each parameter in the confidence11

region. More generally, for any (scalar) function g (θ), a valid confidence interval (with level12

1 − α) can be obtained by minimizing and maximizing g (θ) over the θ values included in13

the joint confidence region. Each component of θ is defined as a linear combination of θ,14

i.e. g (θ) = a′θ, where a is a conformable selection vector (consisting of zeros and ones);15

for example, ωf = (1, 0, . . . , 0) θ. The associated a′θ function is then optimized [using16

Simulated Annealing] over θ such that W (θ) < Fα(m,n(T − k)), where Fα (.) denotes the17

α-level cut-off point. For further discussion of the projection method, see Abdelkhalek and18

Dufour (1998) and Dufour and Taamouti (2005).19

Observe that
[

W = minθ0
W (θ0)

]

≥ Fα(m,n(T − k)) ⇔ W (θ0) ≥ Fα(m,n(T − k)), ∀θ0.20

So comparing W to Fα(m,n(T − k)) provides an identification-robust specification (J-type)21

test at level α. If W < Fα(m,n(T − k)), the associated confidence set is not empty.22

Expectation errors may entail serial dependence for Vt in (13) [Mavroeidis (2004)]. Using23

MacKinlay and Richardson (1991), a HAC criterion is thus considered:24

J (θ0) = T d̂′D′

[

D

(

(

Z ′Z

T

)−1

⊗ In

)

ST

(

(

Z ′Z

T

)−1

⊗ In

)

D′

]−1

Dd̂ , (15)25
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ST = Ψ0T +
l
∑

j=1

(

l − j

l

)

[

ΨjT + Ψ
′

jT

]

, ΨjT =
1

T

T
∑

t=j+1

(Zt ⊗ v̂t) (Zt−j ⊗ v̂t−j)
′ , (16)1

where d̂ corresponds to b̂ reshaped so that d = vec(Π), D corresponds to a conformable2

reshaping of A (so that Ab = 0 if and only if Dd = 0), and v̂t is the unrestricted OLS residual3

from (13). We report results for l = 4. Its approximate null distribution is χ2(m), even4

with weak instruments. The confidence region based on inverting J (θ0) can also be empty5

[when J̄ = minθ0
J (θ0) ≥ χ2

α(m)] or unbounded. J (θ0) and the continuously updated6

GMM-type objective function [Stock and Wright (2000)] are asymptotically equivalent given7

certain regularity conditions. Kleibergen and Mavroeidis (2009) recommend, under specific8

assumptions, a χ2 null distribution with degrees-of-freedoms reduced to m minus the number9

of parameters tested (here, the dimension of θ). However, recent studies [see Ray and Savin10

(2008), Gungor and Luger (2009) and Beaulieu, Dufour and Khalaf (2010)] show that system-11

based HAC criteria may severely over-reject in finite samples.12

For model (5)-(7), with Zt = (Ż ′
t, Z̈

′
t)

′ as in (12), then A1 and A3 should select all13

coefficients of the first and third equation of (13), whereas A2 should select the coefficients14

in the second equation associated with Żt. Indeed, the coefficients on the output gap lags are15

free in the output equation, and thus the exclusion of these coefficients is not tested within16

the second equation. If Zt = (Ż ′
t, Z̈

′
t, Z̃

′
t)

′, the Ai matrices should also select the coefficients17

of Z̃t for all the equations.18

3.2. Full-information method19

The method described above does not use all the restrictions entailed by a “closed”20

rational-expectation model where the information set is restricted to variables included in21

the model, so that an explicit solution can be derived. Clearly, if we accept such restrictions,22

tighter inference can be achieved. We call the method which takes into account these restric-23

tions the FI method, as opposed to the previous LI method. Given (1)-(2), H02 : ϑ = ϑ0,24
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where ϑ0 is known but restricted so that an associated rational expectation solution exists,1

can be tested by assessing H∗
02 : Π = 0 within the artificial VAR:2

Ut (Y, ϑ0) = ΠZt +Wt, (17)3

where Ut (Y, ϑ0) = Yt − B0 (ϑ0) − B1 (ϑ0) Yt−1 − · · · − Bp (ϑ0) Yt−p, and Zt includes as4

many lags of each component of Yt. When (2) holds exactly and ϑ can be partitioned5

as ϑ = (φ′, φ̄
′
)′ so that B1 (.) , . . . , Bp (.) depend on φ but not on φ̄, (2) can be written6

Yt = B0 (φ) +B1 (φ) Yt−1 + · · · +Bp (φ) Yt−p + Σ
(

φ, φ̄
)

ut, and we can focus on the partial7

hypothesis H02 : φ = φ0. This leads to the artificial VAR:8

Ut (Y, φ0) = ΠZt +Wt , (18)9

where Ut (Y, φ0) = Yt − B0 (φ0) − B1 (φ0) Yt−1 − · · · − Bp (φ0) Yt−p . This applies to model10

(5)-(7), with φ as in (8), and Zt = (Ż ′
t, Z̈

′
t)

′ as in (12): so long as Ut (Y, φ0) exists, testing for11

H∗
02 within (18) provides a test of H02. For this purpose, the LR-type multivariate statistic12

[Dufour and Khalaf (2002)] is used:13

L (φ0) =

(

µτ − 2λ

Kn

) 1 −
(

|Σ̂W (φ0) |/|Σ̂
0
W (φ0) |

)1/τ

(

|Σ̂W (φ0) |/|Σ̂
0
W (φ0) |

)1/τ
, (19)14

µ = (T −K) −
(n∗ −K + 1)

2
, λ =

n∗K − 2

4
, (20)15

τ =











[(K2n∗2 − 4)/(K2 + n∗2 − 5)]1/2 , if K2 + n∗2 − 5 > 0 ,

1 , otherwise,
(21)16

where n∗ is the dimension of Yt, K is the dimension of Zt, Σ̂0
W (φ0) and Σ̂W (φ0) give the17

constrained [imposing Π = 0] and unconstrained sum of squared errors matrices from (18).18

L (φ0) has an approximate [imposing homoskedasticity] F (Kn∗ , µτ − 2λ) null distribution19

even if identification is weak. In model (5)-(7), n∗ = 3, Zt = (Ż ′
t, Z̈

′
t)

′ so K = 8.20

The test inversion procedure is similar to that presented in the previous section, using, for21

example, a grid search over the economically meaningful values for φ, or by projection-based22
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methods. Choices for φ are restricted to ensure that the above-defined Ut (Y, φ0) exist. With1

model (5)-(7), for every candidate φ0 value, the usual existence conditions are checked using2

the Anderson and Moore algorithm. The FI confidence region thus admits the possibility of3

being unbounded or empty [when L̄ = minφ0
L (φ0) ≥ Fα(Kn , µτ − 2λ)].4

When (2) is an approximation, the VAR residuals may not be i.i.d. The magnitude of5

the discrepancy decreases with large p, though a HAC version of the test statistic could be6

used for each parameter value tested for building the confidence set.7

4. Empirical analysis8

We study model (5)-(7) as a well-known example of general structures consistent with the9

literature. This analysis is viewed as illustrative in various respects. First, (5)-(7) includes10

lags in the output and interest rate equations that are not strictly derived from New Key-11

nesian foundations. Completing a New Keynesian model requires non-theory-based choices,12

for example, the inclusion of auxiliary shocks or measurement errors, and assumptions about13

the law of motion of the shocks. Several reasonable options can be considered for this pur-14

pose, but none emerges as the ideal choice. Adding lags to justify an i.i.d. assumption on15

εt follows Linde (2005). Second, model (5)-(7) imposes no cross-equation restrictions on16

regression parameters. Since existing work provides no consensus view in this regard, our17

specification suggests a minimal set of assumptions for estimation purposes.18

Third, model (5)-(7) is a special case of (1) in which the number of structural shocks is19

equal to the number of endogenous variables. Its solution has the form (2) with B1 (ϑ) =20

B1 (φ) , . . . , Bp (ϑ) = Bp (φ), i.e. B1 (.) , . . . , Bp (.) depends on φ, the model deep parameters21

defined in (8), but does not depend on Ω. This allows one to conveniently partial Ω out in22

estimation. The solution also imposes exclusion restrictions on B1 (.) , . . . , Bp (.) so although23

p = 4, the solved model in fact includes four lags of yt, three lags of Rt and only one lag of πt.24

The same exclusion restrictions are imposed on the unrestricted benchmark VAR considered.25
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Fourth, again conforming with the above-cited literature, the solution that is empiri-1

cally maintained rules out sunspot equilibria. Our closed-model approach follows the usual2

practice of restricting parameter values, so that a unique rational expectation solution ex-3

ists. This can be quite restrictive [see, for example, King (2000) and Cochrane (2011)] and4

needs to be pointed out as it may suggest an important interpretation to an eventual model5

rejection.6

Finally, one of the criticisms routinely advanced against the considered model is that7

its parsimony implies a limited information set that may lack credibility. The intervening8

variables are the output gap, inflation, and a short-term interest rate, which implies that9

lags of these variables should suffice to adequately capture monetary policy. For modern10

economies, this is counterfactual. A more flexible setup would allow additional information,11

reflecting the data-rich environment within which policy makers operate. One way to link12

equilibrium founded structures with relevant aggregates that are not explicitly modeled is to13

consider additional instruments, referred to as “extra-model instruments”. As an illustrative14

example of external instruments, lags 2 and 3 of both wage and commodity price inflation,15

are considered, conformable with the literature.16

On balance, our illustrative framework does not depart from common practice: although17

reasonable and substantiated in published empirical works, our assumptions remain strict18

and will serve to illustrate the ability of our proposed methods to reject false models.19

Applications are conducted using U.S. quarterly data for the sample extending from20

1962Q1 to 2005Q3. The GDP deflator is used for the price level (Pt) and the Federal Funds21

rate is used as the short-run interest rate. For the output gap, two measures are considered:22

one is a real-time measure of the output gap, in the sense that the gap value at time t does23

not use information beyond that date. This ensures that the lags of the output gap are valid24

for use as instruments. Thus, as in Dufour, Khalaf and Kichian (2006, 2010), one proceeds25

iteratively: to obtain the value of the gap at time t, GDP is detrended with data ending in26
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t. The sample is then extended by one observation and the trend is re-estimated. The latter1

is used to detrend GDP, yielding a value for the gap at time t+ 1. This process is repeated2

until the end of the sample. A quadratic trend is used for this purpose. A second measure3

is the standard quadratically-detrended output gap (that uses the full sample) as in Linde4

(2005), and which is included for comparison purposes. The log of both these output gap5

series are taken. Finally, as in Linde (2005), all the data is demeaned prior to estimation.6

4.1. Substantive questions7

Three features of the New Keynesian model are assessed using (5)-(7). First, intrinsic8

inflation persistence within the NKPC is studied. Formally, we test whether values of ωf9

less than 0.5 can be ruled out, i.e. whether the NKPC is conclusively more forward-looking10

than backward-looking. The purely forward-looking case [i.e. ωf = 1] is also studied, to see11

if it can be refuted. For insights and perspectives on the importance of lagged inflation, see12

Linde (2005), Benati (2008), Fair (2008), Nason and Smith (2008), Schorfheide (2008) and13

the references therein. The question is asked whether our system approach can sharpen our14

inference on the nature of the NKPC relative to single-equation methods.15

Second, the estimated coefficients on the forcing variables in the NKPC and the output16

equation are examined. Formally, tests are conducted to see if the hypotheses γ = 0 and ,17

β−1
r = 0 can be conclusively refuted. As emphasized in Schorfheide (2010), reported estimates18

of forcing variables coefficients [specifically of the NKPC] are “fragile” across available studies19

and cover [among others] values near zero, implying that changes in demand pressures have20

no impact on inflation. In contrast with single-equation models, system-based estimation21

utilizes the information in the contemporaneous relationship between output, inflation, and22

interest rates, which may better capture the parameters describing transmission mechanisms.23

We thus ask whether more realistic predictions are achieved by our system approach relative24

to single-equation methods.25
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Third, the extent to which a system approach can recover any useful information on the1

feedback coefficients in the Taylor rule (γπ and γy) is verified. Mavroeidis (2010) reports2

identification problems for these parameters from a single-equation perspective. Fundamen-3

tal issues with such rules - arising from imposing unique rational expectation solutions when4

New Keynesian type models are brought to data - have recently been pointed out by Cochrane5

(2011). Although a sole reliance on γπ and γy to interpret such issues can be misleading,6

Cochrane (2011) provides a motivation for assessing the worth of system-based inference on7

the Taylor rule, which suggests to check whether imposing stability on the considered system8

has any empirical support.9

4.2. Results and discussion10

In what follows and unless otherwise indicated, a 5% significance level is applied in the11

discussion of inference outcomes. Our system inference produces a striking result. With12

both gap measures, the model is rejected using the FI method. The model is also rejected13

for both gap measures using the multi-equation HAC statistic, with and without external14

instruments. With our multi-equation i.i.d. LI method, an empty confidence set is obtained15

when the standard quadratically-detrended output gap is used. In contrast, the model is not16

rejected with the real-time output measure of the gap using this same statistic.17

It is worth comparing these results with those of Linde (2005). Using Monte Carlo experi-18

ments, Linde argues that FIML methods are superior to GMM-type approaches for inference19

on the structural parameters, and his estimations show that the NKPC is preponderantly20

backward-looking. Using either one of two different measures for yt yields qualitatively simi-21

lar results. Our finding is that FI actually leads us to reject the model, and furthermore, that22

the proxies used for the gap have a strong impact on LI estimations. This last conclusion23

also contrasts with Kleibergen and Mavroeidis (2009) who report that their (single-equation)24

estimates of the NKPC are empirically invariant to the gap measure.25
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One possible reason for why we obtain conflicting outcomes with the different gap mea-1

sures using the system LI statistic is the instrument validity problem discussed in Doko-2

Tchatoka and Dufour (2008) and Dufour, Khalaf and Kichian (2010): given that the stan-3

dard output gap measure is obtained using all of the sample observations, its lags may be4

correlated with time t errors. More subtle arguments can be raised on the validity of lags5

as instruments. For example, in the context of the New Keynesian model, Cochrane (2011)6

argues that the interaction of assumptions on disturbances with assumptions for determinacy7

may make lags of endogenous variables inappropriate for use as predetermined regressors.8

With regard to assumptions on disturbances, our model passes the LI test imposing i.i.d.9

regression errors and fails when serial dependence is allowed. This observation should be10

qualified: (i) spurious rejections may easily occur, for it is well known that asymptotic sys-11

tem HAC-based tests tend to be oversized; (ii) the lag structure adopted to justify i.i.d.12

errors is quite restrictive. Results without HAC remain more restrictive in the sense that13

they rule out MA errors and heteroskedasticity, so there is a trade-off between robustness14

and finite-sample accuracy. Perhaps more to the point is our model rejection with the FI15

statistic, because FI is based on a solution that imposes more than just model consistency:16

it imposes determinacy as well, and that may be an important factor driving the rejection.17

We do not claim that we formally test determinacy. Our FI rejection may also be linked to18

the usual culprits, i.e. it, may have more to do with unsuitable exogenous driving processes19

than with the credibility of the New Keynesian model itself. Although related with regard20

to their econometric implications on regression errors, the problems arising from ill-fitted21

shock processes and determinacy are fundamentally different. One can always add lag-length22

restrictions as approximations, yet a unique and stable rational expectation solution may23

require stronger assumptions. The LI method is applied maintaining the same lag-length24

restrictions on disturbances as the FI one; in contrast with FI, this gives the model a chance25

of passing the tests, which is interesting to notice.26
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One may object at any further analysis based on the considered structure when its un-1

derlying equilibrium restrictions are empirically unsubstantiated. There is an active debate2

on the right specification of the New Keynesian model, so despite a rejection with FI, we3

proceed with our interpretation of (5)-(7) as an incomplete structure. Table 1 reports pa-4

rameter estimates and associated identification-robust projections for the elements of θ, for5

the cases where the model is not rejected, i.e. with the real-time gap, and using our LI6

method. Tables 2 and 3 report confidence intervals based on single-equation identification-7

robust methods [used in Dufour, Khalaf and Kichian (2006, 2010) and Mavroeidis (2010)]8

which impose the structural constraints of each equation [Table 2], as well as the completely9

unconstrained method proposed by Dufour and Taamouti (2005) [Table 3].10

The point estimates in Table 1 appear compatible with the literature on models estimated11

using the real-time gap. In particular, the coefficient on the expected inflation term of the12

NKPC is high, indicating forward-looking behavior. This conclusion was also reached by13

Gali, Gertler and Lopez-Salido (2005), Sbordone (2005), and Smets and Wouters (2007).14

Similarly, the coefficients of the Taylor Rule are not far from the numbers that Taylor (1993)15

had suggested and what other studies have found for the post-Volcker era (see, for instance,16

Clarida, Gali and Gertler (2000)).17

Point estimates do not change much whether the full instrument set or the model-18

consistent instrument subset are used. However, outcomes are subtly different when the19

sensitivity of the confidence intervals is assessed relative to the information set. In particu-20

lar, it can be ascertained that the NKPC is forward-looking irrespective of the instrument21

set [values of ωf below 0.5 are rejected], whereas values near one for ωf and less than one for22

γπ are ruled out by the full set of instruments but cannot be rejected by the model-consistent23

instrument subset. This observation also holds when multi-equation estimates are contrasted24

with single-equation ones, especially for ωf .25

The confidence intervals in Table 2 suggest that, when cross-equation information is26
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not accounted for, the model-consistent instruments are weakly informative on the NKPC1

relative to the expanded instrument set. While the confidence intervals for ωf become2

much tighter when the instruments set is expanded and the i.i.d. assumption is relaxed,3

in contrast with our multi-equation based results, the pure forward-looking case [ωf = 1]4

cannot be rejected. It is also worth noting from Table 3 that the unrestricted confidence5

intervals for the forward-looking coefficient in the NKPC, treated as a reduced form [i.e.6

when the restriction that the forward and backward-looking terms sum up to one is relaxed],7

covers values exceeding one. Values less than 0.5 cannot be ruled out by the single-equation8

results, except with the HAC statistic and the standard gap measure (with which we rejected9

the model from a system-based LI perspective). Aside from this exception, single-equation10

confidence intervals on the NKPC are much more sensitive to changes in the information set11

than to changes in the gap measure.12

Again from Table 2, single-equation estimation of the output equation produces empty13

sets whether structural restrictions are imposed or not, whether the i.i.d. assumption on14

errors is imposed or not, and with both gap measures. The Taylor rule is rejected under15

all single-equation assumptions with the standard gap measure. With the real-time gap16

measure, support for the rule seems more fragile, in the sense that results vary dramatically17

with different instruments and assumptions. For example, with model consistent instru-18

ments, confidence intervals for γπ and γy imposing and relaxing i.i.d. disturbances are wide19

suggesting the same identification difficulties documented by Mavroeidis (2010). In con-20

trast, expanding the instrument sets leads to rejecting the equation except with an i.i.d.21

disturbance, in which case we again find wide confidence sets revealing weak identification.22

Focusing on the results with the real-time output measure, two points deserve notice when23

single-equation evidence is contrasted with our LI multi-equation inference. First, despite24

their imperfections when considered on their own as single equations, including both output25

and interest rate equations in the system sharpens our inference on the NKPC. In contrast26
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with single-equation methods, system-based estimation reveals useful information on ωf : the1

NKPC is conclusively more forward than backward-looking, and the pure forward-looking2

case can be ruled out. Such a conclusion cannot be reached with a single-equation approach.3

Second, our LI system inference is quite informative for the interest rate equation. In4

contrast with the high estimate uncertainty that was found with our single-equation ap-5

proaches, LI system-based confidence intervals on γπ and γy are tightly centered around6

values compatible with Taylor (1993), especially particularly when an expanded instrument7

set is used. We do not claim that ruling out estimation uncertainty on γπ and γy evacuates8

the deep interpretation issues [see King (2000) and Cochrane (2011)] associated with these9

parameters within a New Keynesian reaction function. Nevertheless, our LI method allows10

cross-equation variables to interact contemporaneously with minimal assumptions on the11

underlying dynamics, which delivers precise estimates of feedback coefficients which appear12

compatible with the Taylor principle. Such a conclusion, again, cannot be reached with a13

single-equation approach.14

Another important observation is the insignificance [when the model is not rejected] at15

the 5% level of the parameter on the output gap coefficient in the NKPC. The value of16

the parameter on the real interest rate in the output equation is also found to be quite17

small, often hitting the lower bound of 0.03 (more precisely, the elasticity of intertemporal18

substitution hits the maximal value of 30.00 allowed in the estimation). This confirms the19

findings of Rudd and Whelan (2006) and Benati (2008).20

While not uncommon, insignificant forcing variables in the NKPC and IS are an empirical21

puzzle. So far, available identification-robust evidence on this issue is restricted to the22

NKPC. Kleibergen and Mavroeidis (2009) apply partialled-out single-equation tests, which23

under specific conditions [for example, assuming that all relevant instruments are used] may24

provide more powerful tests than projection-based methods, and yet cannot rule out a flat25

NKPC even with such statistics. We are however not sure of the appropriateness of these26
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statistics given our sample size; it can be verified that the simulation study reported by1

Kleibergen and Mavroeidis (2009) uses a sample size of 1000 observations. Magnusson and2

Mavroeidis (2010) also confirm this finding using the labor share, and an identification-robust3

minimum distance estimation method based on a reduced-form VAR process for πt and yt.4

This result is noteworthy because the authors document, through an empirically relevant5

simulation study, that their reliance on an underlying VAR provides more powerful inference6

than standard single-equation GMM, which still does not address the puzzle. Our study7

adds credible structure to such a multi-equation analysis and yields a similar outcome. The8

same puzzle is also found to plague the IS equation.9

While all issues raised by Schorfheide (2010) can drive such findings, two possible in-10

terpretations may be suggested. First, it is indeed the case that the NKPC and the IS11

equations are flat with respect to the forcing variables, which is a dilemma that challenges12

theory. Second, the model transmission mechanism is incomplete or misspecified, so forward13

and backward-looking terms in the NKPC and the IS curve still absorb all information in14

the data, even when the modeled variables are allowed to interact contemporaneously across15

equations. Using single-equation methods, no empirical support was found for the output16

equation and there was very weak support of the interest rate equation, which lends cred-17

ibility to the second interpretation. Our FI test suggests that the overall empirical model18

lacks support, which may be a plausible - although radical - resolution of this dilemma.19

Our results can be summarized as follows. Results with FI are negative, establishing20

that one popular empirical specification lacks support. In contrast, as our LI results suggest,21

there is still sufficient statistical information in the sample to learn something useful on the22

nature of the NKPC, as well as the feedback terms in the Taylor rule regression. The model23

fares better when stability restrictions are relaxed, yet one important puzzle remains with the24

insignificance of forcing variables in the NKPC and IS curves. This [along with our rejection25

with FI] may be interpreted as a challenge to a popular theory. Since our specification26
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is illustrative in various dimensions, we prefer to interpret our results as a motivation for1

further methodological improvements.2

5. Conclusion3

One can always add assumptions to complete models, as often occurs when models in-4

cluding popular DSGE specifications are taken to data. The existence of a unique and stable5

rational expectation solution is one key ingredient in this literature. Choices - that can have6

a substantial impact on subsequent inference - regarding underlying shock processes and7

observables are other examples of enduring concerns. But it must be asked whether such8

assumptions are unduly strict, for the case can often be made that some are way more re-9

strictive than economic theory requires. We contribute, via a concrete prototypical example10

based on the New Keynesian model, to this debate.11

On the methodology side, this paper proposed econometric tools that can control statis-12

tical error whether the model is complete or not, whether all or a subset of model equations13

are involved, and whether the latter are statistically identified or not. Our FI methods are14

not restricted to the model studied here and are sufficiently general to cover any structure15

that can be solved into an approximated VAR in observables. Our LI methods are even more16

general, requiring orthogonality conditions akin to GMM.17

The approaches proposed in this paper also contribute to the literature on the New18

Keynesian model. A standard three-equation model encompassing an NKPC, an IS curve19

and a Taylor rule, is estimated for the United States from 1962Q1 to 2005Q3. We impose20

and relax the assumption of closed rational expectation model, maintaining similar lag-21

restrictions on regression disturbances in both cases. In the latter case, single- and multi-22

equation estimation and fit are compared. When a unique equilibrium is imposed to complete23

the model, it is rejected by the data. In contrast, our LI method helps recover important24

information on structural parameters that cannot be reached via single-equation methods.25
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A key puzzling ingredient remains regarding the forcing variables in the NKPC and the1

IS curve. Nevertheless, the LI method generates realistic conclusions on the nature of the2

NKPC, and yields precise estimates of feedback coefficients, which are consistent with the3

Taylor principle. These results suggest that the unique rational expectation assumption is4

unduly restrictive for the model studied.5

More broadly, two possible uses are envisioned for our proposed procedures. First, our6

FI method is useful in that it provides a built-in check for whether complete modeling7

assumptions are counterfactual. While FI approaches may be preferred by adept model8

builders, complete statistical assumptions can be easier to reject, which may be unwarranted.9

Again, one can learn from our FI checks on how to overcome deficiencies in structures that10

lack fit. Second, our LI method is useful in that it can utilize cross-equation information on11

the variables with as few restrictions as possible, which may have much more to tell about12

a model than its single-equation counterparts when FI assumptions must be relaxed.13
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Table 1. Multi-equation inference - Real-time output gap

Equation Coefficient Model-Consistent Instruments All Instruments
NKPC ωf 0.781 0.748

[0.577, 0.951] [0.657, 0.848]
γ 0.002 −0.011

[−0.016, 0.015] [−0.028, 0.005]
Output βf 0.373 0.471

[0.233, 0.456] [0.385, 0.556]
βr 28.57 30.0

[25.91, 30.0] [24.591, 30.0]
Taylor Rule γπ 1.296 1.326

[0.957, 1.578] [1.126, 1.560]
γy 0.417 0.417

[0.281, 0.512] [0.313, 0.544]
ρ1 1.042 1.064

[1.009, 1.154] [1.002, 1.125]
ρ2 −0.357 −0.424

[−0.533,−0.312] [−0.511,−0.337]
ρ3 0.207 0.248

[0.168, 0.312] [0.190, 0.305]
minθ0

W (θ0) 1.537 1.445
p-value 0.064 0.057

Note: The estimated model is (5)-(7), with the real-time output gap measure. Estimation
applies the limited information method presented in section 3.1.
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Table 2: Single equation structure-restricted confidence sets

Inflation equation; intra-model instruments
Coefficient Standard gap Real-time gap

iid -GAR GAR-HAC iid -GAR GAR-HAC
ωf [0.200, 1.0] [0.510, 1.0] [0.045, 1.0] [0.470, 1.0]
γ [−0.100, 0.050] [−0.070, 0.010] [−0.095, 0.055] [−0.050, 0.015]

Inflation equation; all instruments
Standard gap Real-time gap

iid -GAR GAR-HAC iid -GAR GAR-HAC
ωf [0.315, 1.0] [0.440, 1.0] [0.310, 1.0] [0.455, 1.0]
γ [−0.10, 0.055] [−0.055, 0.010] [−0.09, 0.060] [−0.040, 0.015]

Output equation; intra-model instruments
Standard gap Real-time gap

iid -GAR GAR-HAC iid -GAR GAR-HAC
βf ∅ ∅ ∅ ∅
βr ∅ ∅ ∅ ∅

Output equation; all instruments
Standard gap Real-time gap

iid -GAR GAR-HAC iid -GAR GAR-HAC
βf ∅ ∅ ∅ ∅
βr ∅ ∅ ∅ ∅

Taylor rule; intra-model instruments
Standard gap Real-time gap

iid -GAR GAR-HAC iid -GAR GAR-HAC
γπ ∅ ∅ [0.700, 1.950] [0.700, 1.950]
γy ∅ ∅ [0.050, 0.950] [0.000, 0.950]

Taylor rule; all instruments
Standard gap Real-time gap

iid -GAR GAR-HAC iid -GAR GAR-HAC
γπ ∅ ∅ [0.700, 1.950] ∅
γy ∅ ∅ [0.050, 0.950] ∅

Note: The model is (5)-(7), estimated equation by equation, ignoring contemporaneous cor-
relation of disturbances. GAR refers to single-equation generalized Anderson-Rubin method,
which applies, equation by equation, the same inference approach as the limited information
presented in section 3.1.
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Table 3: Single equation reduced-form confidence sets

Inflation equation
Intra-model instruments All instruments

Coefficient of Standard Gap Real-time Gap Standard Gap Real-Time gap
Etπt+1 [0.892, 1.379] [0.866, 1.440] [0.891, 1.230] [0.865, 1.191]
yt [−0.137, 0.026] [−0.095, 0.082] [−0.115, 0.026] [−0.090, 0.054]

Output Equation
Intra-model instruments All instruments

Standard Gap Real-time Gap Standard Gap Real-Time gap
Etyt+1 ∅ ∅ ∅ ∅

Rt − Etπt+1 ∅ ∅ ∅ ∅

Taylor rule
Intra-model instruments All instruments

Standard gap Real-time gap Standard gap Real-time gap
πt ∅ [0.062, 0.234] ∅ [0.100, 0.197]
Rt ∅ [0.016, 0.079] ∅ [0.028, 0.065]

Note: The model is (5)-(7), estimated equation by equation, ignoring contemporaneous
correlation of disturbances and relaxing within-equation restriction. Confidence intervals
apply the unrestricted projection method from Dufour and Taamouti (2005).


