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ABSTRACT

A wide range of tests for heteroskedasticity have been proposed in the econometric and statistics
literatures. Although a few exact homoskedasticity tests are available, the commonly employed
procedures are generally based on asymptotic approximations which may not provide good size
control in finite samples. There has been a number of recent studies that seek to improve the
reliability of common heteroskedasticity tests using Edgeworth, Bartlett, jackknife and bootstrap
methods. Yet the latter remain approximate. In this paper, we describe a solution to the prob-
lem of controlling the size of homoskedasticity tests in linear regressions. We study procedures
based on the standard test statistics [e.g., the Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley,
Breusch-Pagan-Godfrey, White and Szroeter criteria] as well as tests for autoregressive conditional
heteroskedasticity (ARCH-type models). We also suggest several extensions of the existing proce-
dures (sup-type or combined test statistics) to allow for unknown breakpoints in the error variance.
We exploit the technique of Monte Carlo tests to obtain provably exact p-values, for both the stan-
dard and the new tests suggested. We show that the MC test procedure conveniently solves the
intractable null distribution problem, in particular those raised by sup-type and combined test statis-
tics as well as (when relevant) unidentified nuisance parameter problems under the null hypothesis.
The method proposed works in exactly the same way with both Gaussian and non-Gaussian distur-
bance distributions [such as heavy-tailed or stable distributions]. The performance of the procedures
is examined by simulation. The Monte Carlo experiments conducted focus on: (1) ARCH, GARCH
and ARCH-in-mean alternatives; (2) the case where the variance increases monotonically with:
(i) one exogenous variable, and (ii) the mean of the dependent variable; (3) grouped heteroskedas-
ticity; (4) breaks in variance at unknown points. We find that the proposed tests achieve perfect size
control and have good power.

Key words: heteroskedasticity; homoskedasticity; linear regression; Monte Carlo test; exact test;
finite-sample test; specification test; ARCH; GARCH; ARCH in mean; stable distribution; structural
stability.
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RÉSUMÉ

Un grand éventail de tests d’hétéroskédasticité a été proposé en économétrie et en statistique. Bien
qu’il existe quelques tests d’homoskédasticité exacts, les procédures couramment utilisées sont
généralement fondées sur des approximations asymptotiques qui ne procurent pas un bon contrôle
du niveau dans les échantillons finis. Plusieurs études récentes ont tenté d’améliorer la fiabilité des
tests d’hétéroskédasticité usuels, sur base de méthodes de type Edgeworth, Bartlett, jackknife et
bootstrap. Cependant, ces méthodes demeurent approximatives. Dans cet article, nous décrivons
une solution au problème de contrôle du niveau des tests d’homoskédasticité dans les modèles de
régression linéaire. Nous étudions des procédures basées sur les critères de test standards [e.g., les
critères de Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley, Breusch-Pagan-Godfrey, White et
Szroeter], de même que des tests pour l’hétéroskédasticité autorégressive conditionnelle (les mod-
èles de type ARCH). Nous suggérons plusieurs extensions des procédures usuelles (les statistiques
de type-sup ou combinées) pour tenir compte de points de ruptures inconnus dans la variance des
erreurs. Nous appliquons la technique des tests de Monte Carlo (MC) de façon à obtenir des seuils
de signification marginaux (les valeurs-p) exacts, pour les test usuels et les nouveaux tests que
nous proposons. Nous démontrons que la procédure de MC permet de résoudre les problèmes des
distributions compliquées sous l’hypothèse nulle, en particulier ceux associés aux statistiques de
type-sup, aux statistiques combinées et aux paramètres de nuisance non-identifiés sous l’hypothèse
nulle. La méthode proposée fonctionne exactement de la même manière en présence de lois Gaussi-
ennes et non-Gaussiennes [comme par exemple les lois aux queues épaisses ou les lois stables].
Nous évaluons la performance des procédures proposées par simulation. Les expériences de Monte
Carlo que nous effectuons portent sur: (1) les alternatives de type ARCH, GARCH and ARCH-en-
moyenne; (2) le cas où la variance augmente de manière monotone en fonction: (i) d’une variable
exogène, et (ii) de la moyenne de la variable dépendante; (3) l’hétéroskédasticité groupée; (4) les
ruptures en variance à des points inconnus. Nos résultats montrent que les tests proposés permettent
de contrôler parfaitement le niveau et ont une bonne puissance.

Mots Clé: hétéroskédasticité; homoskédasticité; régression linéaire; test de Monte Carlo; test exact;
test valide en échantillon fini; test de spécification; ARCH; GARCH; ARCH-en-moyenne; distribu-
tion stable; stabilité structurelle.
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1. Introduction

Detecting and making adjustments for the presence of heteroskedasticity in the disturbances of sta-
tistical models is one of the fundamental problems of econometric methodology. We study the
problem of testing the homoskedasticity of linear regression disturbances, under parametric (pos-
sibly non-Gaussian) distributional assumptions, against a wide range of alternatives, especially in
view of obtaining more reliable or more powerful procedures. The heteroskedastic schemes we
consider include random volatility models, such as ARCH and GARCH error structures, variances
which are functions of exogenous variables, as well as discrete breaks at (possibly unknown) points.

The statistical and econometric literatures on testing for heteroskedasticity are quite extensive.1

In linear regression contexts, the most popular procedures include the Goldfeld-Quandt F -test
[Goldfeld and Quandt (1965)], Glejser’s regression-type tests [Glejser (1969)], Ramsey’s versions
of the Bartlett (1937) test [Ramsey (1969)], the Breusch-Pagan-Godfrey Lagrange multiplier (LM)
test [Godfrey (1978), Breusch and Pagan (1979)], White’s general test [White (1980)], Koenker’s
studentized test [Koenker (1981)], and Cochran-Hartley-type tests against grouped heteroskedas-
ticity [Cochran (1941), Hartley (1950), Rivest (1986)]; see the literature survey results in Table
1.2

The above methods do not usually take variances as nuisance parameters that must be taken into
account (and eventually eliminated) when making inference on other model parameters (such as
regression coefficients). More recently, in time series contexts and especially financial data analysis,
the modeling of variances (volatilities) as a stochastic process has come to be viewed also as an
important aspect of data analysis, leading to the current popularity of ARCH, GARCH and other
similar models.3 As a result, detecting the presence of conditional stochastic heteroskedasticity has
become an important issue, and a number of tests against the presence of such effects have been
proposed; see Engle (1982), Lee and King (1993), Bera and Ra (1995) and Hong and Shehadeh
(1999).

Despite the large spectrum of tests available, the vast majority of the proposed procedures are
based on large-sample approximations, even when it is assumed that the disturbances are inde-
pendent and identically distributed (i.i.d.) with a normal distribution under the null hypothesis.
So there has been a number of recent studies that seek to improve the finite-sample reliability of
commonly used homoskedasticity tests. In particular, Honda (1988) and Cribari-Neto and Ferrari
(1995) derived Edgeworth and Bartlett modifications for the Breusch-Pagan-Godfrey criteria, while
Cribari-Neto and Zarkos (1999) proposed bootstrap versions of the latter procedures. Tests based
on the jackknife method have also been considered; see Giaccotto and Sharma (1988) and Sharma
and Giaccotto (1991).4

1For reviews, the reader may consult Godfrey (1988), Pagan and Pak (1993) and Davidson and MacKinnon (1993,
Chapters 11 and 16).

2Other proposed methods include likelihood (LR) tests against specific alternatives [see, for example, Harvey (1976),
Buse (1984), Maekawa (1988) or Binkley (1992)] and “robust procedures”, such as the Goldfeld and Quandt (1965) peak
test and the procedures suggested by Bickel (1978), Koenker and Bassett (1982) and Newey and Powell (1987).

3See Engle (1982, 1995), Engle, Hendry and Trumble (1985), Bollerslev, Engle and Nelson (1994), LeRoy (1996),
Palm (1996), and Gouriéroux (1997).

4In a multi-equations framework, Bewley and Theil (1987) suggested a simulation-based test for a particular testing
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Table 1. Survey of empirical literature on the use of heteroskedasticity tests

Heteroskedasticity test used Literature Share

Tests for ARCH and GARCH effects 25.3%
Breusch-Pagan-Godfrey-Koenker 20.9%
White’s test 11.3%
Goldfeld-Quandt 6.6%
Glejser’s test 2.9%
Hartley’s test 0.3%
Other tests 1.9%
Use of heteroskedasticity consistent standard errors 30.3%

Note _ This survey is based on 379 papers published in The Journal of Business and Economic Statistics, The Journal

of Applied Econometrics, Applied Economics, the Canadian Journal of Economics, Economics Letters, over the period

1980 -1997. These results were generously provided by Judith Giles.

A limited number of provably exact heteroskedasticity tests, for which the level can be con-
trolled for any given sample size, have been suggested. These include: (1) the familiar Goldfeld-
Quandt F -test and its extensions based on BLUS [Theil (1971)] and recursive residuals [Harvey
and Phillips (1974)], which are built against a very specific (two-regime) alternative; (2) a number
of procedures in the class introduced by Szroeter (1978), which also include Goldfeld-Quandt-type
tests as a special case [see Harrison and McCabe (1979), Harrison (1980, 1981, 1982), King (1981)
and Evans and King (1985a)]; (3) the procedures proposed by Evans and King (1985b) and Mc-
Cabe (1986). All these tests are specifically designed to apply under the assumption that regression
disturbances are independent and identically distributed (i.i.d.) according to a normal distribution
under the null hypothesis. Further, except for the Goldfeld-Quandt procedure, these tests require
techniques for computing the distributions of general quadratic forms in normal variables such as
the Imhof (1961) method, and they are seldom used (see Table 1).

Several studies compare various heteroskedasticity tests from the reliability and power view-
points.5 In addition, most of the references cited above include Monte Carlo evidence on the relative
performance of various tests. The main findings that emerge from these studies are the following:
(i) no single test has the greatest power against all alternatives; (ii) tests based on OLS residuals per-
form best; (iii) the actual level of asymptotically justified tests is often quite far from the nominal
level: some are over-sized [see, for example, Honda (1988), Ali and Giaccotto (1984) and Binkley
(1992)], while others are heavily under-sized, leading to important power losses [see Lee and King
(1993), Evans (1992), Honda (1988), Griffiths and Surekha (1986), and Binkley (1992)]; (iv) the
incidence of inconclusiveness is high among the bounds tests; (v) the exact tests compare favorably
with asymptotic tests but can be quite difficult to implement in practice. Of course, these conclu-
sions may be influenced by the special assumptions and simulation designs that were considered.

problem; however, they did not supply a distributional theory, either exact or asymptotic.
5See, for example, Ali and Giaccotto (1984), Buse (1984), MacKinnon and White (1985), Griffiths and Surekha

(1986), Farebrother (1987), Evans (1992), Godfrey (1996), and, in connection with GARCH tests, Engle et al. (1985),
Lee and King (1993), Sullivan and Giles (1995), Bera and Ra (1995) and Lumsdaine (1995).
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In this paper, we describe a general solution to the problem of controlling the size of ho-
moskedasticity tests in linear regressions. We exploit the technique of Monte Carlo (MC) tests
[Dwass (1957), Barnard (1963), Jöckel (1986), Dufour and Kiviet (1996, 1998)] to obtain prov-
ably exact randomized analogues of the tests considered. This simulation-based procedure yields
an exact test whenever the distribution of the test statistic does not depend on unknown nuisance
parameters (i.e., it is pivotal) under the null hypothesis. The fact that the relevant analytical distribu-
tions are quite complicated is not a problem: all we need is the possibility of simulating the relevant
test statistic under the null hypothesis. In particular, this covers many cases where the finite-sample
distribution of the test statistic is intractable or involves parameters which are unidentified under the
null hypothesis, as occurs in the problems studied by Davies (1977, 1987), Andrews and Ploberger
(1995), Hansen (1996) and Andrews (2001). Further the method allows one to consider any error
distribution (Gaussian or non-Gaussian) that can be simulated.

This paper makes five main contributions to the theory of regression based homoskedasticity
tests. First, we show that all the standard homoskedasticity test statistics considered [including a
large class of residual-based tests studied from an asymptotic viewpoint by Pagan and Hall (1983)]
are pivotal in finite samples, hence allowing the construction of finite-sample MC versions of these.6

In this way, the size of many popular asymptotic procedures, such as the Breusch-Pagan-Godfrey,
White, Glejser, Bartlett, and Cochran-Hartley-type tests, can be perfectly controlled for any para-
metric error distribution (Gaussian or non-Gaussian) specified up to an unknown scale parameter.

Second, we extend the tests for which a finite-sample theory has been supplied for Gaussian dis-
tributions, such as the Goldfeld-Quandt and various Szroeter-type tests, to allow for non-Gaussian
distributions. In this context, we show that various bounds procedures that were proposed to deal
with intractable finite-sample distributions [e.g., by Szroeter (1978), King (1981) and McCabe
(1986)] can be avoided altogether in this way.

Third, our results cover the important problem of testing for ARCH, GARCH and ARCH-M
effects. In this case, MC tests provide finite-sample homoskedasticity tests against standard ARCH-
type alternatives where the noise that drives the ARCH process is i.i.d. Gaussian, and allow one to
deal in a similar way with non-Gaussian disturbances. In non-standard test problems, such as the
ARCH-M case, we observe that the MC procedure circumvents the unidentified nuisance parameter
problem.

Fourth, due to the convenience of MC test methods, we define a number of new test statistics
and show how they can be implemented. These include: (1) combined Breusch-Pagan-Godfrey tests
against a break in the variance at an unknown point; (2) combined Goldfeld-Quandt tests against a
variance break at an unspecified point, based on the minimum (sup-type) or the product of individual
p-values; (3) extensions of the classic Cochran (1941) and Hartley (1950) tests, against grouped
heteroskedasticity, to the regression framework using pooled regression residuals. Although the
null distributions of many of these tests may be quite difficult to establish in finite samples and even
asymptotically, we show that the tests can easily be implemented as finite-sample MC tests.7

6For the case of the Breusch-Pagan test, the fact that the test statistic follows a null distribution free of nuisance
parameters has been pointed out by Breusch and Pagan (1979) and Pagan and Pak (1993), although no proof is provided
by them. The results given here provide a rigorous justification and considerably extend this important observation.

7For example, the combined test procedures proposed here provide solutions to a number of change-point problems.
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Fifth, we reconsider the notion of “robustness to estimation effects” [see Godfrey (1996, section
2)] to assess the validity of residual-based homoskedasticity tests. In principle, a test is considered
robust to estimation effects if the underlying asymptotic distribution is the same irrespective of
whether disturbances or residuals are used to construct the test statistic. Our approach to residual-
based tests departs from this asymptotic framework. Indeed, since the test criteria considered are
pivotal under the null hypothesis, our proposed MC tests will achieve size control for any sample
size, even with non-normal errors, whenever the error distribution is specified up to an unknown
scale parameter. Therefore, the adjustments proposed by Godfrey (1996) or Koenker (1981) are not
necessary for controlling size.

The paper makes several further contributions relevant to empirical work. Indeed, we con-
duct simulation experiments [modelled after several studies cited above including: Honda (1988),
Binkley (1992), Godfrey (1996), Bera and Ra (1995) and Lumsdaine (1995)] which suggest new
guidelines for practitioners. Our results first indicate that the MC versions of the popular tests typ-
ically have superior size and power properties, which motivates their use particularly in ARCH or
break-in-variance contexts. Second, whereas practitioners seem to favor Breusch-Pagan-Godfrey
type tests, Szroeter-type tests clearly emerge as a better choice (in terms of power). In the same
vein, our proposed variants of Hartley’s test – although the latter test is not popular in econometric
applications – appear preferable to the standard LR-type tests (in terms of power versus application
ease). We also provide guidelines regarding the number of MC replications.

The paper is organized as follows. Section 2 sets the statistical framework and section 3 defines
the test criteria considered. In section 4, we present finite sample distributional results and describe
the Monte Carlo test procedure. In section 5, we report the results of the Monte Carlo experiments.
Section 6 concludes.

2. Framework

We consider the linear model

yt = x′
tβ + ut , (2.1)

ut = σtεt , t = 1, . . . , T, (2.2)

where xt = (xt1, xt2, . . . , xtk)′, X ≡ [x1, . . . , xT ]′ is a full-column rank T × k matrix,
β = (β1, . . . , βk)′ is a k × 1 vector of unknown coefficients, σ1, . . . , σT are (possibly random)
scale parameters, and

ε = (ε1, . . . , εT )′ is a random vector with a completely specified

continuous distribution conditional on X . (2.3)

For further discussion of the related distributional issues, the reader may consult Shaban (1980), Andrews (1993) and
Hansen (2000)]

4



Clearly the case where the disturbances are normally distributed is included as a special case. We
are concerned with the problem of testing the null hypothesis

H0 : σ2
t = σ2, t = 1, . . . , T, for some σ, (2.4)

against the alternative HA : σ2
t �= σ2

s, for at least one value of t and s. More precisely, we consider
the problem of testing the hypothesis that the observations were generated by a data generating
process (DGP) which satisfies the assumptions (2.1) - (2.4).

The hypothesis defined by (2.1) - (2.4) does not preclude dependence nor heterogeneity among
the components of ε. No further regularity assumptions are assumed, including the existence of the
moments of ε1, . . . , εT . So we can consider heavy-tailed distributions such as stable or Cauchy, in
which case it makes more sense to view tests of H0 as tests of scale homogeneity. So in most cases
of practical interest, one would further restrict the distribution of ε, for example by assuming that
the elements of ε are independent and identically distributed (i.i.d.), i.e.

ε1, . . . , εT are i.i.d. according to some given distribution F0 , (2.5)

which entails that u1, . . . , uT are i.i.d. with distribution function P[ut ≤ v] = F0(v/σ) under H0.
In particular, it is quite common to assume that

ε1, . . . , εT
i.i.d.
∼ N [0, 1] , (2.6)

which entails that u1, . . . , uT are i.i.d. N [0, σ2] under H0. However, as shown in section 4, the
normality assumption is not needed for several of our results; in particular, it is not at all required
for the validity of MC tests for general hypotheses of the form (2.1) - (2.4), hence, a fortiori, if (2.4)
is replaced by the stronger assumption (2.5) or (2.6).

We shall focus on the following special cases of heteroskedasticity (HA), namely:

H1 : GARCH and ARCH-M alternatives;

H2 : σ2
t increases monotonically with one exogenous variable (x1, . . . , xT )′;

H3 : σ2
t increases monotonically with E(yt);

H4 : σ2
t is the same within p subsets of the data but differs across the subsets; the latter specification

is frequently termed grouped heteroskedasticity.

Note that H4 may include the hypothesis that the variance changes discretely at some (specified)
point in time. We also propose exact tests for a structural break in the variance at unknown points.
In most cases, the tests considered are ordinary least squares (OLS) based. For further reference,
let:

σ̂2 = û′û/T , û = (û1, . . . , ûT )′ = y − Xβ̂ , β̂ = (X ′X)−1X ′y . (2.7)

3. Test statistics

The tests we shall study, which include existing and new procedures, can be conveniently classified
in three (not mutually exclusive) categories: (i) the general class of tests based on an auxiliary re-
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gression involving OLS residuals and some vector of explanatory variables zt for the error variance;
(ii) tests against ARCH-type alternatives; (iii) tests against grouped heteroskedasticity. Unless stated
otherwise, we shall assume in this section that (2.6) holds, even though the asymptotic distributional
theory for several of the proposed procedures can be obtained under weaker assumptions.

3.1. Tests based on auxiliary regressions

3.1.1. Standard auxiliary regression tests

To introduce these tests in their simplest form [see Pagan and Hall (1983)], consider the following
auxiliary regressions:

û2
t = z′tα + wt, t = 1, . . . , T, (3.1)

û2
t − σ̂2 = z′tα + wt, t = 1, . . . , T, (3.2)

|ût| = z′tα + wt, t = 1, . . . , T, (3.3)

where zt = (1, zt2, . . . , ztm)′ is a vector of m fixed regressors on which σt may depend, α =
(α1, . . . , αm)′ and wt, t = 1, . . . , T, are treated as error terms. The Breusch-Pagan-Godfrey
(BPG) LM criterion [Breusch and Pagan (1979), Godfrey (1978)] may be obtained as the explained
sum of squares (ESS) from the regression associated with (3.2) divided by 2σ̂4. The Koenker (K)
test statistic [Koenker (1981)] is T times the centered R2 from regression (3.1). White’s (W ) test
statistic is T times the centered R2 from regression (3.1) using for zt the r × 1 observations on
the non redundant variables in the vector xt ⊗ xt. These tests can be derived as LM-type tests
against alternatives of the form HA : σ2

t = g(z′tα) where g(·) is a twice differentiable function.
Under H0 and standard asymptotic regularity conditions, BPG

asy� χ2(m − 1), K
asy� χ2(m − 1),

W
asy� χ2(r − 1), where the symbol

asy� indicates that the test statistic is asymptotically distributed
as indicated (under H0 as T → ∞). The standard F statistic to test α2 = · · · = αm = 0 in the
context of (3.3) yields the Glejser (G) test [Glejser (1969)]. Again, under H0 and standard regularity
conditions, (T − k)G

asy� χ2(m − 1). Below, we shall also consider F (m − 1, T − k) distribution
as an approximation to the null distribution of this statistic. Honda (1988) has also suggested a
size-correction formula [based on a general expansion given by Harris (1985)] for the BPG test.
White’s test was designed against the general alternative HA. The above version of the Glejser test
is valid for the special case where the variance is proportional to z′tα.

In section 4, we describe a general solution to the problem of controlling the size of these tests.
Our analysis further leads to two new results. First, in the context of the G test, Godfrey (1996) has
recently shown that, unless the error distribution is symmetric, the test is deficient in the following
sense. The residual-based test is not asymptotically equivalent to a conformable χ2 test based on
the true errors. Therefore, the G test may not achieve size control. We will show below that this
difficulty is circumvented by our proposed MC version of the test. Second, we argue that from a MC
test perspective, choosing the Koenker statistic rather than the BPG has no effect on size control.
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3.1.2. Auxiliary regression tests against an unknown variance breakpoint

Tests against discrete breaks in variance at some specified date τ may be applied in the above
framework by defining zt as a dummy variable of the form zt = zt(τ ), where

zt(τ) =
{

0, if t ≤ τ ,
1, if t > τ .

(3.4)

Typically, if the break-date τ is left unspecified and thus may take any one of the values τ =
1, . . . , T − 1, a different test statistic may be computed for each one of these possible break-dates;
see Pagan and Hall (1983). Here we provide a procedure to combine inference based on the resulting
multiple tests, a problem not solved by Pagan and Hall (1983). Let BPGτ be the BPG statistic
obtained on using zt = zt(τ), where τ = 1, . . . , T − 1. When used as a single test, the BPGτ

statistic is significant at level α when BPGτ ≥ χ2
α(1), or equivalently when Gχ1

(BPGτ ) ≤ α,
where χ2

α(1) solves the equation Gχ1
[χ2

α(1)] = α and Gχ1
(x) = P[χ2(1) ≥ x] is the survival

function of the χ2(1) probability distribution. Gχ1
(BPGτ ) is the asymptotic p-value associated

with BPGτ . We propose here two methods for combining the BPGτ tests.
The first one rejects H0 when at least one of the p-values for τ ∈ J is sufficiently small, where

J is some appropriate subset of the time interval {1, 2, . . . , T − 1}, such as J = [τ1, τ2] where
1 ≤ τ1 < τ2 ≤ T − 1. In theory, J may be any non-empty subset of {1, 2, . . . , T − 1}. More
precisely, we reject H0 at level α when

pvmin(BPG; J) ≤ p0(α; J), where pvmin(BPG; J) ≡ min{Gχ1
(BPGτ ) : τ ∈ J} (3.5)

or, equivalently, when

Fmin(BPG; J) ≥ Fmin(α; J), where Fmin(BPG; J) ≡ 1−min{Gχ1
(BPGτ ) : τ ∈ J} ; (3.6)

p0(α; J) is the largest point such that P[pvmin(BPG; J) ≤ p0(α; J)] ≤ α under H0, and
Fmin(α; J) = 1 − p0(α; J). In general, to avoid over-rejecting, p0(α; J) should be smaller than
α. This method of combining tests was suggested by Tippett (1931) and Wilkinson (1951) in the
case of independent test statistics. It is however clear that BPGτ , τ = 1, . . . , T − 1, are not
independent, with possibly a complex dependence structure.

The second method we consider consists in rejecting H0 when the product (rather than the
minimum) of the p-values pv×(BPG; J) ≡

∏
τ∈J

Gχ(BPGτ ) is small, or equivalently when

F×(BPG; J) ≥ F̄×(J ;α), where F×(BPG; J) ≡ 1 −
∏
τ∈J

Gχ1
(BPGτ ) ; (3.7)

F̄×(J ;α) is the largest point such that P[F×(BPG; J) ≥ F̄×(J ;α)] ≤ α under H0. This gen-
eral method of combining p-values was originally suggested by Fisher (1932) and Pearson (1933),
again for independent test statistics.8 We also propose here to consider a modified version of

8For further discussion of methods for combining tests, the reader may consult Folks (1984), Dufour (1989, 1990),
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F×(BPG; J) based on a subset of the p-values Gχ1
(BPGτ ). Specifically, we shall consider a

variant of F×(BPG; J) based on the m smallest p-values:

F×(BPG; Ĵ(4)) = 1 −
∏

τ∈Ĵ(m)

Gχ1
(BPGτ ) (3.8)

where Ĵ(m) is the set of the m smallest p-values in the series {Gχ1
(BPGτ ) : τ = 1, 2, . . . , T −

1}. The maximal number of p-values retained (m in this case) may be chosen to reflect (prior)
knowledge on potential break dates; or as suggested by Christiano (1992), m may correspond to the
number of local minima in the series Gχ1

(BPGτ ).
To derive exact tests based on Fmin(BPG; J), F×(BPG; J) and F×(BPG; Ĵ(m)) is one of

the main contributions of this paper. Indeed, their finite-sample and even their asymptotic distribu-
tions may be intractable. In section 4, we show that the technique of MC tests provides a simple
way of controlling their size. Our simulation experiments reported in section 5 further illustrates
their power properties.

3.2. Tests against ARCH-type heteroskedasticity

In the context of conditional heteroskedasticity, artificial regressions provide an easy way to com-
pute tests for GARCH effects. Engle (1982) proposed a LM test based on (2.1) where

σ2
t = α0 +

q∑
i=1

αiσ
2
t−iε

2
t−i (3.9)

εt|t−1 ∼ N(0, 1) and |t−1 denotes conditioning of information up to and including t − 1. The
hypothesis of homoskedasticity may then be formulated as H0 : α1 = · · · = αp = 0. The Engle
test statistic (which is denoted by E below) is given by TR2, where T is the sample size, R2 is the
coefficient of determination in the regression of squared OLS residuals û2

t on a constant and û2
t−i

(i = 1, . . . , q) . Under standard regularity conditions E
asy� χ2(q). Lee (1991) has also shown that

the same test is appropriate against GARCH(p, q) alternatives, i.e.

σ2
t = α0 +

p∑
i=1

θiσ
2
t−i +

q∑
i=1

αi σ
2
t−iε

2
t−i , (3.10)

and the null hypothesis is H0 : α1 = · · · = αq = θ1 = · · · = θp = 0 . Lee and King (1993)
proposed an alternative GARCH test which exploits the one-sided nature of HA. The test statistic

Westfall and Young (1993), Dufour and Torrès (1998, 2000), and Dufour and Khalaf (2002a).
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which is asymptotically standard normal under H0 is:

LK =

{
(T − q)

T∑
t=q+1

[
(ût/σ̂)2 − 1)

] q∑
i=1

û2
(t−i)

}
/
{ T∑

t=q+1

[
(ût/σ̂)2 − 1

]2
}1/2

{
(T − q)

T∑
t=q+1

(
q∑

i=1
û2

t−i

)2

−
( T∑

t=q+1

( q∑
j=1

û2
t−i

))2}1/2
. (3.11)

Tests against ARCH-M heteroskedasticity (where the shocks affecting the conditional variance of
yt also have an effect on its conditional mean) can be applied in the context of

yt = x′
tβ + σtφ + ut , t = 1, . . . , T . (3.12)

Bera and Ra (1995) show that the relevant LM statistic [against (3.9)] for given φ is:

LM(φ) =
1

2 + φ2 γ̂′V

[
V ′V − φ2

2 + φ2 V ′X(X ′X)−1X ′V

]−1

V ′γ̂ (3.13)

where γ̂ is a T × 1 vector with elements γ̂t = [(ût/σ̂)2 − 1] + φût/σ̂ and V is a T × (q + 1)
matrix whose t-th row is Vt = (1 , û2

t−1 , . . . , û2
t−q). In this case, under H0, the parameter φ

is unidentified. Bera and Ra (1995) also discuss the application of the Davies sup-LM test to this
problem and show that this leads to more reliable inference. It is clear, however, that the asymptotic
distribution required is quite complicated.

In section 4, we describe a general solution to the problem of controlling the size of these tests.
Our analysis further yields a new and notable result regarding the ARCH-M test: we show that
the unidentified nuisance parameter is not a problem for implementing the MC version of the test.
Indeed, it is easy to see that the statistic’s finite sample null distribution is nuisance-parameter-free.
The simulation experiment in section 5.1shows that this method works very well in terms of size
and power.9

3.3. Tests based on grouping

An alternative class of tests assumes that observations can be ordered (e.g. according to time or
some regressor) so that the variance is non-decreasing. Let û(t), t = 1, . . . , T, denote the OLS
residuals obtained after reordering the observations (if needed).

3.3.1. Goldfeld-Quandt tests against an unknown variance breakpoint

The most familiar test in this class is the Goldfeld and Quandt (1965, GQ) test which involves
separating the ordered sample into three subsets and computing separate OLS regressions on the
first and last data subsets. Let Ti, i = 1, 2, 3, denote the number of observations in each of these

9Demos and Sentana (1998) proposed one-sided tests for ARCH. Similarly, Beg, Silvapulle and Silvapulle (2001)
introduced a one-sided sup-type generalization of the Bera-Ra test, together with simulation-based cut-off points, because
of the intractable asymptotic null distributions involved. For further discussion of these difficulties, see also Andrews
(2001). The MC test method should also be useful with these procedures.
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subsets (T = T1 + T2 + T3). The test statistic, which is F (T3 − k, T1 − k) distributed under
(2.1) - (2.6) and H0, is

GQ(T1, T3, k) =
S3/(T3 − k)
S1/(T1 − k)

(3.14)

where S1 and S3 are the sum of squared residuals from the first T1 and the last T3 observations
(k < T1 and k < T3). The latter distributional result is exact provided the ranking index does not
depend on the parameters of the constrained model. Setting GF (T3−k,T1−k)(x) = P[F (T3−k, T1−
k) ≥ x], we denote pv[GQ; T1, T3, k] = GF (T3−k,T1−k)[GQ(T1, T3, k)] the p-value associated
with GQ(T1, T3, k).

The GQ test is especially relevant in testing for breaks in variance.10 Here we extend this test
to account for an unknown (or unspecified) break-date. We propose (as for the BPG test) statistics
of the form:

Fmin(GQ; K) ≡ 1 − min{pv[GQ; T1, T3, k] : (T1, T3) ∈ K} , (3.15)

F×(GQ; K) ≡ 1 −
∏

(T1,T3)∈K

pv[GQ; T1, T3, k] , (3.16)

where K is any appropriate non-empty subset of

K(k, T ) = {(T1, T3) ∈ Z
2 : k + 1 ≤ T1 ≤ T − k − 1 and k + 1 ≤ T3 ≤ T − T1} , (3.17)

the set of the possible subsample sizes compatible with the definition of the GQ statistic. Reason-
able choices for K could be K = S1(T, T2, L0, U0) with

S1(T, T2, L0, U0) ≡ {(T1, T3) : L0 ≤ T1 ≤ U0 and T3 = T − T1 − T2 ≥ 0} , (3.18)

where T2 represents the number of central observations while L0 and U0 are minimal and maximal
sizes for the subsamples ( 0 ≤ T2 ≤ T − 2k − 2, L0 ≥ k + 1, U0 ≤ T − T2 − k − 1), or

K = S2(T, L0, U0) = {(T1, T3) : L0 ≤ T1 = T3 ≤ U0} (3.19)

where L0 ≥ k + 1 and U0 ≤ I[T/2]; I[x] is the largest integer less than or equal to x. According
to definition (3.18), {GQ(T1, T3, k) : (T1, T3) ∈ K} defines a set of GQ statistics, such that the
number T2 of central observations is kept constant (although the sets of the central observations
differ across the GQ statistics considered); with (3.19), {GQ(T1, T3, k) : (T1, T3) ∈ K} leads to
GQ statistics such that T1 = T3 (hence with different numbers of central observations). As with the
BPG statistics, we also consider

F×(GQ; K̂(m)) ≡ 1 −
∏

(T1,T3)∈ K̂(m)

pv[GQ; T1, T3, k]

10Pagan and Hall (1983, page 177) show that the GQ test for a break in variance and the relevant dummy-variable
based BPG test are highly related.
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where K̂(m) selects the m smallest p-values from the set {pv[GQ; T1, T3, k] : (T1, T3) ∈ K}.
It is clear the null distribution of these statistics may be quite difficult to obtain, even asymptoti-

cally. In this regard, this paper makes the following contribution: we show in section 4 that the level
of a test procedure based on any one of these statistics can be controlled quite easily by using the
MC version of these tests. Our simulations, reported in section 5, further show that our proposed
tests perform quite well in terms of power.

3.3.2. Generalized Bartlett tests

Under the Gaussian assumption (2.6), the likelihood ratio criterion for testing H0 against H4 is a
(strictly) monotone increasing transformation of the statistic:

LR(H4) = T ln(σ̂2) −
p∑

i=1

Ti ln(σ̂2
i ) (3.20)

where σ̂2 is the ML estimator (assuming i.i.d. Gaussian errors) from the pooled regression (2.1)
while σ̂2

i , i = 1, . . . , p, are the ML estimators of the error variances for the p subgroups [which,
due to the common regression coefficients require an iterative estimation procedure]. If one further
allows the regression coefficient vectors to differ between groups (under both the null and the alter-
native hypothesis), one gets the extension to the linear regression setup of the well-known Bartlett
(1937) test for variance homogeneity.11 Note Bartlett (1937) studied the special case where the
only regressor is a constant, which is allowed to differ across groups. Other (quasi-LR) variants of
the Bartlett test, involving degrees of freedom corrections or different ways of estimating the group
variances, have also been suggested; see, for example, Binkley (1992).

In the context of H2, Ramsey (1969) suggested a modification to Bartlett’s test that can be run
on BLUS residuals from ordered observations. Following Griffiths and Surekha (1986), we consider
an OLS-based version of Ramsey’s test which involves separating the residuals û(t), t = 1, . . . , T,
into three disjoint subsets Gi with Ti, i = 1, 2, 3, observations respectively. The test statistic which
is asymptotically χ2(2) under H0 is:

RB = T ln(σ̂2) −
3∑

i=1

Ti ln(σ̂2
i ), σ̂2 =

1
T

T∑
t=1

û2
(t), σ̂2

i =
1
Ti

∑
t∈Gi

û2
(t) . (3.21)

3.3.3. Szroeter-type tests

Szroeter (1978) introduced a wide class of tests based on statistics of the form

h̃ =

(∑
t∈A

htũ
2
t

)
/

(∑
t∈A

ũ2
t

)
(3.22)

11In this case, the estimated variances are σ̂2
i = Si/Ti , i = 1, . . . , p, and σ̂2 =

∑p
i=1 TiSi/T, where Si is the sum

of squared errors from a regression which only involves the observations in the i-th group. This of course requires one to
use groups with sufficient numbers of observations.
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where A is some non-empty subset of {1, 2, . . . , T} , the ũt’s are a set of residuals, and the ht’s
are a set of nonstochastic scalars such that hs ≤ ht if s < t. Szroeter suggested several special cases
(obtained by selecting different weights ht), among which we consider the following [based on the
OLS residuals from a single regression, i.e. ũt = û(t)]:

SKH =

[
T∑

t=1

2
[
1 − cos

(
πt

t + 1

)]
û2

(t)

]
/

(
T∑

t=1

û2
(t)

)
, (3.23)

SN =
(

6T
T 2 − 1

)1/2
(∑T

t=1 t û2
(t)∑T

t=1 û2
(t)

− T + 1
2

)
, (3.24)

SF =

⎛
⎝ T∑

t=T1+T2+1

û2
(t)

⎞
⎠ /

(
T1∑
t=1

û2
(t)

)
≡ SF (T1, T − T1 − T2) . (3.25)

Under the null hypothesis, SN follows a N(0, 1) distribution asymptotically. Exact critical points
for SKH [under (2.6)] may be obtained using the Imhof method. Szroeter recommends the fol-
lowing bounds tests. Let h∗

L and h∗
U denote the bounds for the Durbin and Watson (1950) test

corresponding to T + 1 observations and k regressors. Reject the homoskedasticity hypothesis if
SKH > 4 − h∗

L, accept if SKH < 4 − h∗
u, and otherwise treat the model as inconclusive. King

(1981) provided revised bounds for use with SKH calculated from data sorted such that, under the
alternative, the variances are non-increasing. Harrison (1980, 1981, 1982) however showed there is
a high probability that the Szroeter and King bounds tests will be inconclusive; in view of this, he
derived and tabulated beta-approximate critical values based on the Fisher distribution.

As with the GQ test, the Szroeter’s SF statistic may be interpreted as a variant of the GQ statistic
where the residuals from separate regressions have been replaced by those from the regression based
on all the observations, so that S3 is replaced by S̃3 =

∑T
t=T1+T2+1 û2

(t) and S1 by S̃1 =
∑T1

t=1 û2
(t).

Harrison and McCabe (1979) suggested a related test statistic based on the ratio of the sum of
squares of a subset of {û(t), t = 1, . . . , T, } to the total sum of squares:

HM =

(
T1∑
t=1

û2
(t)

)
/

(
T∑

t=1

û2
(t)

)
(3.26)

where T1 = I[T/2]. Although the test critical points may also be derived using the Imhof method,
Harrison and McCabe proposed the following bounds test. Let b∗L =

[
1 + b(T − T1, T − k, T −

k)
]−1

and b∗U =
[
1 + b(T − T1 − k, T1, T − k)

]−1
, where b(ν1, ν2, ν3) = (ν1/ν3)Fα(ν1, ν2)

and Fα(ν1, ν2) refers to the level α critical value from the F (ν1, ν2) distribution. H0 is rejected if
HM < b∗L, it is accepted if HM > b∗U , and otherwise the test is inconclusive. Beta approximations
to the null distribution of the HM statistic have also been suggested, but they appear to offer little
savings in computational cost over the exact tests [see Harrison (1981)].

McCabe (1986) proposed a generalization of the HM test to the case of heteroskedasticity
occurring at unknown points. The test involves computing the maximum HM criterion over several
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sample subgroups (of size m). The author suggests Bonferroni-based significance points using the
quantiles of the Beta distribution with parameters [m/2, (t − m − k)/2] . McCabe discusses an
extension to the case where m is unknown. The proposed test is based on the maximum of the
successive differences of the order statistics and also uses approximate beta critical points.

In this context, our contribution is twofold. First, we show in section 4 that exact MC versions of
these tests can be easily obtained even in non-Gaussian contexts. Secondly, our simulation results
reveal that MC Szroeter-type tests have definite power advantages over the MC versions of com-
monly used tests such as the BPG test. This observation has noteworthy implications for empirical
practice, since it seems that in spite of the many available homoskedasticity tests, practitioners (see
Table 1) seem to favor BPG-type tests.

3.3.4. Generalized Cochran-Hartley tests

Cochran (1941) and Hartley (1950) proposed two classic tests against grouped heteroskedasticity
(henceforth denoted C and H, respectively) in the context of simple Gaussian location-scale models
(i.e., regressions that include only a constant). These are based on maximum and minimum sub-
group error variances. Extensions of these tests to the more general framework of linear regressions
have been considered by Rivest (1986). The relevant statistics then take the form:

C = max
1≤i≤p

(s2
i )/

p∑
i=1

s2
i , H = max

1≤i≤p
(s2

i )/ min
1≤i≤p

(s2
i ) , (3.27)

where s2
i is the unbiased error variance estimator from the i-th separate regression (1 ≤ i ≤ p).

Although critical values have been tabulated for the simple location-scale model [see Pearson and
Hartley (1976, pp. 202-203)], these are not valid for more general regression models, and Rivest
(1986) only offers an asymptotic justification.

In this regard, this paper makes two contributions. We first show that the classic Cochran and
Hartley tests can easily be implemented as finite-sample MC tests in the context of the regression
model (2.1) - (2.4). Secondly, we introduce variants of the Cochran and Hartley tests that may
be easier to implement or more powerful than the original procedures. Specifically, we consider
replacing, in the formula of these statistics, the residuals from separate regressions by the OLS
residuals from the pooled regression (2.1), possibly after the data have been resorted according
to some exogenous variable. This will reduce the loss in degrees of freedom due to the separate
regressions. The resulting test statistics will be denoted Cr and HRr respectively. Clearly, standard
distributional theory does not apply to these modified test criteria, but they satisfy the conditions
required to implement them as MC tests. These results are new and have constructive implications
for empirical practice; indeed, our simulations (reported in section 5) show that such tests tend to
perform well relative to the LR-type test presented above.

3.3.5. Grouping tests against a mean dependent variance

Most of the tests based on grouping, as originally suggested, are valid for alternatives of the form
H2. A natural extension to alternatives such as H3 involves sorting the data conformably with ŷt.
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However this complicates the finite-sample distributional theory; see Pagan and Hall (1983) or Ali
and Giaccotto (1984). Here we propose the following solution to this problem. Whenever the al-
ternative tested requires ordering the sample following the fitted values of a preliminary regression,
rather than sorting the data, sort the residuals ût, t = 1, . . . , T, following ŷt and proceed. Provided
the fitted values (ŷ1, . . . , ŷT )′ are independent of the least-squares residuals (û1, . . . , ûT )′ under
the null hypothesis, as occurs for example under the Gaussian assumption (2.6), this will preserve
the pivotal property of the tests and allow the use of MC tests. Note finally that this simple modifi-
cation [not considered by Pagan and Hall (1983) or Ali and Giaccotto (1984)] solves a complicated
distributional problem, underscoring again the usefulness of the MC test method in this context.

4. Finite-sample distributional theory

We will now show that all the statistics described in section 3 have null distributions which are free
of nuisance parameters and show how this fact can be used to perform a finite-sample MC test of
homoskedasticity using any one of these statistics. For that purpose, we shall exploit the following
general proposition.

Proposition 4.1 CHARACTERIZATION OF PIVOTAL STATISTICS. Under the assumptions and
notations (2.1) − (2.2), let S(y, X) =

(
S1(y, X), S2(y, X), . . . , Sm(y, X)

)′
be any vector of

real-valued statistics Si(y, X), i = 1, . . . , m, such that

S(cy + Xd, X) = S(y, X) , for all c > 0 and d ∈ R
k. (4.1)

Then, for any positive constant σ0 > 0, we can write

S(y, X) = S(u/σ0, X) , (4.2)

and the conditional distribution of S(y, X), given X, is completely determined by the matrix X
and the conditional distribution of u/σ0 = Δε/σ0 given X, where Δ = diag(σt : t = 1, . . . , T ).
In particular, under H0 in (2.4), we have

S(y, X) = S(ε, X) (4.3)

where ε = u/σ, and the conditional distribution of S(y, X), given X, is completely determined by
the matrix X and the conditional distribution of ε given X.

PROOF. The result follows on taking c = 1/σ0 and d = −β/σ0, which entails, by (2.1),

cy + Xd = (Xβ + u)/σ0 − Xβ/σ0 = u/σ0 .

Then, using (4.1), we get (4.2), so the conditional distribution of S(y, X) only depends on X and
the conditional distribution of u/σ0 given X. The identity u0 = Δε follows from (2.2). Finally,
under H0 in (2.4), we have u = Δε = σε, hence, on taking σ0 = σ, we get u/σ0 = ε and
S(y, X) = S(ε, X).
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It is of interest to note that (4.2) holds under both the general heteroskedastic model (2.1) - (2.2)
and the homoskedastic model obtained by imposing (2.4), without any parametric distributional
assumption on the disturbance vector u [such as (2.3)]. Then, assuming (2.3), we see that the
conditional distribution of S(y, X), given X, is free of nuisance parameters and thus may be
simulated. Of course, the same will hold for any transformation of the components of S(y, X),
such as statistics defined as the supremum or the product of several statistics (or p-values).

It is relatively easy to check that all the statistics described in section 3 satisfy the invariance
condition (4.1). In particular, on observing that model (2.1) - (2.2) and the hypothesis (2.4) are
invariant to general transformations of y to y∗ = cy + Xd, where c > 0 and d ∈ R

k, on y, it
follows that LR test statistics against heteroskedasticity, such the Bartlett test based on LR(H4) in
(3.20), satisfy (4.1) [see Dagenais and Dufour (1991) and Dufour and Dagenais (1992)], and so have
null distributions which are free of nuisance parameters. For the other statistics, the required results
follow on observing that they are scale-invariant functions of OLS residuals. For that purpose, it
will be useful to state the following corollary of Proposition 4.1.

Corollary 4.2 PIVOTAL PROPERTY OF RESIDUAL-BASED STATISTICS. Under the assumptions
and notations (2.1)−(2.2), let S(y, X) =

(
S1(y, X), S2(y, X), . . . , Sm(y, X)

)′
be any vector

of real-valued statistics Si(y, X), i = 1, . . . , m, such that S(y, X) can be written in the form

S(y, X) = S̄ (A(X)y, X) , (4.4)

where A(X) is any n × k matrix (n ≥ 1) such that

A(X)X = 0 (4.5)

and S̄
(
A(X)y, X

)
satisfies the scale-invariance condition

S̄ (cA(X)y, X) = S̄ (A(X)y, X) , for all c > 0 . (4.6)

Then, for any positive constant σ0 > 0, we can write

S(y, X) = S̄ (A(X)u/σ0, X) (4.7)

and the conditional distribution of S(y, X), given X, is completely determined by the matrix X
jointly with the conditional distribution of A(X)u/σ0 given X. In particular, under H0 in (2.4), we
have S(y, X) = S̄

(
A(X)y, X

)
, where ε = u/σ, and the conditional distribution of S(y, X),

given X, is completely determined by the matrix X and the conditional distribution of A(X)ε given
X.

It is easy to see that the invariance conditions (4.4) - (4.6) are satisfied by any scale-invariant
function of the OLS residuals from the regression (2.1), i.e. any statistic of the form S(y, X) =
S̄ (û, X) such that S̄ (cû, X) = S̄ (û, X) for all c > 0 [in this case, we have A(X) = IT −
X(X ′X)−1X ′]. This applies to all the tests based on auxiliary regressions described in section 3.1
as well as the tests against ARCH-type heteroskedasticity (section 3.2). On the other hand, the
tests designed against grouped heteroskedasticity (section 3.3) involve residuals from subsets of
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observations. These also satisfy the sufficient conditions of Corollary 4.2 although the A(X) matrix
involved is different. For example, for the GQ statistic, we have:

A(X) =

⎡
⎣ M(X1) 0 0

0 0 0
0 0 M(X3)

⎤
⎦ (4.8)

where M(Xi) = ITi − Xi(X ′
iXi)−1X ′

i, X = [X ′
1, X ′

2, X ′
3]
′ and Xi is a Ti × k matrix. The

number n of rows in A(X) can be as large as one wishes so several regressions of this type can be
used to compute the test statistic, as done for the combined GQ statistic [see (3.15)]. Finally, the
required invariance conditions are also satisfied by statistics built on other types of residuals, such
as residuals based on least absolute deviation (instead of least squares) and various M–estimators.
Studying such statistics would undoubtedly be of interest especially for dealing with nonnormal
(possibly heavy-tailed) distributions. However, in view of the statistics considered in section 3, we
shall restrict ourselves in the sequel to statistics based on least squares methods.

Let us now make the parametric distributional assumption (2.3). Then we can proceed as follows
to perform a finite-sample test based on any statistic, say S0 = S(y, X), whose null distribution
(given X) is free of nuisance parameters. Let G(x) be the survival function associated with S0

under H0, i.e. we assume G : R → [0, 1] is the function such that G(x) = PH0 [S0 ≥ x] for all
x, where PH0 refers to the relevant probability measure (under H0). When the distribution of S0 is
continuous, we have G(x) = 1 − F (x) where F (x) = PH0 [S0 ≤ x] is the distribution function of
S0 under H0. Without loss of generality, we consider a right-tailed procedure: H0 rejected at level α
when S0 ≥ c(α), where c(α) is the appropriate critical value such that G[c(α)] = α, or equivalently
(with probability 1) when G(S0) ≤ α [i.e. when the p-value associated with the observed value of
the statistic is less than or equal to α].

Now suppose we can generate N i.i.d. replications of the error vector ε according to (2.3). This
leads to N simulated samples and N independent realizations of the test statistic S1, . . . , SN . The
associated MC critical region is

p̂N (S0) ≤ α, (4.9)

p̂N (x) =
NĜN (x) + 1

N + 1
, ĜN (x) =

∑N
i=1 1[0,∞)(Si − x)

N
, 1A(x) =

{
1, if x ∈ A ,
0, if x /∈ A .

Then, provided the distribution function of S0 induced by PH0under H0 is continuous,

PH0 [p̂N (S0) ≤ α] =
I [α(N + 1)]

N + 1
, for 0 ≤ α ≤ 1. (4.10)

Note that the addition of 1 in the numerator and denominator of p̂N (x) is important for (4.10) to
hold. In particular, if N is chosen so that α(N + 1) is an integer, we have PH0 [p̂N (S0) ≤ α] =
α; see Dufour and Kiviet (1998). Thus the critical region (4.9) has the same size as the critical
region G(S0) ≤ α. The MC test so obtained is theoretically exact, irrespective of the number N
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of replications used.12 Note that the procedure is closely related to the parametric bootstrap, with
however a fundamental difference: bootstrap tests are, in general, provably valid for N → ∞.
See Dufour and Kiviet (1996, 1998), Kiviet and Dufour (1997), Dufour and Khalaf (2001, 2002a,
2002b, 2003) for some econometric applications of MC tests. Finally, it is clear from the statement
of Assumption (2.3) that normality does not play any role for the validity of the MC procedure
just described. So we can consider in this way alternative error distributions such as heavy-tailed
distributions like the Cauchy distribution.13

5. Simulation experiments

In this section, we present simulation results illustrating the performance of the procedures de-
scribed in the preceding sections. Because the number of tests and alternative models is so large,
we have gathered our results in four groups corresponding to four basic types of alternatives:
(1) GARCH-type heteroskedasticity; (2) variance as a linear function of exogenous variables; (3)
grouped heteroskedasticity; (4) variance break at a (possibly unspecified) point.

5.1. Tests for ARCH and GARCH effects

For ARCH and GARCH alternatives, our simulation experiment was based on the following speci-
fication:

yt = x′
tβ + εth

1
2
t + htφ , (5.1)

ht = ω̄0 +
(
α0ε

2
t−1 + α1

)
ht−1 , t = 1, . . . , T, (5.2)

where xt is defined as in (2.1), and εt
iid∼ N(0, 1) , t = 1, . . . , T.We took T = 25, 50, 100

and k = I[T 1/2] + 1. In the case of tests against ARCH-M alternatives [experiment (iv)], we also
considered a number of alternative error distributions, according to the examples studied by Godfrey
(1996): N(0, 1), χ2(2), U [− 0.5, 0.5], t(5) and Cauchy.

The data were generated setting β = (1, 1, . . . , 1 )′ and ω̄0 = 1. In this framework, the model
with φ = 0 and α1 = 0 is a standard ARCH(1) specification, while φ = 0 yields a GARCH(1,1)
model. The ARCH-M system discussed in Bera and Ra (1995) corresponds to α1 = 0. The pa-
rameter combinations considered are given in Table 2 and were selected to make the results of our
study comparable with those obtained by Lee and King (1993), Lumsdaine (1995) and Bera and Ra
(1995). Note that some combinations fall on the boundary of the region α0 + α1 ≤ 1.

12For example, for α = 0.05, N can be as low as N = 19. Of course, this does not mean that a larger number
of replications is not preferable, for raising N will typically increase the test power and decrease its sensitivity to the
underlying randomization. However the simulation results reported below suggest that increasing N beyond 99 only has
a small effect on power.

13As already pointed out, the only tests for which normality may play a central role in order to control size are those
designed against a variance which is a function of the mean and where the least squares (LS) residuals are sorted according
to the LS fitted values ŷt, t = 1, . . . , T. Since the distribution of the latter depends on nuisance parameters (for example,
the regression coefficients β), it is not clear that a test statistic which depends on both û = (û1, . . . , ûT )′ and ŷ =
(ŷ1, . . . , ŷT )′ will have a null distribution free of nuisance parameters under the general distributional assumption (2.3).
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Table 2. Parameter values used for the GARCH models

Experiment φ α0 α1

(i) 0 0 0
(ii) 0 0.1, 0.5, 0.9, 1 0
(iii) 0 0.1 0.5

0 0.25 0.65
0 0.4 0.5
0 0.15 0.85
0 0.05 0.95

(iv) −2, −1, 1, 2 0, 0.1 , 0.5, 0.9 0

Table 3. Tests against ARCH and GARCH heteroskedasticity

T = 25 T = 50 T = 100

(φ, α0, α1) Engle Lee-King Engle Lee-King Engle Lee-King

H0 (0, 0, 0) ASY 2.21 3.22 3.06 4.04 3.63 4.72
MC 5.01 5.14 4.94 5.01 5.18 5.22

ARCH (0, 0.1, 0) ASY 3.26 4.98 6.42 9.67 11.83 17.01
MC 6.16 7.94 8.60 11.31 13.61 17.22

(0, 0.5, 0) ASY 10.19 15.73 31.56 39.96 64.18 71.93
MC 14.87 20.66 35.68 42.28 66.43 71.54

(0, 0.9, 0) ASY 17.14 24.93 50.57 58.89 84.38 88.99
MC 23.10 31.17 54.76 60.71 85.82 88.97

(0, 1, 0) ASY 24.49 26.80 53.43 61.82 86.40 90.60
MC 18.59 33.03 57.77 63.61 87.50 90.24

GARCH (0, 0.1, 0.5) ASY 3.07 5.16 6.89 10.45 12.54 17.89
MC 6.10 8.08 9.16 12.05 14.39 18.35

(0, 0.25, 0.65) ASY 4.87 8.72 16.26 23.43 38.36 46.93
MC 8.44 12.60 19.92 25.20 40.74 47.29

(0, 0.40, 0.50) ASY 7.30 12.66 26.12 34.48 57.44 65.94
MC 11.89 17.07 30.25 36.51 59.65 65.69

(0, 0.15, 0.85) ASY 4.42 8.40 13.45 19.96 28.97 37.11
MC 7.93 12.39 16.79 21.70 31.04 37.93

(0, 0.05, 0.95) ASY 3.75 7.31 10.02 15.37 18.17 25.92
MC 6.84 10.74 12.77 17.05 20.15 26.28

Note: In this table as well as in the subsequent ones, the rejection frequencies are reported in
percentages.
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Table 4. Empirical size of ARCH-M tests

Parameter values Error distribution

α0 = α1 = 0, φ = −2 N(0, 1) χ2(2) U [−0.5, 0.5] t(5) Cauchy

Test T D1 D2 D1 D2 D1 D2 D1 D2 D1 D2

Engle ASY 25 2.2 2.2 1.8 1.3 2.7 2.4 2.3 0.8 1.8 0.6
MC 5.6 5.2 4.3 4.0 5.1 4.8 5.3 4.3 5.0 4.9

Lee-King ASY 3.4 4.2 2.8 2.3 2.7 3.7 2.4 1.7 1.9 1.4
MC 5.0 4.8 5.4 4.0 4.6 4.5 5.1 4.0 5.2 5.3

Bera-Ra MC 4.7 4.5 3.6 4.1 5.4 4.6 4.9 4.7 5.2 5.5

Engle ASY 50 2.6 2.9 3.2 3.0 4.7 3.4 2.6 2.6 1.6 1.7
MC 4.6 4.2 6.3 6.2 6.5 4.5 6.2 5.0 5.8 5.5

Lee-King ASY 4.3 4.6 4.1 4.4 5.1 6.1 3.7 3.6 2.3 2.3
MC 5.6 4.0 5.0 5.5 5.7 4.5 5.7 5.7 5.5 5.0

Bera-Ra MC 5.0 4.8 5.6 5.1 5.1 4.9 5.0 4.9 4.8 4.8

Engle ASY 100 4.1 3.9 2.9 2.9 5.2 4.8 2.7 2.8 1.8 1.8
MC 4.7 5.3 5.2 5.2 5.6 5.4 5.3 4.8 5.9 5.2

Lee-King ASY 5.3 5.4 4.2 4.5 4.1 6.0 3.7 3.4 2.4 2.3
MC 5.3 5.1 5.4 5.3 4.5 5.0 5.4 5.0 5.5 5.2

Bera-Ra MC 5.6 6.2 5.2 5.2 5.1 4.9 5.1 4.5 4.7 5.3

The regressors were generated as i.i.d. according to a U(0, 10) distribution and kept constant
over each individual experiment. In the case of tests against ARCH-M alternatives [experiment (iv)],
we also considered an alternative regressor set, obtained by drawing (independently) form a Cauchy
distribution (centered and re-scaled conformably with the previous design). For further reference,
we shall denote by D1 the uniform-based design D1 and by D2 the Cauchy-based design. Both
D1 and D2 include a constant regressor.

The MC tests were implemented with N = 99 replications. The Engle and Lee-King tests were
applied in all cases. In experiment (iv), we also applied the Bera-Ra sup-LM test (see Section 3.2
for formulae and related references), in which case we have only computed MC versions of the tests.

Tables 3, 4, 5 and 6 report rejection percentages for a nominal level of 5%; 10000 replications
were considered for experiments (i) - (ii) and 1000 for experiment (iv); in these tables (as well as
later ones), the figures associated with best performing exact procedures in terms of power (under
the alternatives) are set in bold face characters.

In general, the most notable observation is that the Engle test is undersized, even with T = 100,
which can lead to substantial power losses. This is in accordance with the results of Lee and King
(1993) and several references cited there. Although undersize problems are evident under D1 and
normal errors, more serious size distortions are observed with χ2(2), t(5) and Cauchy errors. The
size of the Lee-King test is better than that of the Engle test but is still below the nominal level
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Table 5. Power of MC ARCH-M tests: normal errors and D1 design

T = 25 T = 50 T = 100
α0 φ Test Engle Lee-King Bera-Ra Engle Lee-King Bera-Ra Engle Lee-King Bera-Ra

0.1 -2 ASY 3.6 5.7 7.7 9.5 16.0 21.2
MC 6.3 9.2 9.4 9.5 13.9 12.6 18.5 21.5 24.5

.1 -1 ASY 3.8 5.7 6.7 9.8 14.2 18.6
MC 6.4 8.9 8.7 8.4 11.9 9.8 16.0 18.2 16.4

0.1 1 ASY 3.8 5.4 6.9 9.7 13.5 17.8
MC 5.9 7.6 8.3 8.2 10.9 10.10 15.1 17.1 17.1

0.1 2 ASY 3.8 5.4 7.8 11.3 15.4 21.0
MC 6.4 8.4 9.0 9.8 12.5 13.0 17.5 20.6 23.9

0.5 -2 ASY 10.5 16.7 31.4 41.7 67.2 73.0
MC 15.6 21.9 26.4 36.5 43.6 56.2 69.1 72.7 84.5

0.5 -1 ASY 9.9 17.1 33.5 42.9 68.3 76.3
MC 16.2 22.9 22.6 38.5 45.2 47.5 70.5 75.6 78.1

0.5 1 ASY 10.2 15.2 32.4 41.5 64.8 74.8
MC 14.4 19.6 21.0 36.8 43.2 46.2 67.0 73.4 77.1

0.5 2 ASY 10.4 16.6 34.4 43.8 63.3 72.5
MC 16.0 22.4 26.6 38.0 45.3 56.6 66.3 70.9 84.6

0.9 -2 ASY 13.3 20.9 41.0 49.7 67.6 72.8
MC 19.6 24.7 33.6 45.6 50.6 63.6 69.4 72.6 86.6

0.9 -1 ASY 16.4 24.6 46.7 56.4 79.3 84.2
MC 22.6 30.6 33.0 52.1 58.8 67.5 80.7 84.1 91.6

0.9 1 ASY 15.7 23.7 47.0 56.6 75.7 81.5
MC 21.3 29.5 31.9 51.2 58.1 65.3 77.6 82.0 89.9

0.9 2 ASY 14.9 22.9 40.7 48.3 65.9 70.4
MC 21.2 27.0 33.3 44.3 49.8 63.5 66.9 70.1 85.1

particularly with χ2(2), t(5) and Cauchy errors, and for T < 100 under D1 and normal errors.
So MC tests yield important effective power gains. The effective power advantage of MC tests

is noticeable, even with uniform designs and normal errors. In the case of χ2(2), t(5) and Cauchy
errors, improvements in power are quite substantial (such as a 50% increase with T ≤ 50). The
Lee-King MC test is always more powerful than the Engle test. It is also worth noting that possible
problems at boundary parameter values were not observed. Further the MC Lee-King test has the
best power. As emphasized in Bera and Ra (1995), power improvements in the case of ARCH and
GARCH tests are especially important since failing to detect conditional variance misspecifications
leads to inconsistencies in conditional moments estimates.

Turning now to ARCH-M tests, we see that: (i) the Engle test has the lowest power among the
three tests considered, and (ii) there is a substantial power gain from using the sup-LM MC test. The
Lee-King MC test performs better than the Engle test and in a few cases marginally outperforms
the sup test. This suggests that a MC version of the Beg, Silvapulle and Silvapulle (1998) one-sided
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Table 6. Power of MC ARCH-M tests: various error distributions and D2 design

φ = −2 T = 25 T = 50 T = 100
α0 Error Test Engle Lee-King Bera-Ra Engle Lee-King Bera-Ra Engle Lee-King Bera-Ra

0.1 N(0, 1) ASY 4.1 7.5 8.4 13.2 17.4 24.8
MC 8.2 8.8 9.3 11.2 12.5 13.8 19.8 23.3 25.0

χ2(2) ASY 9.3 16.4 30.1 38.9 54.5 61.3
MC 20.7 23.0 27.6 40.2 42.2 47.5 59.7 60.5 65.4

U [−0.5, 0.5] ASY 2.3 4.0 3.2 6.0 5.1 7.0
MC 4.7 4.1 4.6 4.4 4.9 5.0 5.6 6.2 5.2

t(5) ASY 4.5 9.4 22.4 34.6 53.2 61.4
MC 20.9 26.7 37.1 47.3 51.4 60.9 71.1 72.6 79.0

Cauchy ASY 12.5 21.3 45.0 52.4 66.1 71.3
MC 32.6 36.9 41.6 64.0 67.8 73.7 81.7 83.9 86.7

0.5 N(0, 1) ASY 12.2 22.5 33.1 42.2 61.8 69.8
MC 20.6 24.3 32.8 36.7 41.0 55.7 64.6 68.3 81.4

χ2(2) ASY 18.6 22.4 33.3 42.3 52.9 59.8
MC 25.4 26.9 35.4 42.9 43.8 61.7 58.3 58.3 77.4

U [−0.5, 0.5] ASY 2.3 4.6 4.3 7.6 7.4 13.0
MC 4.8 5.4 6.6 5.1 6.1 8.0 7.5 10.5 15.4

t(5) ASY 12.1 17.9 50.7 58.5 70.2 74.6
MC 30.1 34.0 38.9 67.2 69.1 71.6 80.5 81.3 84.4

Cauchy ASY 24.0 30.9 64.1 70.7 78.4 82.3
MC 40.2 47.7 51.9 77.7 81.6 83.8 89.3 91.1 92.3

0.9 N(0, 1) ASY 9.1 18.4 37.9 46.8 61.7 68.5
MC 16.4 21.6 27.7 42.0 44.9 62.6 64.2 65.9 82.1

χ2(2) ASY 14.2 21.3 27.8 32.4 40.9 45.9
MC 24.0 27.1 37.3 33.9 35.0 54.4 43.8 44.3 66.9

U [−.5, .5] ASY 2.6 5.6 4.6 10.4 12.4 19.2
MC 5.0 6.4 9.1 5.6 7.4 15.4 11.8 17.5 35.4

t(5) ASY 16.8 30.1 27.5 37.6 45.8 54.2
MC 41.6 44.9 50.2 47.8 50.9 57.7 62.3 63.5 73.1

Cauchy ASY 21.6 32.1 54.4 62.3 71.6 76.5
MC 44.5 50.1 54.6 73.8 76.9 80.6 85.2 87.5 90.0
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test for ARCH-M may also result in power improvements. The power advantage of the MC sup-LM
along with the documented difficulties regarding the Davies sup-LM test, makes the MC Bera-Ra
test quite attractive. Further, these results show clearly that the MC test provides a straightforward
finite-sample solution to the problem of unidentified nuisance parameters.

5.2. Tests of variance as a linear function of exogenous variables

The model used is (2.1) with T = 25, 50, 100 and k = 6.14 The regression coefficients were set to
one. The following specifications for the error variance were considered:

(i) σ2
t = x′

tα, t = 1, . . . , T, where

α = (1, 0, . . . , 0)′ , under H0 ,
= (1, 1, . . . , 1)′ , under HA .

(ii) σ2
t = α0 + α1x2t, t = 1, . . . , T, where

α0 = 1, α1 = 0, under H0 ,
α0 = 0, α1 = 1, under HA .

The former specification implies that the variance is a linear function of E(Yt) and the latter is the
case where the variance is proportional to one regressor. The regressors are generated as U(0, 10).
The tests examined (refer to Section 3 for formulae and related references) are the following:

1. the Goldfeld-Quandt (GQ) test [ see (3.14)], with T2 = T/5, T1 = T3 = (T − T2)/2;

2. the Breusch-Pagan-Godfrey (BPG) test [ see (3.1)], based on the asymptotic distribution
(ASY) or using the size correction formula (BRT) proposed by Honda (1988, section 2);

3. Koenker’s (K) test [ see (3.2)];

4. White’s (W ) test [ see (3.1)];

5. Glejser’s (G) test based on (3.3);

6. Ramsey’s version of Bartlett’s test (RB) [ see (3.21)], with T1 = T3 = I[T/3] and T2 =
T − (T1 + T3);

7. Szroeter’s SF test [ see (3.25)], where for convenience, T1 and T2 are set as in the GQ test;

8. Szroeter’s SKH test [ see (3.23)]; the critical points for the bounds test are taken from King
(1981, Table 2) and the beta-approximate cut-off points from Harrison (1982, Table 4);

9. Szroeter’s SN test [ see (3.24)];

14Tables of critical points required for the Szroeter’s tests are available for n ≤ 100 and k ≤ 6; see King (1981) and
Harrison (1982).
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Table 7. Variance proportional to a regressor

T = 25 T = 50 T = 100
H0 HA H0 HA H0 HA

Goldfeld-Quandt (GQ) F 4.95 27.64 4.68 81.41 4.95 98.25

Breusch-Pagan-Godfrey ASY 4.13 33.84 4.14 80.57 4.59 98.75
(BPG) BRT 4.42 35.17 4.64 81.67 4.71 98.79

MC 5.37 36.80 4.99 80.86 4.58 98.36

Koenker (K) ASY 5.18 30.81 4.74 75.14 4.51 97.52
MC 5.29 30.20 4.98 74.70 4.46 96.77

White (W ) ASY 0.00 0.00 2.60 20.20 4.42 34.64
MC 5.31 8.08 4.67 26.70 4.65 33.99

Glejser (G) ASYF 5.54 34.58 5.09 80.04 4.66 98.82
ASYW 6.72 38.62 5.76 81.30 5.03 98.90
MC 5.07 32.32 5.12 78.48 4.58 98.44

Ramsey-Bartlett (RB) ASY 6.67 31.87 5.50 80.06 5.22 97.96
MC 5.27 27.63 4.58 77.03 4.76 97.49

Szroeter (SF ) MC 4.98 51.26 4.77 88.71 4.88 99.12

Szroeter (SN ) ASY 3.11 45.46 4.28 91.94 4.87 99.63
MC 4.97 53.45 5.08 92.09 4.69 99.51

Szroeter-King-Harrison Beta 4.01 50.34 6.41 94.71 8.32 99.83
(SKH) Bound 0.18 10.43 0.71 74.74 1.54 98.09

Inc. bound 34.61 82.53 19.6 24.23 12.38 1.83
MC 4.98 53.87 4.98 91.68 4.79 99.43

Harrison-McCabe (HM ) Bound 0.05 3.52 0.79 61.31 1.91 94.61
Inc. bound 20.37 75.29 13.48 33.75 9.67 4.52
MC 4.69 46.63 4.78 84.64 5.20 97.38

10. the Harrison-McCabe (HM) test [ see (3.26)], with T1 = I[T/2].

In the case of (ii), we have observed that sorting the observations or the OLS residuals by the value
of ŷ leads to equivalent MC tests. Tables 7 and 8 report rejection percentages for a nominal level of
5% and 10000 replications. The MC tests are implemented with 99 simulated samples. Based on
these two experiments, we make the following observations.

5.2.1. Level

The BPG, K, SN and W tests reject the null less frequently than implied by their nominal size,
particularly in small samples. The G Wald-type test and the Harrison approximate SKH test have
a tendency to over-reject. The bounds tests based on the HM and SKH statistics are inconclusive
in a large proportion of cases. As expected, MC tests have the correct size. In the case of the
BPG criterion, Honda’s size correction improves both the reliability and the power properties of
the test; the superiority of the MC technique is especially notable with small samples. It is worth
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Table 8. Variance as a function of the mean

T = 25 T = 50 T = 100
H0 HA H0 HA H0 HA

Goldfeld-Quandt (GQ) F 4.64 5.93 5.24 11.56 4.95 22.90

Breusch-Pagan-Godfrey ASY 4.12 5.56 4.38 8.69 5.01 16.57
(BPG) BRT 3.28 4.70 4.19 8.39 4.95 16.22

MC 5.06 6.81 4.74 9.54 5.02 16.30

Koenker (K) ASY 3.34 3.96 4.02 7.06 4.32 13.77
MC 5.17 6.13 5.08 8.10 4.73 14.63

White (W ) ASY 0.00 0.00 2.60 3.45 4.42 7.53
MC 5.31 5.95 4.67 5.98 4.65 7.93

Glejser (G) ASYF 5.98 6.92 5.46 9.04 5.14 15.21
ASYW 11.75 12.88 7.66 12.05 5.98 17.42
MC 4.93 5.99 5.11 8.21 5.02 14.54

Ramsey-Bartlett (RB) ASY 5.94 7.57 5.75 11.99 5.41 21.01
MC 5.03 6.03 5.03 11.02 4.90 19.78

Szroeter (SF ) MC 4.66 11.18 5.18 19.29 5.3 33.61

Szroeter (SN ) ASY 3.93 10.74 5.32 21.91 4.91 39.64
MC 4.68 12.09 5.07 21.38 4.84 38.90

Szroeter-King-Harrison Beta 4.67 12.06 7.96 28.07 8.28 48.09
(SKH) Bound 0.19 0.82 0.96 6.17 1.50 21.02

Bound inconc. 39.29 58.58 20.89 48.02 12.51 39.41
MC 4.62 11.77 4.97 21.04 5.01 37.49

Harrison-McCabe (HM ) Bound 0.08 0.17 0.74 4.18 1.85 16.25
Bound inconc. 22.29 37.47 14.67 34.61 10.06 30.44
MC 4.98 10.69 5.02 17.82 5.48 29.25

emphasizing that, whereas Honda’s formula is generally effective, it is based on an asymptotic
approximation; the MC test method is theoretically exact in finite samples.

5.2.2. Power

Here, we again discuss the performance of the MC versions of the tests considered, because we
restrict attention to size correct procedures. We observe that the SN and the SKH MC tests (whose
performance is very similar) are most powerful, followed closely by the SF and the HM MC test,
and by the G and BPG MC tests. The GQ and RB MC tests rank next whereas the W test performs
very poorly. Note that the Szroeter GQ-type test SF performs much better than the standard GQ;
this is expected since the latter is based on residuals from a single regression on the whole sample.
Overall, the most noticeable fact is the superiority of the Szroeter MC tests when compared to
the commonly used procedures (e.g. the Breusch-Pagan TR2 type tests). As mentioned earlier,
the Szroeter tests as initially proposed have not gained popularity due to their non-standard null
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distributions. Given the ease with which exact MC versions of these tests can be computed, this
experiment clearly demonstrates that a sizable improvement in power results from replacing the
commonly used LM-type tests with either Szroeter-type MC tests. Similar conclusions are reported
in Griffiths and Surekha (1986) with respect to SN , the member of the Szroeter family whose null
distribution is asymptotically normal. However, these authors also document the asymptotic tests’
incorrect finite sample size.

5.3. Grouped heteroskedasticity

To illustrate the performance of MC tests for grouped heteroskedasticity (H3), we follow the design
of Binkley (1992). The model used is (2.1) with

Ti = 15, 25, 50; ki = 4, 6, 8; m = 2, 3, 4 .

The regressors were drawn form a U(0, 10) distribution and differed across subgroups.15 The
regressors were drawn only once. The regression coefficients were set to one, and the variances
across groups were selected so that

δ =
σ2

max

σ2
min

= 1, 2, 3, 5 ,

with the intermediate variances set at equal intervals, where σ2
min and σ2

max represent respectively
the smallest and largest error variance among the m groups. The errors were drawn from the normal
distribution. We considered the LR statistic, the Goldfeld-Quandt statistic, the Breusch-Pagan and
Koenker statistics, the Glejser and White statistics, and the Cochran and Hartley criteria (C, H, Cr,
and Hr). We also studied alternative likelihood-based test criteria introduced in Binkley (1992, Page
565), namely LR1, LR2, LR3 and BPG2,

16 and considered as well a Koenker-type adjustment to
BPG2 (which we denote Ku). The results are summarized in Table 9.17 We report empirical
rejections for a nominal size of 5% in 10000 replications. The MC test is obtained with 99 simulated
samples. Our findings can be summarized as follows.

5.3.1. Level

In general, LM-type asymptotic tests are undersized, whereas the asymptotic LR-type tests tend to
over-reject. The variants of the LM and LR tests based on residuals from individual regressions
are over-sized. As expected, size problems are more severe with small samples. Although the

15We considered other choices for the design matrices, including Cauchy, lognormal, and identical regressors (across
subgroups) and obtained qualitatively similar results.

16LR1 is obtained as in (3.20) replacing s2
i by estimates of group variances from partitioning s2. LR2 is obtained as

in (3.20) replacing s2
i by variance estimates from separate regressions, over the sample subgroups, and s2 by a weighted

average of these. LR3 is obtained like LR2, using unbiased variance estimates. BPG2 is a variant of the BPG test for
H3 based on residuals from individual group regressions.

17For convenience, our notation differs from Binkley (1992). The QLR test refers to Binkley’s LR1, the LRu (ASY 1)
and LRu (ASY 2) refer to LR2 and LR3 tests; BPGu corresponds to BPG2. Note that LR3 obtains as a monotonic
transformation of LR2, which yields the same MC test.
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Table 9. Grouped heteroskedasticity
Two Groups (m = 2)

δ Ti GQ LR QLR LRu Hr Cr

F ASY MC ASY MC ASY1 ASY2 MC MC MC

1 15 5.17 10.10 4.92 5.52 5.01 9.88 5.67 4.94 5.01 5.01
25 4.95 9.08 4.79 5.14 4.97 9.00 5.23 5.02 4.97 4.97
50 5.18 7.61 5.35 5.26 5.25 7.62 5.26 5.30 5.25 5.25

2 15 18.08 29.95 18.43 20.00 18.65 28.37 19.30 17.45 18.65 18.65
25 31.08 42.25 30.67 31.86 30.44 41.80 32.22 30.28 30.44 30.44
50 60.04 67.50 59.21 60.68 58.77 66.72 60.52 58.82 58.77 58.77

3 15 40.16 55.80 40.63 52.10 39.60 54.00 42.11 39.16 39.60 39.60
25 64.79 75.56 63.44 63.93 61.81 74.50 65.84 62.51 61.81 61.81
50 93.86 96.06 93.52 93.99 93.14 95.86 94.01 93.21 93.14 93.14

5 15 71.95 83.45 71.98 71.55 69.00 81.61 73.29 70.24 69.00 69.00
25 92.88 96.29 92.39 91.26 90.04 95.85 93.08 92.06 90.04 90.04
50 99.89 99.94 99.82 99.90 99.81 99.92 99.89 99.85 99.81 99.81

BPG BPGu K Ku

ASY BRT MC ASY BRT MC ASY MC ASY MC

1 15 3.93 4.87 5.01 7.80 9.03 4.94 4.54 5.07 8.28 4.97
25 4.26 4.80 4.97 7.71 8.46 5.02 4.67 5.14 8.16 5.06
50 4.90 5.12 5.25 7.05 7.38 5.30 4.90 5.24 7.33 5.25

2 15 15.95 18.47 18.65 24.27 26.81 17.45 14.70 15.73 21.83 14.63
25 29.04 30.70 30.44 39.02 40.69 30.28 26.79 27.38 36.22 26.80
50 58.90 60.08 58.77 65.20 66.09 58.82 56.55 55.54 63.61 55.30

3 15 35.81 39.80 39.60 48.69 51.88 39.16 30.57 31.68 41.77 29.83
25 60.63 62.61 61.81 71.91 73.59 62.51 55.68 55.27 66.63 54.62
50 93.48 93.77 93.14 95.51 95.71 93.21 91.80 90.80 94.40 90.89

5 15 66.17 69.62 69.00 78.36 80.36 70.24 54.20 55.16 67.27 52.57
25 89.92 90.67 90.04 95.02 95.53 92.06 83.59 82.67 91.54 83.12
50 99.86 99.90 99.81 99.92 99.92 99.85 99.69 99.52 99.88 99.64

Glejser White C H

ASYF ASYW MC ASY MC ASY MC ASY MC

1 15 5.01 6.24 5.04 3.86 5.01 10.41 4.94 9.45 4.94
25 4.89 5.52 5.03 4.02 4.72 6.80 5.02 8.08 5.02
50 5.02 5.22 5.11 4.47 5.08 4.95 5.30 6.13 5.30

2 15 16.38 18.74 16.09 5.20 6.28 29.52 17.45 27.46 17.45
25 26.33 28.22 25.94 4.55 5.17 36.79 30.28 39.92 30.28
50 53.56 54.76 51.87 3.86 4.26 59.38 58.82 62.78 58.82

3 15 32.94 36.38 31.85 6.07 7.27 55.02 39.16 52.86 39.16
25 54.56 56.61 53.05 4.97 5.74 69.85 62.51 72.75 62.51
50 89.34 89.79 88.32 3.51 4.14 93.69 93.21 94.81 93.21

5 15 58.09 62.03 56.38 6.97 8.40 82.42 70.24 81.00 70.24
25 83.88 85.17 82.52 5.18 6.16 94.49 92.06 95.20 92.06
50 99.55 99.57 99.39 3.29 3.94 99.89 99.85 99.90 99.85
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Table 9. Grouped heteroskedasticity (continued)
Three Groups (m = 3)

δ Ti GQ LR QLR LRu Cr Hr

F ASY MC ASY MC ASY1 ASY2 MC MC MC

1 15 - 9.94 5.09 5.35 5.05 12.07 5.63 4.97 5.25 5.24
25 - 8.89 5.22 5.49 5.28 10.89 5.36 4.97 5.12 5.14
50 - 7.28 5.11 5.33 5.25 8.16 5.22 4.90 5.13 5.24

2 15 - 25.87 15.80 17.12 16.05 27.79 16.00 14.75 14.58 15.75
25 - 35.94 25.70 26.99 25.66 37.63 25.43 23.94 21.89 25.43
50 - 59.72 51.93 53.45 51.84 59.98 50.84 48.99 41.26 51.37

3 15 - 49.17 35.08 36.69 34.30 49.21 33.91 31.17 26.96 30.87
25 - 68.62 57.51 58.91 56.61 68.32 55.62 52.95 42.27 56.65
50 - 93.84 90.85 91.44 90.43 93.27 89.96 88.75 73.11 90.79

5 15 - 79.44 66.26 66.79 63.75 78.50 64.49 60.39 43.54 64.18
25 - 94.63 89.79 89.92 88.40 94.58 89.10 86.95 65.18 88.96
50 - 99.90 99.80 99.81 99.72 99.92 99.79 99.79 93.36 99.77

BPG BPGu K Ku

ASY BRT MC ASY BRT MC ASY MC ASY MC

1 15 3.92 5.06 5.51 8.99 11.07 5.18 4.08 5.09 8.86 4.95
25 4.45 5.19 5.20 8.89 10.02 4.90 4.57 5.17 8.54 4.88
50 4.62 4.93 5.16 7.55 8.15 4.93 4.72 5.29 7.39 5.06

2 15 13.15 16.09 15.68 22.12 25.60 14.07 11.74 13.46 19.11 11.74
25 23.33 25.26 24.67 33.33 35.61 22.87 20.52 22.23 30.31 20.35
50 50.29 51.46 50.57 56.79 58.21 47.45 47.48 47.56 54.27 45.03

3 15 27.89 32.34 31.63 39.85 44.56 28.20 22.65 25.59 33.31 22.05
25 52.04 54.77 53.80 62.81 65.17 48.98 45.09 46.60 56.01 41.96
50 89.57 90.05 88.98 91.49 92.08 87.05 86.49 85.94 89.54 83.38

5 15 53.62 58.94 57.34 67.09 71.61 50.65 41.01 44.50 54.26 38.42
25 84.94 86.66 84.94 91.22 92.18 81.94 75.50 76.10 83.79 70.39
50 99.72 99.74 99.58 99.85 99.85 99.54 99.37 99.11 99.65 98.82

Glejser White C H

ASYF ASYW MC ASY MC ASY MC ASY MC

1 15 4.97 5.92 5.06 4.31 4.74 11.6 5.16 11.2 5.04
25 5.03 5.70 5.15 5.11 5.19 7.28 5.0 9.36 4.88
50 5.09 5.47 4.99 5.54 5.29 4.44 5.01 11.50 5.13

2 15 13.35 15.63 13.40 5.46 5.91 24.39 13.36 25.91 14.00
25 21.57 23.48 21.48 7.06 7.09 25.96 20.20 34.15 23.78
50 45.46 46.58 44.61 4.87 4.46 39.49 39.47 66.72 48.72

3 15 27.21 30.66 26.89 5.93 6.28 39.14 24.78 47.65 30.87
25 47.76 50.06 46.33 7.88 7.90 46.38 39.00 65.58 52.89
50 85.19 85.84 83.87 4.40 4.12 70.66 70.31 95.41 89.01

5 15 50.97 55.47 49.40 6.36 6.78 56.27 39.89 77.55 60.94
25 80.72 82.35 78.74 8.76 8.73 68.83 60.83 93.78 87.53
50 99.29 99.34 99.06 3.86 3.68 92.24 91.66 99.94 99.77
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Table 9. Grouped heteroskedasticity (continued)
Four Groups (m = 4)

δ Ti GQ LR QLR LRu Cr Hr

F ASY MC ASY MC ASY1 ASY2 MC MC MC

1 15 - 9.70 5.25 5.7 5.3 14.41 5.75 5.34 5.60 5.30
25 - 8.05 4.64 5.23 4.92 11.82 5.35 5.01 4.96 4.94
50 - 6.70 5.05 5.24 4.90 9.02 4.98 4.93 4.65 5.26

2 15 - 24.09 15.46 16.72 15.14 29.42 15.33 13.55 13.97 14.51
25 - 34.27 25.45 27.01 25.60 37.80 23.42 21.74 20.77 24.40
50 - 57.55 50.40 52.15 50.07 58.62 48.24 46.62 36.47 48.77

3 15 - 46.38 34.23 36.42 34.04 49.70 31.98 29.03 24.83 32.19
25 - 67.58 57.20 59.13 56.94 68.72 52.91 50.93 39.34 55.89
50 - 94.03 91.31 92.09 91.10 93.27 89.02 87.82 68.41 90.42

5 15 - 76.88 65.17 66.65 63.34 77.78 60.85 56.69 38.98 63.37
25 - 94.59 90.65 91.22 89.81 94.18 87.65 85.47 60.91 89.96
50 - 99.99 99.95 99.98 99.93 99.98 99.89 99.86 91.13 99.96

BPG BPGu K Ku

ASY BRT MC ASY BRT MC ASY MC ASY MC

1 15 4.52 5.47 5.44 11.06 12.75 5.30 4.41 5.47 10.37 5.31
25 4.51 4.99 5.08 9.97 11.14 4.82 4.19 4.77 9.77 4.90
50 4.48 4.83 4.91 8.02 8.37 4.63 4.38 4.48 7.82 4.94

2 15 13.44 15.64 15.39 24.17 26.84 13.59 11.81 13.51 20.7 12.5
25 23.95 25.45 25.07 33.86 35.66 21.13 20.98 22.60 30.55 19.07
50 48.79 49.91 48.54 55.37 56.39 44.63 45.66 45.98 52.42 41.94

3 15 28.37 32.16 31.34 41.13 44.47 26.92 22.78 25.49 34.47 21.96
25 52.41 54.74 53.27 61.87 63.97 45.54 45.09 46.56 55.90 40.47
50 89.53 90.07 88.91 91.11 91.65 85.59 86.55 85.67 89.08 81.66

5 15 52.12 56.23 54.70 65.42 68.99 47.03 40.12 43.79 53.63 36.31
25 84.81 86.17 84.58 89.37 90.48 77.60 75.14 76.00 82.62 67.70
50 99.88 99.91 99.82 99.88 99.91 99.59 99.53 99.27 99.68 99.80

Glejser White C H

ASYF ASYW MC ASY MC Tab. MC Tab. MC

1 15 5.42 6.58 5.47 4.97 5.1 12.52 5.37 12.97 5.04
25 4.89 5.40 4.79 4.77 4.64 7.25 4.97 9.77 5.20
50 4.61 4.89 4.84 5.41 5.26 4.34 4.92 3.41 5.26

2 15 13.33 15.25 13.30 5.97 6.30 24.57 12.74 26.61 12.79
25 21.36 23.36 21.17 5.82 5.47 24.07 18.38 32.86 20.63
50 43.87 45.04 42.63 5.36 5.29 33.28 33.38 50.59 45.26

3 15 26.59 29.86 26.11 6.65 6.89 37.88 22.28 46.20 27.63
25 48.15 50.44 47.08 6.26 6.15 42.43 34.15 63.92 48.70
50 85.09 85.86 83.92 5.31 5.27 64.77 65.01 90.58 87.30

5 15 50.20 54.12 48.87 7.21 7.35 52.99 34.99 75.51 56.81
25 81.06 82.68 79.44 6.79 6.52 63.55 54.60 93.13 85.91
50 99.57 99.61 99.42 5.48 5.29 89.09 88.34 99.95 99.82
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behavior of the size-corrected BPG appears to be satisfactory, the modification technique yields
over-rejections when applied to BPGu. Note that Honda (1988) has also pointed out the formula
does not work well in the case of the Koenker test.18 Finally, the empirical size of the Cochran and
Hartley statistics exceeds the nominal size. In contrast, the MC versions of all the tests considered
achieve perfect size control in all cases.

5.3.2. Power

In order to compare tests of equal size, we only discuss the power of the MC tests. First of all, we
observe that the MC technique improves the effective power of the LM and White tests. Although
the correction from Honda (1988) achieves a comparable effect, its application is restricted to the
standard BPG criterion. Secondly, comparing the LR and QLR tests, there is apparently no advan-
tage to using full maximum likelihood estimation [for a similar observation in the context of SURE
models, see Dufour and Khalaf (1998, 2002b)].

In general, the tests may be ranked in terms of power as follows. LR, QLR, BPG and H
performed best, followed quite closely by the G, K and C. The W test performed poorly: its power
hardly exceeds the size. Overall, with the exception of the W test, no test is uniformly dominated.

The MC tests constructed using variance estimates from separate regressions have a slight power
disadvantage. This is somewhat expected, since the simulated samples where drawn imposing
equality of the individual regression coefficients.

Finally, note that the MC Hartley’s test compared favorably with the LM and LR test. This,
together with the fact that it is computationally so simple, suggest that the application of the MC
technique to Hartley’s criterion yields a very useful homoskedasticity test.

5.4. Tests for break in variance

The model used is (2.1) with: T = 25, 50, 100 and k = 6. The following specification for the
error variance was considered:

σ2
t = σ1 , if t ≤ τ0 ,

= σ1 + δ , if t > τ0 ,

where δ ≥ 0 and τ0 is the break time (assumed unknown). The regressors and the regression
coefficients parameters were chosen as in Section 5.3. Furthermore α0 = 1, and δ and τ0 were set
so that:

(σ1 + δ)
σ1

= 1, 4, 16 , and
τ0

T
= 0.3, 0.5 , 0.7 .

We applied the MC versions of the standard tests GQ, BPG and K (using artificial regressions
on zt = t, 1 ≤ t ≤ T ), W, G, RB, SF , SKH, SN and HM tests, as well as the proposed
combined tests F×(BPG; Ĵ(4)), Fmin(BPG; J), F×(GQ; K̂(4)), Fmin(GQ; K). For each one of
the combined tests, we considered two possible “windows” (J, K). The first one is a relatively

18Honda (1988) used an expansion proposed by Harris (1985), and it is not clear the latter is applicable to Koenker’s
test.
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uninformative “wide” window:

JA = {1, . . . , T − 1}, (5.3)

KA = S1(T, T2, k + 1, T − T2 − k − 1) , (5.4)

with T2 = [T/5]. The second set of windows were based on a predetermined interval around the
true break-date, namely we considered:

JS = {L0, L0 + 1, . . . , U0}, (5.5)

KS = S1(T, T2, τL
0 (k), τL

0 (k)), (5.6)

where T2 = [T/5],

τL
0 (k) = max {k + 1, τ0 − I[T/5]} , τU

0 (k) = min {T − k − T2, τ0 + I[T/5]} . (5.7)

This yields the statistics F×(BPG; Ĵ i
(4)), Fmin(BPG; J i), F×(GQ; K̂i

(4)), Fmin(GQ; Ki), i =
A, S. The results are reported in Table 10.

As expected, the MC versions of all the tests achieve perfect size control. The results on relative
power across tests agree roughly with those from the other experiments. Two points are worth
noting. First, a remarkable finding here is the good performance of the Szroeter-type MC tests,
which outperform commonly used tests such as the BPG and the GQ tests. For τ0/T = 0.3, the
Bartlett test performs quite well in this experiment; note however that the test is implemented with
T1 = T2 = I[T/3]. Second, the combined criteria perform well, and in several cases [especially,
with T =50, 100] exhibit the best performance. Among these tests, product-type combined criteria
perform better than min-type. The combined GQ criteria clearly dominate the standard GQ; the
same holds true for the BPG-based tests, if the search window is not uninformative. Power increases
importantly, where we consider the sup-tests maximized over the shorter, more informative window.
These results have much to recommend the intuitively appealing combined tests, in association with
the MC test method, in order to deal with problems of unknown shift in variance.

6. Conclusion

In this paper we have described how finite-sample homoskedasticity tests can be obtained for a
regression model with a specified error distribution. The latter exploit the MC test procedure which
yields simulation-based exact randomized p-values irrespective of the number of replications used.
The tests considered include tests for GARCH-type heteroskedasticity and sup-type tests against
breaks in variance at unknown points. On observing that all test criteria are pivotal, the problem
of “robustness to estimation effects” emphasized in Godfrey (1996) becomes irrelevant from our
viewpoint. It is important to note that the general approach used here to obtain exact tests is not
limited to the particular case of normal errors. In particular, the method proposed allows one to
consider non-normal – possibly heavy-tailed (e.g., Cauchy) – error distributions, for which standard
asymptotic theory would not apply.

The results of our simulation experiments suggest that Hartley-type and Szroeter-type tests seem
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Table 10. Break in variance at unknown points

T = 25 H0 τ0/T = 0.3 τ0/T = 0.5 τ0/T = 0.7

σ2/σ1 1 2 4 2 4 2 4

GQ F 3.9 8.8 16.1 21.5 73.1 17.1 62.5

BPG ASY 4.1 9.8 17.1 22.9 52.9 33.0 77.0

BRT 4.1 9.8 17.3 22.9 53.0 33.1 77.2

MC 5.0 10.8 17.7 24.6 54.4 33.2 79.0

K ASY 5.6 10.2 16.2 22.7 39.6 28.7 56.9

MC 5.5 9.7 15.4 20.9 38.2 26.5 54.7

W ASY 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MC 4.4 5.5 4.2 8.3 8.0 7.8 11.1

G ASYF 6.0 12.9 22.0 24.3 50.2 27.5 60.9

ASYW 7.7 15.1 25.8 27.9 55.0 31.6 65.5

MC 5.9 12.1 20.2 22.2 47.9 26.1 58.4

RB ASY 5.2 15.9 33.3 22.3 55.0 34.9 81.8

MC 4.0 13.8 30.0 19.3 50.3 31.8 79.8

SF MC 7.0 20.6 33.4 44.5 83.1 39.0 83.8

SN ASY 4.9 17.7 29.0 37.8 68.4 45.1 87.2

MC 5.9 19.2 31.1 38.9 69.4 46.4 86.6

SKH Beta 5.8 20.6 33.5 44.3 76.6 49.8 90.0

Bound 0.1 1.4 3.4 7.0 24.0 11.7 54.4

Bound inconc. 39.1 75.1 82.6 81.7 74.8 76.7 45.1

MC 6.2 19.9 30.9 42.6 73.5 47.7 88.6

HM Bound 0.0 0.5 1.2 4.0 23.4 1.9 17.0

Bound inconc. 22.8 51.6 61.4 78.4 75.1 71.2 79.3

MC 6.1 20.2 29.8 42.6 86.8 36.9 82.7

Tests maximized over the whole sample

F×(BPG; ĴA
(4)) MC 5.2 11.1 14.0 24.1 46.2 40.9 80.6

Fmin(BPG; ĴA
(4)) MC 4.4 8.9 10.7 18.4 32.2 32.6 70.6

F×(GQ; ĴA
(4)) MC 5.6 18.6 31.3 35.4 83.2 31.8 78.4

Fmin(GQ; ĴA
(4)) MC 4.8 16.5 27.9 29.1 77.6 26.8 73.5

Tests maximized over a sub-sample

F×(BPG; ĴS
(4)) MC 5.5 8.8 17.3 33.6 68.2 48.7 86.9

Fmin(BPG; ĴS
(4)) MC 5.5 8.8 17.3 33.6 68.2 48.7 86.9

F×(GQ; ĴS
(4)) MC 5.6 19.2 32.5 35.4 83.2 32.2 72.3

Fmin(GQ; ĴS
(4)) MC 5.6 19.2 32.5 35.4 83.2 32.2 73.2
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Table 10. Break in variance at unknown points (continued)

T = 50 H0 τ0/T = 0.3 τ0/T = 0.5 τ0/T = 0.7

σ2/σ1 1 2 4 2 4 2 4

GQ F 5.5 .35 59.9 71.2 99.8 57.1 99.3

BPG ASY 5.3 32.6 59.3 67.0 96.5 73.7 99.6

BRT 5.5 33.7 60.6 68.5 96.7 75.0 99.7

MC 5.8 33.7 59.1 67.2 96.3 73.2 99.6

K ASY 5.2 29.5 50.3 58.6 86.4 62.5 96.1

MC 5.5 29.8 47.7 57.2 85.6 61.8 95.7

W ASY 1.9 2.0 1.5 1.0 0.4 1.4 1.5

MC 3.6 3.5 3.5 1.9 1.0 3.2 3.2

G ASYF 5.3 37.0 69.6 63.0 95.1 58.8 97.5

ASYW 5.8 39.7 71.6 64.8 95.5 60.9 97.7

MC 5.4 35.9 68.0 60.6 93.8 56.5 97.1

RB ASY 5.2 53.1 89.1 55.7 96.8 72.7 1.0

MC 4.9 50.2 87.2 55.0 96.6 69.8 99.7

SF MC 7.2 47.0 70.3 82.9 99.5 73.3 99.4

SN ASY 5.6 47.7 72.3 80.8 99.1 82.3 99.9

MC 6.2 45.5 70.8 77.4 98.1 80.4 99.7

SKH Beta 9.0 58.5 79.5 87.9 99.8 87.1 1.0

Bound 1.3 18.8 41.3 53.9 94.3 59.4 99.3

Bound inconc. 22.8 64.5 52.0 42.7 5.7 36.0 0.7

MC 6.8 46.7 71.9 81.9 99.0 81.1 99.8

HM Bound 0.6 15.7 28.5 68.1 99.3 39.4 97.4

Bound inconc. 16.8 45.5 49.3 29.4 0.7 49.3 2.6

MC 5.6 35.5 54.7 89.6 99.9 69.3 99.2

Tests maximized over the whole sample

F×(BPG; ĴS
(4)) MC 5.3 16.1 26.1 45.3 86.7 72.5 99.5

Fmin(BPG; ĴS
(4)) MC 5.5 12.7 18.0 31.7 66.5 62.6 98.7

F×(GQ; ĴS
(4)) MC 5.6 56.8 98.6 79.1 100 73.3 99.7

Fmin(GQ; ĴS
(4)) MC 6.0 50.0 98.2 71.6 99.8 67.2 99.4

Tests maximized over a sub-sample

F×(BPG; ĴS
(4)) MC 6.0 38.0 79.8 76.9 99.4 81.7 99.9

Fmin(BPG; ĴS
(4)) MC 5.8 37.1 77.8 75.7 99.2 79.4 99.9

F×(GQ; ĴS
(4)) MC 5.4 60.7 98.0 80.0 99.9 74.9 99.7

Fmin(GQ; ĴS
(4)) MC 6.2 53.1 98.3 78.7 100 75.0 99.5
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Table 10. Break in variance at unknown points (continued)

T = 100 H0 τ0/T = 0.3 τ0/T = 0.5 τ0/T = 0.7

σ2/σ1 1 2 4 2 4 2 4

GQ F 5.6 65.8 87.7 97.4 100 91.9 100

BPG ASY 5.2 65.8 92.3 96.0 100 95.6 100

BRT 5.7 67.1 92.7 96.4 100 95.7 100

MC 5.9 65.2 92.7 95.8 100 95.3 100

K ASY 5.3 59.0 82.4 91.9 99.6 92.1 99.9

MC 5.5 58.5 82.9 90.8 99.2 92.4 99.9

W ASY 4.5 2.7 2.0 4.0 2.8 5.1 5.3

MC 4.3 3.1 2.5 3.9 2.7 6.0 5.3

G ASYF 5.4 69.5 97.8 93.8 100 88.9 100

ASYW 5.4 70.6 98.0 94.0 100 89.2 100

MC 5.1 68.3 97.1 92.4 100 88.5 100

RB ASY 5.4 86.0 98.7 90.6 100 96.3 100

MC 4.9 86.0 98.4 89.9 100 95.4 100

SF MC 5.5 74.5 91.9 98.2 100 95.3 100

SN ASY 4.9 78.4 96.4 98.4 100 97.7 100

MC 5.5 78.5 95.6 98.0 100 97.9 100

SKH Beta 8.1 85.7 98.1 98.9 100 98.4 100

Bound 1.5 57.1 87.4 96.0 100 94.2 100

Bound inconc. 12.3 34.7 11.8 3.5 0.00 4.9 0.00

MC 5.3 77.4 95.2 98.2 100 97.6 100

HM Bound 1.8 41.3 67.1 98.7 100 85.7 100

Bound inconc. 8.9 34.7 21.5 1.2 0.00 12.1 0.00

MC 5.2 61.1 79.6 99.7 100 93.6 100

Tests maximized over the whole sample

F×(BPG; ĴA
(4)) MC 5.9 26.3 52.3 82.5 100 94.6 100

Fmin(BPG; ĴA
(4)) MC 5.9 20.0 33.1 64.5 99.3 90.0 100

F×(GQ; ĴA
(4)) MC 5.6 91.5 100 97.3 100 96.0 100

Fmin(GQ; ĴA
(4)) MC 5.4 89.1 100 96.6 100 94.3 100

Tests maximized over a sub-sample

F×(BPG; ĴS
(4)) MC 5.5 83.4 100 98.1 100 98.2 100

Fmin(BPG; ĴS
(4)) MC 5.2 82.6 100 97.8 100 98.2 100

F×(GQ; ĴS
(4)) MC 5.7 94.4 100 98.2 100 96.8 100

Fmin(GQ; ĴS
(4)) MC 5.1 92.7 100 98.0 100 96.8 100
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to be the best choice in terms of power. Such tests have not gained popularity given the non-standard
null distribution problem which we have solved here. We have introduced various MC combined
tests, based on the minimum (sup-type tests) or the product (Fisher’s combination method) of a set
of p-values, and demonstrated their good performance. Although the particular test statistics con-
sidered here are designed against a two-regime variance, it would be straightforward to implement,
with similar MC methods, statistics aimed at detecting a larger number of variance regimes. Finally,
in the context of conditional heteroskedasticity, we have solved the unidentified nuisance parameter
problem relating to ARCH-M testing.

The test procedures presented in this paper are provably valid (in finite samples) for paramet-
ric regression models with fixed (or stochastic strictly exogenous) regressors as described in the
assumptions (2.1) - (2.4). To the extent that the test statistics considered have the same asymp-
totic distribution under less restrictive regularity conditions, it is straightforward to see that the
simulation-based tests presented here will also be asymptotically valid under these assumptions [for
further discussion of this general asymptotic validity, see Dufour and Kiviet (1998, 2002)]. It would
undoubtedly be of interest to develop similar finite-sample procedures that would be applicable to
other models of econometric interest, such as: (1) dynamic models; (2) models with endogenous
explanatory variables (simultaneous equations); (3) nonparametric models (especially with respect
to the assumptions made on the disturbance distribution); (4) nonlinear models. These setups go
beyond the scope of the present paper and are the topics of ongoing research.
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