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ABSTRACT

In this paper, we propose several finite-sample specification tests for multivariate linear regressions
(MLR). We focus on tests for serial dependence and ARCH effects with possibly non-Gaussian
errors. The tests are based on properly standardized multivariate residuals to ensure invariance to
error covariances. The procedures proposed provide: (i) exact variants of standard multivariate
portmanteau tests for serial correlation [Hosking (1980)]as well as ARCH effects [Duchesne and
Lalancette (2003)], and (ii) exact versions of the diagnostics presented by Shanken (1990) which are
based on combining univariate specification tests. Specifically, we combine tests across equations
using a Monte Carlo (MC) test method so Bonferroni-type bounds can be avoided. The procedures
considered are evaluated in a simulation experiment: the latter shows that standard asymptotic pro-
cedures suffer from serious size problems, while the MC tests suggested display excellent size and
power properties, even when the sample size is small relative to the number of equations, with nor-
mal or Student-t errors. The tests proposed are applied to the Fama-French three-factor model. Our
findings suggest that thei.i.d. error assumption provides an acceptable working frameworkonce
we allow for non-Gaussian errors within 5 year subperiods, whereas temporal instabilities clearly
plague the full-sample data set.

Key words : capital asset pricing model; CAPM; non-normality; multivariate linear regression;
exact test; Monte Carlo test; bootstrap; nuisance parameters; multivariate specification test; multi-
variate diagnostics; ARCH effects; multivariate varianceratio test.

Journal of Economic Literature classification: C3; C12; C33; C15; G1; G12; G14.
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1. Introduction

The multivariate linear regression (MLR) model is one of themost widely used models in statis-
tics, econometrics and finance; see Stewart (1997), Dufour and Khalaf (2002b) and the references
therein. Well-known financial applications include: (i) tests of market portfolio efficiency in the
context of the capital asset pricing model (CAPM) [see Shanken (1986), MacKinlay (1987), Gib-
bons, Ross and Shanken (1989), Affleck-Graves and McDonald (1989), Zhou (1993), Fama and
French (1993, 1995), Shanken (1996), and Beaulieu, Dufour and Khalaf (2007)]; (ii) spanning tests
[see De Roon and Nijman (2001) and the references therein]; and (iii) event studies [Binder (1985),
Schipper and Thompson (1985)]. This paper focuses on diagnostic procedures designed to check
the statistical assumptions underlying such tests. Indeed, a common feature of MLR models con-
sists in assuming that the disturbances in different equations are correlated across equations, but
otherwise constitute independent identically distributed (i.i.d.) random vectors. Violation of the
latter condition can affect the inferences based on the model (such as mean-variance efficiency or
spanning tests). This underscores the importance of performing diagnosticsbeforeimplementing
the tests.

As emphasized by Kroner and Ng (1998), the existing literature on multivariate diagnostics is
sparse compared to the univariate case. Perhaps because of this, diagnostics in empirical MLR-
based financial studies – such as Engle’s ARCH test (Engle (1982)), the Ljung-Box [Ljung and
Box (1978)] and variance ratio [Lo and MacKinlay (1988, 1989)] tests – are often conducted on an
equation by equation basis. Although univariate tests can provide some guidance, contemporaneous
correlation of disturbances entails that statistics from individual equations are not independent, so
combining test decisions over all equations raises joint testing problems; for insights and empirical
evidence on the importance of multivariate diagnostic testing in finance, seee.g. Richardson and
Smith (1993) and Shanken (1990).

In this context, joint diagnostics are typically based either on asymptotic approximations or
on Bonferroni-type bounds. The procedures suggested following the first approach involve test
statistics which formally incorporate cross-sectional dependence, yet are asymptotically free of nui-
sance parameters; see Godfrey (1988), Richardson and Smith(1993), and the recent literature on
multivariate GARCH which may be traced back to Bollerslev, Engle and Wooldridge (1988) [see
Engle and Kroner (1995), Kroner and Ng (1998) and the survey in Bauwens, Laurent and Rombouts
(2006)]. Although this may lead to convenient test procedures, including the well known portman-
teau serial-correlation test [Hosking (1980)] and its ARCHextensions [Duchesne and Lalancette
(2003), Ling and Li (1997)], the fact remains that cross-equation correlations can still affect the
null distributions of the test statistics in finite samples.In systems with many equations (e.g., many
portfolios), the number of correlations can be quite large relative to the sample size, leading to seri-
ous degrees-of-freedom losses and size distortions. As a result, asymptotic approximations perform
poorly in finite samples; see Shanken (1996), Campbell, Lo and MacKinlay (1997, Chapter 5), and
Dufour and Khalaf (2002a, 2002b, 2003). Alternatively, Bonferroni-based bound joint tests require
one to divide the significance level of each individual test by the number of tests [see Dufour (1990),
Shanken (1990), Dufour and Torrès (1998), Dufour and Khalaf(2002a)]. While this guards against
spurious rejections, it can also lead to severe power lossesif the number of equations is large. De-
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spite the above problems, very few finite sample exact specification tests have been proposed for
MLR models.1

In this paper, we consider the problem of testing the specification of MLR models. We focus
on: (1) detecting the presence of ARCH-type heteroskedasticity, and (2) detecting (linear) serial de-
pendence. We propose procedures based on least squares residuals, hence computationally simple.
In order to avoid the nuisance parameter problem raised by the unknown error covariance matrix,
we apply a multivariate rescaling transformation which eliminates the unknown covariance matrix
from the residual distribution. In this way, we get multivariate standardized residuals which are
location-scale invariant, hence do not depend on the (unknown) regression coefficients or the error
covariance matrix.

The tests against ARCH effects include multivariate extensions of the univariate procedures
proposed by Engle (1982) and Lee and King (1993), as well as exact variants of the multivariate
procedures studied by Duchesne and Lalancette (2003). The tests for linear serial dependence are
multivariate versions of the univariate portmanteau Ljung-Box [Ljung and Box (1978)] and variance
ratio [Lo and MacKinlay (1988, 1989)] tests, and exact variants of the multivariate diagnostics
proposed by Hosking (1980). All these tests are applied to properly standardized residuals. None
of the exact procedures is based on a Bonferroni bound [i.e. they do not require one to divide
the significance level by the number of equations], with obvious consequences on test power. To
overcome multiple-test difficulties as well as the fact thatthe test statistics have distributions which
are difficult to evaluate analytically, we obtain exact testp-values via the Monte Carlo (MC) test
technique [Dwass (1957), Barnard (1963), Dufour and Kiviet(1996, 1998), Dufour (2006)];i.e.,
the level condition is satisfied for any given sample size, using a finite (possibly small) number of
MC replications.

The proposed multivariate procedures also constitute an interesting contribution to the theory
of simulation-based testing. We show that the MC technique allows one to use asymptoticp-values
in the construction of an exact test, even though thesep-values could lead to highly inaccurate
inference if used in the conventional way. Indeed, our jointtest procedure involves converting
all individual tests to an approximatep-value form, in order to combine them (e.g., through their
minimum). When the overall procedure is simulated, the factthat approximate or asymptotic distri-
butions are used to obtain the individualp-values does not precludeexactlycontrolling the level of
the test.

Our methodology also deals, from a finite-sample perspective, with non-normal errors. For-
mally, this allows one to test for time varying variances with fat-tailed error distributions, such as
the Student-t with possibly unknown degrees of freedom. The latter parameter typically affects the
null distribution of the diagnostic test statistic. To control the significance level given such diffi-
culties, we apply a “maximized MC” (MMC) test, where the MCp-value for the tested hypothesis
(which depends on the nuisance parameter) is maximized overthe relevant nuisance parameter set
[Dufour (2006)].

The procedures considered are evaluated in a simulation experiment. Our results reveal that
standard multivariate procedures including Bonferroni-based ones suffer from serious size prob-

1One exception includes work on testing the independence between the disturbances in different equations [see Dufour
and Khalaf (2002a)]. But this problem is relatively simple, for the null hypothesis sets the error covariances to zero.
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lems. In contrast, our MC and MMC tests display excellent size and power properties, even when
the sample size is small relative to the number of equations.

The tests proposed are applied to the Fama-French three-factor model, using monthly data for
the period 1965-2000. We analyze the model over the full sample, as well as over 5-year subperiods.
Our results reveal temporal instabilities for the full-sample data set. In general however, significant
departures from thei.i.d. hypothesis are less evident over the subperiods, once we allow for non-
Gaussian errors. These results, in view of our simulation study [which illustrates the power of
our tests for sample designs compatible with our subperiod analysis], suggest that thei.i.d. error
assumption provides an acceptable working framework for the Fama-French model, within 5 year
subperiods, but not over a longer time span.

The paper is organized as follows. In Section 2, we describe the statistical framework studied
and derive the relevant invariance results which underlie our finite-sample testing approach. In
Section 3, we present the test criteria considered and the associated testing strategy. The simulation
study is reported in Section 4. Section 5 presents our empirical analysis. We conclude in Section 6.

2. Framework and distributional theory

Many asset pricing models take the multivariate regressionform

Y = XB + U (2.1)

whereY = [y1, . . . , yn] is a T × n matrix of observations onn dependent variables,X is an
T × k full-column rank matrix,B is ak ×n matrix of unknown coefficients,U = [u1, . . . , un] =
[U1, . . . , UT ]′ is aT × n matrix of random errors withui = (ui1, . . . , uiT )′, i = 1, . . . , n. For
instance, ans-factor asset pricing model can be written as

rit = ai +
s

∑

j=1

bij r̃jt + uit, t = 1, . . . , T, i = 1, . . . , n, (2.2)

whererit = Rit−RF
t , r̃jt = R̃jt−RF

t , Rit, i = 1, . . . , n, are returns onn portfolios (over period
t), RF

t is the riskless rate of return,̃Rjt, j = 1, ... , s are returns ons benchmark factors, anduit is
a random disturbance. Clearly, this model is a special case of (2.1) where

Y = [r1, . . . , rn] , ri = (ri1, . . . , riT )′, i = 1, . . . , n, (2.3)

X = [ιT , r̃1, . . . , r̃s] , rj = (r̃j1, . . . , r̃jT )′, j = 1, . . . , s, (2.4)

k = s + 1, ιT is a vector of ones, andU is theT × n matrix which includes the errorsuit.
We assume we can condition onX, i.e. we can takeX as fixed for statistical analysis. Further-

more, we restrict the error distribution as follows:

Ut = JWt, t = 1, . . . , T, (2.5)

whereJ is an unknown non-singular lower triangular matrix, and thevectorvec(W1, . . . , WT )
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has a distribution which is either: (i) fully specified, or (ii) specified up to an unknown nuisance
parameterν. Let W = [w1, . . . , wn] = [W1, . . . , WT ]′ , wi = (wi1, . . . , wiT )′ so (2.5)
entails that

W = U(J−1)′ . (2.6)

This restriction aims to sort-out the following two characteristics of the error distribution: (i) the
random termWt so the joint distribution ofvec (W1, . . . , WT ) gives the fundamental data gener-
ating process [DGP]; and (ii) the matrixJ which sets the “scale”, defined as

Σ = JJ ′,

i.e. J sets both variance parameters and coefficients representing cross-equation correlations. Spe-
cial cases of (2.5) [considered in Section 5] include thei.i.d. Gaussian assumption:

W1, . . . , WT
i.i.d.
∼ N [0, In] , (2.7)

and the case whereW1, . . . , WT arei.i.d. Student,

W1, . . . , WT
i.i.d.
∼ t(κ) , (2.8)

where the degree-of-freedom parameterκ is either: (i) known [hence, the fundamental DGP is free
of nuisance parameters], or (ii) unknown and needs to be estimated from the data [κ is a nuisance
parameter].

The least squares estimate ofB is B̂ = (X ′X)−1X ′Y with corresponding residuals

Û =
[

û1, . . . , ûn

]

=
[

Û1, . . . , ÛT

]

, ûi = (ûi1, . . . , ûiT )′. (2.9)

Note that the Gaussian-based quasi maximum likelihood estimators for this model arêB and

Σ̂ =
1

T
Û ′Û . (2.10)

The statistics we consider are based on the multivariate standardized residual matrix

W̃ = Û S−1

Û
(2.11)

whereSÛ is the Cholesky factor ofT−1Û ′Û , i.e. SÛ is the (unique) upper triangular matrix such
that

Σ̂ = S′

Û
SÛ , Σ̂−1 =

(

Û ′Û/T
)−1

= S−1

Û

(

S−1

Û

)′
. (2.12)

For presentation clarity, we use the following notation:W̃ =
[

w̃1, . . . , w̃n

]

=
[

W̃1, . . . , W̃T

]′
,

w̃i = (w̃i1, . . . , w̃iT )′, so (2.11) implies

W̃t =
(

S−1

Û

)′
Ût. (2.13)
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The validity of our proposed diagnostics relies on the following representation of̃W .

Theorem 2.1 INVARIANCE OF CHOLESKY-STANDARDIZED MULTIVARIATE RESIDUALS. Un-
der (2.1), and for all error distributions compatible with(2.5), the standardized residual matrix
defined in(2.11) satisfies the identity

W̃ = Û S−1

Û
= Ŵ S−1

Ŵ
(2.14)

whereŴ = MW , M = I −X(X ′X)−1 X ′ andSŴ is the Cholesky factor ofT−1Ŵ ′Ŵ , and thus
follows a distribution which does not depend onB andJ.

The proofs of the theorems appear in Appendix A. Equation (2.14) reexpresses the standardized
residualW̃ as a function ofŴ = MW , which implies that the distribution of̃W is completely
determined by the distribution ofW givenX. Under assumption (2.5), the distribution ofW does
not depend onB nor J . For example, under (2.7),W1, . . . , WT are i.i.d. N [0, In] , while under
(2.8) the distribution ofW1, . . . , WT is defined by the degrees-of-freedom parameterκ. This
entails thatB andJ (and thusΣ) are simply evacuated from the distribution ofW̃ . This invariance
result holds for all statistics which depend on the data onlythroughW̃ , when the MLR is estimated
in the (2.1) form.2

Theorem2.1 has crucial implications for diagnostic tests associated with model (2.1)-(2.5)
[which becomes, in this case, the null hypothesis]. Indeed,the recent theory of MC test meth-
ods [Dufour (2006)] allows to make use of such invariance properties to derive valid testp-values.
The MC method is an exact simulation-based procedure which yields an empiricalp-value [denoted
p̂N ( · )] for the considered test statistic, based on the rank of the observed statistic relative to a set
of N simulated ones. The latter are drawn imposing the null hypothesis. The MC procedure thus
relates to the parametric bootstrap, in the sense that it entails simulating the null distribution of the
test statistic.

When the latter simulated distribution does not involve unknown parameters, the MC test
method perfectly controls the size of the test for givenT andN . For the problem under consid-
eration, this occurs whenvec(W1, . . . , WT ) has a fully specified distribution. In this case, exact
p-values can be obtained as long as the statistic considered,sayS = S(Û ), can be rewritten as a
function ofW andX :

S = S(Û) = S̄ (W, X) . (2.15)

As in Theorem2.1, the latter notation implies that the function̄S (W, X) evacuatesB andJ (and
thusΣ) out. In view of Theorem2.1, this leads to consider statistics – presented below, in Section
3 – which depend on the data only throughW̃ .

Whenvec(W1, . . . , WT ) has a distribution which depends on an unknown parameterν, any
relevant [i.e. conforming with the null hypothesis] value forν can lead to an empiricalp-value
[based on the rank of the observed statistic relative to a setof N simulated ones, drawn given the

2This invariance result may not hold ifS′

Û
SÛ is replaced by another “plausible” factorization ofΣ̂; for example,

the appropriate invariance does not occur if the Cholesky factor SÛ is replaced by the usual square rootΣ̂1/2 [for the
definition of the square root of a matrix, see Harville (1997,section 21.9)]. This is easy to check numerically.
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value ofν in question]; this leads to ap-value “function”, denoted̂pN ( · | ν). In this case, standard
bootstrap methods rely on a consistent point estimateν̂ of ν which imposes the null hypothesis; the
associated approximatep-value [i.e. p̂N ( · | ν̂)] would lead, under standard regularity conditions,
to an asymptotically [for infiniteT andN ] valid test. We rather rely on a sup-type MC procedure
[introduced by Dufour (2006) and denoted maximized MC (MMC)] which controls the significance
level by construction, for finiteT andN . The associated critical region corresponds to referring the
supremumsupν [p̂N ( · | ν)] to a given levelα.

We also consider a modified version of the MMC technique [see Dufour (2006) and Dufour and
Kiviet (1996)] denoted confidence-set-based MMC (CSMMC) which involves two stages: (1) an
exact confidence set is built forν, and (2) the MCp-valuep̂N (.|ν) is maximized over all values of
ν in the latter confidence set. For an overallα-level, the confidence set and the CSMMC test should
be applied with levels1 − α1 andα − α1, respectively. Detailed algorithms for all the statisticswe
consider is provided in Section 3.

There are no theoretical arguments which favor either MMC orCSMMC methods. While the
MMC method may appear relatively conservative (since the MCp-value is considered over all val-
ues ofν irrespective of the sample information on this parameter),recall that the CSMMCp-value
(which, in contrast, uses estimated values ofν) needs to be referred toα − α1. Nevertheless, it is
intuitively appealing to consider a CSMMC procedure where the underlying confidence set incor-
porates information on the goodness-of-fit (GF) of the hypothesized error distribution. In this way,
we formally deal with the joint characteristic of the null hypothesis which imposes distributional
constraints, in addition to the properties under test (here: no serial correlation, no ARCH effects).

Note finally that the invariance result of Theorem2.1 holds for multivariate linear models and
does not necessarily apply to nonlinear models. Extensionsto such models may be feasible – for
example, through an exploitation of the MMC method – but thisgoes beyond the scope of this paper.

3. Multivariate specification tests

In this section, we use the above results to derive multivariate specification tests. The proposed
tests are formally valid for any parametric null hypothesisof type (2.5). In Section (5), we focus on
assumptions (2.7) and (2.8) with unknownκ.

3.1. Combined equation-by-equation tests

Standard diagnostics may be applied to the residuals of eachequation in (2.1). We focus on serial
dependence tests based on the popular Ljung-Box [Ljung and Box (1978)] statistic (applied to the
i-th equation)

LB i = T (T + 2)

G
∑

g=1

ρ̂2
ig

T − g
, ρ̂ig =

∑T
t=g+1 ûitûi,t−g
∑T

t=1 û2
it

(3.1)
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and the variance ratio [Lo and MacKinlay (1988, 1989)] statistic

VRi = 1 + 2

G
∑

g=1

(

1 −
g

G

)

ρ̂ig , (3.2)

whereG refers to the maximum number of lags used. We also consider tests for ARCH effects based
on Engle-type procedures [Engle (1982), Lee and King (1993)]. The Engle statistic for equationi
(denotedEi), is given byT × (the coefficient of determination in the regression of the equation’s
squared OLS residualŝu2

it on a constant and̂u2
i,t−g, g = 1, . . . , G). Lee-King’s (one-sided)

statistic [for equationi] whereσ̂2
i = 1

T

∑T
t=1 û2

it is:

LK i =

{

(T − G)
T
∑

t=G+1

[

(û2
it/σ̂

2
i ) − 1

]

G
∑

g=1
û2

i,t−g

}

/
{ T

∑

t=G+1
[(û2

it/σ̂
2
i ) − 1]2

}1/2

{

(T − G)
T
∑

t=G+1

( G
∑

g=1
û2

i,t−g

)2
−

( T
∑

t=G+1

G
∑

g=1
û2

i,t−g

)2}1/2
. (3.3)

In view of Theorem2.1, we obtain standardized versions of these test statistics,denoted respec-
tively L̃B i, ṼRi, Ẽi andL̃K i, replacingûit by w̃it [the elements of the matrix̃W from (2.11)] in
the formula for these statistics.̃LB i, ṼRi, Ẽi andL̃K i, i = 1, . . . , n, satisfy the conditions of
Theorem2.1 by construction. Hence, under (2.5), theirjoint distribution does not depend on the
regression coefficientB nor the scale parameterΣ. We next construct the combined statistics:

L̃B = 1 − min
1≤i≤n

[

p
(

L̃B i

)]

, ṼR = 1 − min
1≤i≤n

[

p
(

ṼRi

)]

(3.4)

Ẽ = 1 − min
1≤i≤n

[

p
(

Ẽi

)]

, L̃K = 1 − min
1≤i≤n

[

p
(

L̃K i

)]

, (3.5)

wherep
(

ṼRi

)

, p
(

L̃B i

)

, p
(

Ẽi

)

andp
(

L̃K i

)

are individualp-values associated with̃LB i, ṼRi, Ẽi

and L̃K i; these may be derived via the MC method, or using approximatenull distributions. In
Section 5, we use (respectively) the asymptotic distributions: (VRi − 1)

asy
∼ N [0, 2(2G − 1)(G −

1)/3G] , LB i
asy
∼ χ2(G) , Ei

asy
∼ χ2(G) andLK i

asy
∼ N [0, 1].

While several alternative combination procedures are available,3 we focus on the form
(

1 −
min1≤i≤n

[

p
(

·
)])

which extends Tippett’s procedure [Tippett (1931)] to the non-independent tests
context. This procedure is intuitively appealing for the following reasons: the combined test rejects
the null hypothesis if at least one of the individual (standardized) tests is significant. This is closely
related to a Bonferroni-type procedure (as considerede.g. by Shanken (1990) in the context of an
asset pricing problem similar to the one we study in Section 5), with the following fundamental
difference: by the Boole-Bonferroni bound, the joint test is significant at levelα, if at least one
individual p-value is less than or equal toα/n (α divided by the number of tests). In contrast, we
obtain a jointp-value, using the MC test method, for each of the combined statistics, so that such a

3Seee.g.Dufour and Khalaf (2002a), Dufour, Khalaf, Bernard and Genest (2004), Dufour and Torrès (1998), Westfall
and Young (1993), Savin (1984), Folks (1984) and Dufour, Farhat and Khalaf (2004).
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level adjustment is no longer required; this yields obviouspower advantages.
The following algorithm summarizes the MC procedure we use.For presentation clarity, we

focus on the combined Engle testẼ; of course, the same procedure is applied to all criteria presented
so far. Under thei.i.d. normal hypothesis (2.7), we proceed as follows.

1. From the observed data, compute the value ofẼ [using (3.5)] and denote it̃E(0).

2. ObtainN draws from the distribution ofW [here (2.7)]; denote the drawn variatesW (j),
j = 1, . . . , N .

3. For each draw, calculatêW (j) = MW (j), S
(j)

Ŵ
, the Cholesky factor ofT−1Ŵ (j)′Ŵ (j), and

W̃ (j) = Ŵ (j)
(

S
(j)

Ŵ

)−1
=

[

w̃
(j)
1 , . . . , w̃(j)

n

]

(3.6)

wherew̃
(j)
i =

(

w̃
(j)
i1 , . . . , w̃

(j)
iT

)′
, i = 1, . . . , n.

4. The simulated Engle criterion for equationi and the MC drawj, which will be denotedE(j)
i ,

obtains asT × (the coefficient of determination in the regression of the squaredw̃
(j)
it on

their G lags). ComputeẼ(j) = 1 − min1≤i≤n

[

p
(

Ẽ
(j)
i

)]

, using the same distribution for

approximatingp
(

Ẽ
(j)
i

)

– such as theχ2(G) – as in step 1.

5. GivenẼ(j), j = 1, . . . , N , compute the number of simulated values greater than or equal to
Ẽ(0) [denotedNĜN (Ẽ(0))]. The MCp-value is

p̂N

(

Ẽ
)

= [NĜN

(

Ẽ(0)
)

+ 1]/(N + 1). (3.7)

The null hypothesis is rejected at levelα whenp̂N

(

Ẽ
)

≤ α.

Providedα(N + 1) is an integer, the above test procedure has sizeα (for finite T and N ),
becauseẼ(0), Ẽ(1), . . . , Ẽ(N) are exchangeable under the null hypothesis; see Dufour (2006).
The similarities and differences between our test as described and a naive bootstrap can be explicitly
seen from the latter algorithm. Indeed, under thei.i.d. normal hypothesis (2.7), a naive parametric
bootstrap could be implemented replacing step 3 by the following.

3*. For each draw,W (j), j = 1, . . . , N , and conditional on the observed regressor matrix, the
MLR form (2.1), the Cholesky factor [SÛ ] of the observed (calculated from the observed
data) matrix and the observed OLS estimatorB̂, reconstruct

Y (j) = XB̂ + W (j)SÛ , j = 1, . . . , N.

For eachj, regressY (j) on X and obtain the associated residual matrixÛ (j), Σ̂(j) =

T−1Û (j)′Û (j) and its associated Cholesky factorS
(j)

Û
, which leads to a series ofN simu-

lated standardized residuals̃W (j) = Û (j)
(

S
(j)

Û

)−1
, j = 1, . . . , N .
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Now in view of Theorem2.1, we see that the latter can be drawn equivalently as described in
step 3 (this is also easy to check numerically). So whenvec(W1, . . . , WT ) has a fully specified
distribution [i.e., no unknown parameter needs to be specified to obtain theW (j), j = 1, . . . , N
draws], the MC test method is closely related to the naive parametric bootstrap. Exactness (for finite
N andT ) under our assumptions requires ap-value function as defined in (3.7) [notice the division
byN+1] and a choice ofN such thatN+1 is an integer. In contrast, whenvec(W1, . . . , WT ) has a
distribution which depends on an unknown parameterν, our method differs markedly from the naive
bootstrap because we do not use a point estimate ofν to obtain the drawsW (j), j = 1, . . . , N .
Specifically, for the case of (2.8) whereκ is an unknown nuisance parameter, we proceed as follows.

For each acceptable value ofκ – we consider integer values ranging from2 to T − 2 − n (our
effective sample size) – applying steps 2-4 above withW (j) according to the Student-t distribution
[as in (2.8)], leads to a series of empiricalp-values we denotêpN

(

Ẽ|κ
)

. Clearly, our notation
implies thatp̂N

(

Ẽ|κ
)

defines a MCp-value function [an empiricalp-value, as a function ofκ]. The
MMC procedure involves relying on the maximalp-value, so the MMC critical region for a test with
levelα is

sup
κ

[p̂N (Ẽ|κ)] ≤ α.

We also consider the CSMMC modification to the latter technique, which involves two stages: (1)
an exact confidence set denotedCS(κ), with level α1, is built for κ [the procedure, introduced in
Dufour, Khalaf and Beaulieu (2003), which we apply for this purpose is summarized in Appendix
B], and (2) the MCp-valuep̂N (Ẽ|κ) is maximized over all values ofκ in the latter confidence set.
Because of the pre-estimation stage, if an overallα-level test is desired, then a CSMMC critical
region obtains as

sup
κ∈CS(κ)

[p̂N (Ẽ|κ)] ≤ α − α1.

In Section 5, we considerα1 = 0.025. The MMC [or CSMMC]p-values so obtained will be referred
to α [or toα−α1] and not toα/n [or to (α − α1) /n]. It is evident that whenn is large (we consider
n = 25 portfolios in Section 5), this leads to sizeable power improvements relative to Bonferroni
procedures.4

3.2. Multi-equation portmanteau criteria

In addition to the above combined criteria, we propose exactMC tests based on (standardized, when
necessary) multi-equation portmanteau statistics. To define these statistics we use the following
notation: for a givenT × n matrixZ = [Z1, . . . , ZT ]′, let

CZ(g) = T−1
T

∑

t=g+1

ZtZ
′
t−g, g = 0, 1, . . . , G.

4The combined procedure presented here remains exact even ifapproximate individualp-values are used in the for-
mulae for the combined statistics. Indeed, our joint test procedure starts by converting all individual test statistics to
somep-value form, in order to combine them through their minimum;even if the latter ”conversion” is performed using
asymptotic distributions, the test’s global level is controlled exactlywhen the overall procedure is simulated,i.e. when
the MC technique is applied to the combined statistic.
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We consider the serial-dependence statistic of Hosking (1980),

HM = T 2
G

∑

g=1

(T − g)−1tr
{

CÛ (0)−1CÛ (g)CÛ (0)−1CÛ (g)′
}

(3.8)

and the extension aimed at detecting ARCH effects proposed by Duchesne and Lalancette (2003),

HM2 = T 2
G

∑

g=1

(T − g)−1 tr
{

CÛ2(0)
−1CÛ2(g)CÛ2(0)

−1CÛ2(g)′
}

(3.9)

whereÛ2 is the matrix of squared residuals.5 We first observe thatHM depends on the data viãW
only and is thus location-scale invariant.

Theorem 3.1 INVARIANCE OF HOSKING’ S STATISTIC. Under(2.1), and for all error distribu-
tions compatible with(2.5), the Hosking statistic defined in(3.8) satisfies the identity

HM = T 2
G

∑

g=1

(T − g)−1tr
{

CW̃ (0)−1CW̃ (g)CW̃ (0)−1CW̃ (g)
′}

(3.10)

whereW̃ is the standardized residual matrix defined in(2.11).

The latter invariance result is not satisfied by theHM2 statistic. In contrast, the statistic proposed
by Ling and Li (1997) and studied by Duchesne and Lalancette (2003) is location-scale invariant.

Theorem 3.2 INVARIANCE OF L ING-L I ’ S STATISTIC. Under(2.1), and for all error distributions
compatible with(2.5), the Ling-Li ARCH test statistic

R̃ =

T
∑

t=G+1

(

Û ′
tΣ̂

−1

Ût − n
)(

Û ′
t−GΣ̂−1Ût−G − n

)/

T
∑

t=1

(

Û ′
tΣ̂

−1Ût − n
)2

satisfies the identity

R̃ =

T
∑

t=G+1

(

W̃ ′
tW̃t − n

)(

W̃ ′
t−GW̃t−G − n

)/

T
∑

t=1

(

W̃ ′
tW̃t − n

)2
(3.11)

whereW̃ = [W1, . . . , WT ]′ is the standardized residual matrix defined in(2.11).

The above invariance results obtain because residuals are standardized before they are squared;
in contrast, to obtainHM2, residuals are first squared then standardized. We thus propose the

5Note that Duchesne and Lalancette (2003) proposed to consider squares and cross-products of residuals. In view of
our small sample [relative to the number of equations], the latter test is not always feasible, so we focus on squares only.
Our exact approach can be extended (allowing for a large enough sample) to account for squares and cross-products of
residuals.
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following modification to theHM2 statistic which consists in standardizing residuals before taking
their squares:

H̃S2 = T 2
G

∑

g=1

(T − g)−1tr
{

C−1
W̃ 2

(0)CW̃ 2(g)C−1
W̃ 2

(0)C ′
W̃ 2

(g)
}

(3.12)

whereW̃ 2 is the matrix of squared residuals. The following standard asymptotic null distributions
hold: HM

asy
∼ χ2(n2G), HM2

asy
∼ χ2(n2G) andR̃

asy
∼ χ2(G). We obtain exact MC versions of

the latter tests, by applying the algorithm presented in Section 3.1, using the pivotal representations
(3.10), (3.11) and (3.12) for the observed (step 1) and simulated (step 4) statistics.

4. Simulation study

We now present a small-scale simulation experiment to assess the performance of the proposed
tests. The model considered is (2.1) withT = 60, n = 12, 20 or 40 equations, where the regressor
matrix includes a constant and a standard normal variate (drawn only once). The sample size was
fixed to match our empirical application reported in the nextsection. The tests are implemented
with 2 and12 lags. In all designs,N = 999 replications are used to implement MC tests, and
the number of simulations in each experiment is 1000. Because of location-scale invariance, all
tests are applied to the residuals generated asÛ = MW , hence there is no need to specify values
for the regression coefficients and error covariances. We study normal andt-errors with unknown
degrees-of-freedom, so the rows ofW are generated respectively as in (2.7) and (2.8). We setκ = 5
to draw the “observed” samples, but the tests were applied ignoring this information: formally,κ is
considered unknown and the MMC test method is applied over the space2 ≤ κ ≤ 10.6 To study the
power of the tests considered, we introduce, in turn, ARCH(1), GARCH(1,1) and AR(1) and AR(2)
effects in the firstm = n/3, n/2 and3n/4 equations. This is done as follows; first, theW matrix
is drawn, conforming with either (2.7) or (2.8); following our notational framework, if we denote
by wit the elements of the latter matrix, then

uit = with
1

2

it, hit = 1 +
(

δ1w
2
i,t−1 + δ2

)

hi,t−1 , i = 1, . . . , m, t = 1, . . . , T, (4.13)

give the errors of them equations with ARCH. We consider: (1)δ1 = δ2 = 0 [the null hypothesis];
(2) δ1 = 0.4, δ2 = 0; (3) δ1 = 0.9, δ2 = 0; (5) δ1 = 0.4, δ2 = 0.5; (6) δ1 = 0.25, δ2 = 0.65.
Following the same notation,

uit = ρ1ui,t−1 + ρ2ui,t−2 + wit, i = 1, . . . , m, t = 1, . . . , T

give the errors of them equations with serial correlation (withui,−1 = ui,0 = 0). We consider: (a)
ρ1 = ρ2 = 0 [the null hypothesis]; (b)ρ1 = 0.5, ρ2 = 0; (c) ρ1 = 0.9, ρ2 = 0; (d) ρ1 = 0.5,
ρ2 = 0.2; and (e)ρ1 = 0.1, ρ2 = −0.2. For all configurations, the tests are applied withG = 2 or12

6A wider range was allowed in our empirical application; in the case of the MC study, this restriction was adopted to
keep execution time within manageable ease: the MMC test hasto be applied 1000 times, for all chosen designs.
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Table 1. Size of diagnostic tests

Normal errors

n G Ẽ ẼB L̃K L̃K B L̃B L̃BB ṼR ṼRB HM H̃M HM2 H̃S 2

12 2 .034 .024 .048 .037 .052 .049 .057 .042 .032 .043 .054 .052
20 .050 .038 .055 .039 .040 .041 .044 .028 .025 .048 .042 .041
40 .048 .044 .051 .042 .056 .055 .054 .031 .003 .050 .002 .056
12 12 .050 .000 .036 .041 .056 .159 .040 .026 .117 .047 .153 .044
20 .052 .003 .051 .057 .052 .184 .045 .043 .179 .056 .243 .050
40 .048 .004 .064 .074 .052 .259 .049 .065 .551 .050 .485 .053

Student-t errors

12 2 .035 .057 .041 .037 .044 .049 .040 .032 .039 .013 .126 .014
20 .022 .048 .038 .034 .032 .042 .042 .033 .034 .012 .106 .009
40 .035 .062 .040 .038 .034 .041 .041 .025 .007 .019 .044 .025
12 12 .014 .017 .038 .034 .035 .132 .035 .035 .130 .017 .153 .025
20 .014 .013 .034 .036 .036 .172 .039 .043 .238 .020 .272 .027
40 .017 .009 .039 .044 .037 .210 .046 .067 .499 .019 .418 .021

Note – Numbers shown are empirical rejections for5% nominal significance test levels when errors arei.i.d.,
n is the number of equations in the system,T is the sample size andG is the number of lags used for each test.
MC tests witht(κ) errors are MMC tests, maximized over2 ≤ κ ≤ 10. Ẽ andL̃K refer to our generalized
Engle and Lee-King joint tests defined in (3.5);ẼB andL̃KB are (respectively) their Bonferroni counterparts
based on referring the minimump-value to a(5/n)% level. L̃B andṼR refer to our generalized Ljung-Box
and Variance ratio joint tests defined in (3.4);L̃K B andṼRB are their Bonferroni counterparts.HM denotes
Hosking’s multivariate asymptotic portmanteau test defined in (3.8), andH̃M is its MC counterpart.HM2 is
the Hosking-type multivariate asymptotic ARCH test criterion defined in (3.9), and̃HS 2 is its standardized
MC counterpart defined in (3.12).

lags. Results are reported in tables 1-3. We report empirical rejections (over the 1000 replications)
for a nominal level of5%.7

Results on test sizes (reported in Table 1) can be summarizedas follows. Bonferroni-type tests
can over-reject; this occurred in particular with the Ljung-Box combined test using 12 lags, even
with normal errors. On recalling that we have relied on asymptotic individual equationp-values
to derive the Bonferronip-values, this result is driven by the poor performance of theindividual
equation tests. In other words, despite the important levelcorrection required here (a division byn,
wheren = 12, 20 and40), the Bonferroni procedure is not exact and remains unreliable.

The size of the asymptotic Hosking type tests can deviate arbitrarily from the nominal one; size
distortions increase with the number of equations (n) and the number of lags used in the tests (G).
Over-rejections can be very severe: empirical sizes nearing 50% (for a nominal level of5%) were
observed for largen andG. This observation is worth noting, given that available simulation studies

7For space considerations, since we find (as also observed by Duchesne and Lalancette (2003)) that the Ling-Lee
statistic is dominated by the Hosking-type variant, we report results onHM2 and its MC exact counterpart̃HS2.
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Table 2. Power of ARCH tests

Normal n = 20, G = 2 n = 20, G = 12 n = 40, G = 2 n = 40, G = 12

m δ1 δ2 Ẽ L̃K H̃S 2 Ẽ L̃K H̃S 2 Ẽ L̃K H̃S 2 Ẽ L̃K H̃S 2

5 .40 0 .528 .503 .084 .173 .089 .066 .625 .569 .093 .216 .093 .062
.90 0 .906 .886 .196 .510 .157 .144 .961 .954 .105 .671 .229 .096
.25 .65 .422 .549 .083 .239 .334 .083 .479 .637 .072 .287 .374 .063
.40 .50 .638 .761 .114 .366 .341 .108 .747 .867 .080 .442 .386 .680

10 .40 0 .711 .690 .167 .276 .126 .124 .776 .704 .109 .258 .118 .090
.90 0 .986 .986 .472 .734 .262 .428 .996 .992 .260 .799 .313 .260
.25 .65 .601 .748 .140 .353 .530 .197 .608 .766 .084 .368 .510 .085
.40 .50 .841 .913 .231 .548 .521 .272 .879 .949 .110 .599 .531 .108

15 .40 0 .808 .791 .239 .316 .154 .255 .793 .765 .132 .295 .142 .105
.90 0 .992 .994 .706 .813 .331 .735 .996 .998 .430 .860 .410 .373
.25 .65 .677 .826 .267 .412 .599 .398 .659 .818 .094 .427 .546 .145
.40 .50 .900 .973 .412 .607 .601 .529 .904 .972 .146 .645 .601 .189

Student n = 20, G = 2 n = 20, G = 12 n = 40, G = 2 n = 40, G = 12

5 .40 0 .552 .543 .076 .126 .086 .057 .689 .661 .059 .163 .099 .040
.90 0 .853 .866 .137 .341 .175 .092 .949 .943 .103 .517 .231 .059
.25 .65 .432 .617 .040 .264 .423 .051 .536 .730 .035 .348 .502 .034
.40 .50 .623 .808 .061 .341 .421 .063 .775 .900 .047 .466 .502 .039

10 .40 0 .769 .782 .181 .181 .130 .097 .842 .828 .128 .212 .140 .070
.90 0 .971 .977 .414 .541 .283 .279 .995 .997 .271 .666 .354 .121
.25 .65 .615 .820 .133 .343 .653 .156 .710 .872 .064 .415 .655 .045
.40 .50 .831 .948 .201 .482 .626 .220 .921 .976 .103 .596 .665 .062

15 .40 0 .874 .868 .367 .189 .156 .190 .793 .765 .193 .213 .175 .082
.90 0 .993 .999 .760 .608 .379 .493 .996 .998 .551 .697 .418 .300
.25 .65 .732 .902 .361 .404 .756 .386 .734 .899 .197 .452 .739 .156
.40 .50 .907 .981 .505 .573 .736 .477 .916 .985 .282 .630 .746 .194

Note– Numbers shown are empirical rejections for5% nominal significance test levels when errors
are noti.i.d., n is the number of equations in the system,T is the sample size andG is the number
of lags used for each test. MC tests with Studentt(κ) errors are MMC tests, maximized over2
≤ κ ≤ 10. ARCH effects are introduced in the firstm = n/3, n/2 and3n/4 equations.δ1 andδ2

are the parameters of the ARCH process postulated for all equations. Ẽ andL̃K refer to the joint
tests defined in (3.5).̃HS2 is the standardized multivariate criterion defined in (3.12).
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Table 3. Power of serial-correlation tests

Normal n = 20, G= 2 n = 20, G= 12 n = 40, G = 2 n = 40, G = 12

m ρ
1

ρ
2

L̃B ṼR H̃M L̃B ṼR H̃M L̃B ṼR H̃M L̃B ṼR H̃M

5 .5 0 .989 .995 .347 .730 .789 .241 .995 .998 .183 .736 .821 .112
.9 0 1.00 1.00 .999 1.00 1.00 .973 1.00 1.00 .736 1.00 1.00 .475
.5 .2 1.00 1.00 .692 .986 .996 .579 1.00 1.00 .292 .994 .999 .165
.1 -.2 .121 .035 .076 .091 .041 .074 .145 .060 .074 .075 .053 .066

10 .5 0 1.00 .999 .823 .826 .907 .859 .998 .998 .557 .752 .883 .557
.9 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .997 1.00 1.00 .985
.5 .2 1.00 1.00 .984 .997 .999 .991 1.00 1.00 .718 .993 1.00 .588
.1 -.2 .204 .053 .140 .115 .035 .152 .201 .077 .113 .120 .040 .091

15 .5 0 .999 1.00 .985 .847 .935 1.00 .999 1.00 .913 .779 .881 .867
.9 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
.5 .2 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 .942 .994 1.00 .915
.1 -.2 .204 .047 .209 .144 .030 .338 .203 .078 .166 .124 .046 .180

Student n = 20, G = 2 n = 20, G = 2 n = 40, G = 2 n = 40, G = 12

5 .5 0 .983 .992 .154 .691 .753 .070 .994 .999 .095 .674 .798 .036
.9 0 1.00 1.00 .976 1.00 1.00 .819 1.00 1.00 .516 1.00 1.00 .117
.5 .2 1.00 .999 .427 .980 .995 .227 1.00 1.00 .172 .989 .998 .050
.1 -.2 .119 .044 .024 .095 .039 .020 .120 .055 .033 .074 .038 .017

10 .5 0 .998 1.00 .590 .768 .903 .461 .997 .999 .321 .719 .842 .104
.9 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .983 1.00 1.00 .644
.5 .2 1.00 1.00 .939 .994 1.00 .259 1.00 1.00 .502 .988 1.00 .164
.1 -.2 .172 .036 .038 .101 .029 .042 .131 .074 .051 .104 .042 .022

15 .5 0 .998 1.00 .925 .832 .929 .955 .995 .999 .735 .832 .929 .327
.9 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .975
.5 .2 1.00 1.00 .998 .998 1.00 1.00 1.00 1.00 .798 .988 .999 .372
.1 -.2 .186 .043 .071 .106 .022 .100 .159 .072 .081 .101 .032 .037

Note – Numbers shown are empirical rejections for5% nominal significance test levels,n is the
number of equations in the system,T is the sample size andG is the number of lags used for each
test. MC tests with Studentt(κ) errors are MMC tests, maximized over2 ≤ κ ≤ 10. AR effects are
introduced in the firstm = n/3, n/2 and3n/4 equations.ρ1 andρ2 are the parameters of the AR
process postulated for all equations.L̃B andṼR refer to the joint tests defined in (3.4).̃HM refers
to the MC test based on the multivariate criterion defined in (3.8).
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from the statistics literature typically consider a small number of equations (relative to the sample
size). In the finance literature, one often relies on many portfolios with monthly data over five to
ten years, which leads to a large number of equations (relative to the sample size).

The MC test procedure achieves level control. Size is controlled perfectly with normal errors (as
expected, because the tests are nuisance parameter free in this case). In interpreting the empirical
size in the case of Student−t errors, recall that the maximized MC procedure satisfies thelevel
condition, but its size may be lower than its level. We note some conservative performance, yet
of course this question must be evaluated under the alternative hypothesis, where one may check
whether under-rejections under the null hypothesis effectively translate into power problems.

We next turn to discussing the results of our power study (reported in tables 2 and 3). Our
discussion only focuses on the level correct procedures. Results reveal the following.

Consider the ARCH experiment (Table 2). Over all configurations considered, the procedures
which combine via the MC approach individual-equation criteria outperform by far their Hosking-
type multivariate counterpart. As with all simulation studies, results may relate to the alternative
considered. Here we have not considered time varying cross-correlations, yet the Hosking-type
procedure are applied conformably (see Section 3.2). In theliterature on combined tests [seee.g.
Miller (1981), Folks (1984), Savin (1984), Dufour (1989), Dufour and Torrès (1998) and Dufour,
Farhat and Khalaf (2004)], min-p-value-type (sup-type) procedures are often proposed as promising
alternatives to their portmanteau (sum-type) counterparts, however available results on their relative
merits are typically non-conclusive. Our MC procedures control the size (at least in the case of the
normal distribution) of both procedures, or more explicitly, correct for their conservative character
which stems from test combination, so we are able to compare their effective power reliably.8 Our
results provide an interesting case where one procedure improves on the other.

Lee-King type statistics outperform their Engle-type counterpart in the presence of GARCH,
whereas Engle-type criteria appear superior under the ARCHalternative. For criteria based on
either Engle or Lee-King statistics, using more lags (12 relative to 2) reduces power for both ARCH
and GARCH directions. Power losses go, to some extent, against expectations in the latter case;
note however that using more lags reduces the effective sample size, which seems to translate into
important power losses. In a few cases however, particularly for largem (the number of equations
with ARCH effects), Hosking-type procedures perform somewhat better with more lags, yet these
tests (irrespective of the lags used) remain largely dominated by our combined univariate ones. In
general, as expected, power improves withm.

Results of the AR experiment, concur, in many aspects with the ARCH case, except that the
Hosking statistic performs somewhat better than its ARCH counterpart. Overall, the variance ratio
based criterion displays the best performance, except for the AR(2) alternative withρ1 = .1 and
ρ2 = −.2, where either the Ljung-Box based or the Hosking criterion performs better. Lags typi-
cally cost power in this experiment as well, except in a few cases with largem (as with the ARCH
case).

For both the AR and (G)ARCH experiments, results with Student-t errors show excellent power
relative to the normal case. In some cases, the tests even seem to perform better with Student-t

8In the case of the Student-t distribution which may remain conservative, size issues are not due to combinations;
rather, they relate to the degrees-of-freedom nuisance parameter.
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errors. Our results also demonstrates the usefulness of theMMC procedure.

5. Application to Fama-French three-factor model

Our empirical analysis focuses on the asset pricing model (2.2) with n = 25, s = 3 and different
distributional assumptions for stock market returns. The factors considered include: the return on
the market portfolio, the average return on three small portfolios minus the average return on three
large portfolios (SMB), and the average return on two value portfolios minus the average returns on
two growth portfolios (HML).

We use Fama and French’s data base, on monthly returns of 25 value-weighted portfolios from
1961-2000. The portfolios which are constructed at the end of June, are the intersections of five
portfolios formed on size (market equity) and five portfolios formed on the ratio of book equity to
market equity. The size breakpoints for yearτ are the New York Stock Exchange (NYSE) market
equity quintiles at the end of June of yearτ . The ratio of book equity to market equity for June of
yearτ is the book equity for the last fiscal year end inτ − 1 divided by market equity for December
of yearτ − 1. The ratio of book equity to market equity are NYSE quintiles. The portfolios for
July of yearτ to June of yearτ + 1 include all NYSE, AMEX, NASDAQ stocks for which market
equity data is available for December of yearτ − 1 and June of yearτ , and (positive) book equity
data forτ − 1. The benchmark factors are defined as follows: (1) the excess return on the market
is the value-weighted return on all NYSE, AMEX, and NASDAQ stocks [from the University of
Chicago’s Center for Research in Security Prices (CRSP)] minus the one-month Treasury bill rate
[from Ibbotson Associates]; (2) SMB is the average return onthree small portfolios minus the
average return on three big portfolios, and (3) HML is the average return on two value portfolios
minus the average return on two growth portfolios. Fama and French benchmark factors, SMB and
HML, are constructed from six size/book-to-market benchmark portfolios that do not include ranges
and do not incur transaction costs. The portfolios for thesefactors are rebalanced quarterly using
two independent sorts, on size (market equity, ME) and book-to-market (the ratio of book equity to
market equity, BE/ME). The size breakpoint (which determines the buy range for the small and big
portfolios) is the median NYSE market equity. The BE/ME breakpoints (which determine the buy
range for the growth, neutral, and value portfolios) are the30th and 70th NYSE percentiles.

Results are reported in tables 4–5. We report, in addition tothe asymptoticp-values (denoted
p∞) when available, the Bonferronip-values (denoted̂pB) for each test combined, obtained as the
minimum p-value over all equations, and three MCp-values: (i) the Gaussian based MCp-value
(denoted̂pg), (ii) the Student-t based MMCp-value (maximized over all relevant degrees of freedom
κ ≥ 2) (denoted̂pa), and (ii) the Student-t based CSMMC (denoted̂pi) (where the maximization is
restricted to the degrees of freedom not rejected by a prior goodness-of-fit test; see Appendix B); the
associated confidence sets are reported in the last column ofeach Table. The tests useG = 12 lags.
All MC procedures are implemented withN = 999 replications and the confidence set underlying
the CSMMC procedure is applied withα1 = 2.5%. Note that in the context of a MC test with 999
replications, the smallest possiblep-values are .001, .002 and so on and so forth. A discussion of
our results follows.

Recall that2.5% must be added to the CSMMCp-values (denoted̂pi) since2.5% was used to
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Table 4. Univariate and multivariate ARCH tests

Engle Lee-King Hosking-ARCH κ

p̂B p̂g p̂i p̂a p̂B p̂g p̂i p̂a p∞ p̂g p̂i p̂a

61-65 .110 .576 .590 .591 .079 .888 .879 .879 .879 1.00 1.00 1.00 8-34
66-70 .179 .832 .848 .848 .017 .399 .385 .385 .125 .655 .638 .638 13-34
71-75 .056 .239 .280 .298 .018 .390 .380 .380 .580 .910 .904 .904 10-34
76-80 .009 .012 .022 .101 .001 .026 .032 .032 1.00 .999 1.00 1.00 13-34
81-85 .031 .098 .132 .197 .035 .650 .646 .586 .832 .758 .733 .733 8-34
86-90 .191 .853 .868 .879 .009 .298 .315 .315 .392 .402 .403 .403 23-34
91-95 .056 .242 .261 .339 .001 .080 .084 .084 .429 .537 .544 .544 16-34
96-00 .003 .002 .014 .021 .002 .061 .070 .071 .000 .666 .634 .666 4-15
ALL .000 .001 .001 .012 .000 .001 .001 .001 .000 .001 .001 .005 6-10

Note – Numbers shown arep-values, except for the last column which reports the confidence set
for κ, whereκ denotes the degrees-of-freedom parameter of the hypothesized Student-t distribution
(the method for constructing this confidence set is presented in Appendix B).p∞ refers to the test
asymptoticp-value and̂pg is the Gaussian based MCp-value.p̂i is CSMMCp-value imposingt(κ)
errors and̂pa is the MMCp-value over all degrees of freedom.p̂B is the minimump-value for each
individual equation test over all equations. The individual equation test statistics are: Engle’sTR2

and Lee-King’s statistic (3.3) defined in Section 3.1; theirjoint counterparts are defined in (3.5).
Hosking-ARCH is the multivariate criterion defined in (3.9)[to obtainp∞ ] and (3.12) [to obtain
the MCp-values]. To obtain anα-level test,p̂B andp̂i as defined need to be referred (respectively)
to the cut-off levels ofα/25 andα − .025. The tests useG = 12 lags.
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Table 5. Univariate and multivariate serial-correlation tests

Ljung-Box Variance ratio Hosking κ

p̂B p̂g p̂i p̂a p̂B p̂g p̂i p̂a p∞ p̂g p̂i p̂a

61-65 .003 .291 .312 .312 .384 .963 .967 .974 .711 .973 .957 .957 8-34
66-70 .000 .106 .119 .127 .347 .866 .881 .881 .354 .818 .786 .786 13-34
71-75 .022 .619 .632 .632 .177 .285 .292 .292 .795 .956 .941 .941 10-34
76-80 .014 .546 .565 .570 .132 .193 .206 .206 .978 1.00 1.00 1.00 13-34
81-85 .010 .454 .471 .477 .099 .159 .167 .167 .205 .497 .493 .493 8-34
86-90 .001 .135 .145 .151 .182 .240 .241 .241 .619 .978 .964 .964 23-34
91-95 .000 .040 .049 .049 .070 .114 .122 .124 .432 .796 .774 .774 16-34
96-00 .013 .529 .541 .542 .093 .142 .156 .156 .018 .088 .183 .185 4-15
ALL .000 .001 .003 .004 .182 .001 .001 .001 .000 .001 .001 .001 6-10

Note– Numbers shown arep-values, except for the last column which reports the confidence set for
κ , whereκ denotes the degrees-of-freedom parameter of the hypothesized Student-t distribution
(the method for constructing the underlying confidence set for the degrees of freedomκ is presented
in Appendix B).p∞ refers to the test asymptoticp-value and̂pg is the Gaussian based MCp-value.
p̂i is CSMMCp-value imposingt(κ) errors.p̂a is the MMCp-value over all degrees of freedom.
p̂B is the minimump-value for each individual equation test over all equations. The individual
equation test statistics are: the variance ratio (3.2) and the Ljung-Box criteria (3.1); the joint tests
are defined in (3.4). Hosking is the multivariate criterion defined in (3.8). To obtain anα -level test,
p̂B andp̂i as defined need to be referred (respectively) to the cut-off levels ofα/25 andα− .025.
The tests useG = 12 lags.
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construct the underlying confidence set; in other words, if an overall level of5% is desired, the
cut-off level for p̂i is 5.0 − 2.5 = 2.5%. Furthermore, for a joint Bonferroni type procedure with
a level ofα = 5%, p̂B needs to be referred to a level ofα/25 = 0.2% [the system includes 25
equations here]. The jointp-valuesp̂g, p̂i or p̂a do not require any level adjustment. To illustrate the
implications of level corrections, consider for example the case of tests based on Engle’s statistic
in the subperiod 1996-00: from a Bonferroni perspective (for a joint level of5%), the joint test is
not significant (thep-value is .003> .05/25); however, all MCp-values are less than their relevant
cutoffs which suggests significant ARCH effects. The same observation holds for: (i) the full sample
tests based on the variance ratio statistic, and (ii) the tests based on Engle’s statistic in the subperiod
1976-80; in this case however, the MMC test is not significantat 5% yet the CSMMCp-value is
.022 < .025 so the CSMMC test is significant.

In view of our simulation results (Section 4), outcomes of the Bonferroni and the Hosking-type
asymptotic procedures must be qualified because rejectionsmay be spurious. Indeed, on compar-
ing the Bonferroni to the MCp-values, we observe that rejection decisions are reversed in several
instances, for example: (i) the tests based on Lee-King’s statistic, in the subperiods 1991-95 and
1996-00; and (ii) the tests based on Ljung-Box statistics inthe subperiods 1966-70, 1986-90 and
1991-95. In all these cases, the Bonferronip-value is significant at5% whereas even the Gaussian
MC test is not significant at this level. A further decision reversal also deserves notice, namely the
joint variance ratio case over the whole sample. In this case, although all MC tests are highly sig-
nificant (thep-values range are .001), their Bonferroni counterpart is not significant at conventional
levels (thep-values is .182). In the case of Hosking-type tests, on comparing the asymptotic and
MC p-values, we also find that rejection decisions are reversed in several instances. Consider for
example: (i) the Hosking-ARCH test in the 1996-00 subperiods, and in the latter subperiod; and
(ii) the serial-correlation Hosking test in the 1996-00 subperiod. In all these cases the asymptotic
tests are significant at5% whereas the MCp-values exceed their relevant cutoffs even with normal
errors.

The MMC and CSMMC test approaches lead, in a few cases, to conflicting decisions. For
example, refer to the joint Engle-type test in 1976-80, where p̂i = .022 while p̂a = .101. In this
case, if degrees of freedom which are not compatible with thedata are allowed, ARCH effects
may end up undetected. In contrast, consider: (i) the joint Lee-King-type test in 1976-80, where
p̂i = p̂a = .032, and (ii) the joint Ljung-Box-type test in 1991-95, wherep̂i = p̂a = .049. Here, on
recalling that a level adjustment is required in the case ofp̂i [the cut-off level for an overall level of
α is α − 2.5], we see that the pre-estimation step may lead to power costs.9

Over the whole sample period, all tests are significant at5%, except the Bonferroni Variance-
Ratio test. In contrast, the various subperiod tests applied yield conflicting decisions. Indeed, the
Hosking-type MC tests are all not significant at the5% level, whereas a few rejections are noted
at this level using our combined tests. Examples include: (i) the ARCH test based on Engle’s
statistic (allowing for normal ort-errors) in the 1976-80 and 1996-00 subperiods; (ii) the ARCH
test based on Lee-King’s statistic (allowing for normal ort-errors) in the 1976-80 subperiod; (iii)

9An exact multi-stage MC joint test which integrates the estimation and testing steps in conceptually feasible. The
test would however involve several nested simulations; whether computational burdens translate into consequential power
advantages is an open question, which is beyond the scope of this paper. On multi-stage MC tests, see Dufour et al. (2003).
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the serial-correlation test based on Ljung-Box’s statistic (allowing for normal ort-errors) in the
1991-95 subperiod. Nevertheless, in all cases where Hosking-type MC tests are significant at5%
[which occurs only with tests applied over the full sample],our combined tests are also significant
at the same level. These findings are in line with our simulation results (reported in Section 4).

Departures from thei.i.d. hypothesis are less evident with non-Gaussian errors. Indeed, the
Gaussian MCp-values are typically lower than the Student-t based ones. Overall, while the full
sample MC tests are all significant at usual levels, the subperiod diagnostics do not detect serious
deviations from thei.i.d. assumption, particularly if Student-t error distributions are formally ac-
counted for. These results may suggest that serial dependence is negligible in the short run and
important over the long run so that temporal dependence factors are slow moving, which is empiri-
cally intriguing. Such an interpretation may thus cast doubt on the tests’ usefulness in modeling the
short run dynamics of conditional return distributions.

Skepticism about test power with sub-period data must be weighed against our simulation re-
sults which reveal that all tests perform well with samples of 60 observations on as many as 40
equations. Admittedly, as with all simulation studies, results may relate to the experimental design
considered and power issues are not necessarily ruled out. Nevertheless, our tests, as with most
diagnostics conducted on regression error distributions,presume stable regression coefficients and,
for that matter, a constant degrees-of-freedom parameter,over the test period. This hypothesis may
not hold over the long term and calls for caution in confronting our sub-period to the full-sample
test outcomes. On balance, our results suggest the following strategies for empirical asset pricing
practice. While a regression of the form (2.2) with Fama-French factors and given (2.8) seems ac-
ceptable as a working framework within subperiods, the underlying risk-return relationship may be
unstable over long time spans. Controlling for the long run dynamics of conditional distributions
matters importantly, yet asset pricing tests with long spans of monthly returns require searching for
stable factor structures.

6. Conclusion

Previous research typically assess MLR-based asset pricing statistical models using tests based on
individual equations. Due to error cross-correlations, statistics from individual equations are not
independent, which raises simultaneous test problems. In this paper, we consider a diagnostic test
procedure that accounts for cross-equation correlations exactly, in possibly non-normal contexts.
We consider tests for serial correlation and tests for ARCH effects. The procedures proposed pro-
vide exact variants of the standard multivariate portmanteau tests as well as exact diagnostics which
consist in combining univariate specification tests. Our tests are invariant to MLR coefficients and
error covariances; since in typical financial models, the covariance matrix is high dimensional,
invariance to these nuisance parameters is a very useful property; with non-Gaussian errors, depen-
dence on further unknown parameters is circumvented by applying MMC test techniques. From
a theoretical perspective, our multivariate procedures illustrate the usefulness of the MC test pro-
cedure in combining non-independent tests exactly. Interestingly, we show that even if individual
p-values are obtained using asymptotic arguments, they may be combined in a way which yields a
joint exact test.
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The procedures considered are evaluated via a simulation experiment, with sample sizes match-
ing our empirical analysis. Our results reveal that available procedures including Bonferroni-based
ones suffer from serious size problems. In contrast, our MC and MMC tests display excellent size
and power properties. We find that combining individual equation criteria (after standardizing resid-
uals) outperforms portmanteau approaches.

The tests proposed are applied to the Fama-French three-factor model, using monthly data.
We analyze the model over the full sample [1965-2000] and over 5-year subperiods. Our results
indicate significant instabilities for the full-sample case, although significant departures from the
i.i.d. hypothesis are less evident over the subperiods, once we allow for non-Gaussian errors. Our
simulation study does not reveal any power problems. Viewedcollectively, our findings suggest
that a multivariate regression with Student-t errors and Fama-French factors seems acceptable as a
working framework over the short term, yet the underlying factor structure may be unstable over
long time spans.
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A. Appendix: Proofs

PROOF OFTHEOREM 2.1 Using(2.6), (2.9) and(2.14), we have:

W̃ = Û(J−1)′
(

J ′S−1

Û

)

= MU(J−1)′
(

J ′S−1

Û

)

= MW
(

J ′S−1

Û

)

, (A.1)
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Û

)−1
. (A.2)

On observing that
(

J ′S−1

Û

)−1
is upper triangular, this means that

(

J ′S−1

Û

)−1
is the (unique)

Cholesky factor ofT−1(W ′MW ), henceJ ′S−1

Û
= S−1

Ŵ
; on the unicity of the Cholesky fac-

tor, see Harville (1997, Section 14.5c, p. 229). Substituting S−1

Ŵ
into (A.1), we see that

W̃ = MW
(
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Û

)

= ŴS−1

Ŵ
.

PROOF OFTHEOREM 3.1 Using(2.11) and(2.13), we see that, forg = 0, 1, . . . , G :

CW̃ (g) = T−1
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CÛ (g)S−1

Û
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Û

(
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Û

)′
CÛ (g)′S−1

Û
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Û
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′

= SÛCÛ (0)−1CÛ (g)CÛ (0)−1CÛ(g)′S−1

Û
.

Since matrix multiplication commutes under the trace operator, we have:

tr
{

CW̃ (0)−1CW̃ (g)CW̃ (0)−1CW̃ (g)
′}

= tr
{

SÛCÛ (0)−1CÛ (g)CÛ (0)−1CÛ (g)′S−1

Û

}

= tr
{

CÛ (0)−1CÛ(g)CÛ (0)−1CÛ (g)′
}

which establishes that Hosking’s criterion obtained from the residualŝU is equal to the Hosking’s
criterion based on the standardized residualsW̃ .
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PROOF OFTHEOREM 3.2 Using(2.11), (2.12) and(2.13), we see that
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Û
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−1Ût

hence
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)2
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B. Appendix: Monte Carlo goodness-of-fit tests

This appendix presents the set estimation method we use to obtain a confidence set for the nuisance
parameterν associated with assumption (2.5). The set is obtained by ”inverting” a goodness-of-fit
[GF] test, of levelα1 (we consideredα1 = 2.5% here) for the error distribution underlying (2.5).
In other words, the confidence set corresponds to the set ofν0 values that are not rejected (at theα1

level) by a GF test which assesses (2.5) imposingν = ν0. We use the multivariate skewness and
kurtosis criteria introduced in Dufour et al. (2003) (see also Mardia (1970) and Zhou (1993)):

ESK(ν0) =
∣

∣SK−SK(ν0)
∣

∣ , EKU(ν0) =
∣

∣KU−KU(ν0)
∣

∣ , (B.1)
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T 2
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T

T
∑

t=1

d̂2
tt, (B.2)

whered̂it are the elements of the matrix̂U(Û ′Û)−1Û ′ andSK(ν0) andKU(ν0) are simulation-
based estimates of the expectedSK andKU given (2.5). Conditional onSK(ν0) andKU(ν0), these
tests satisfy the conditions of Theorem2.1. Thus the MC test technique may be applied to obtain
their corresponding exactp-values,p̂(ESK0 |ν0), p̂(EKU0 |ν0). To obtain a joint test we consider:

CSK = 1 − min {p̂(ESK0 |ν0), p̂(EKU0 |ν0)} . (B.3)

The MC technique is applied to theCSK statistic.
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