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ABSTRACT

We propose finite sample tests and confidence sets for models with unobserved and generated
regressors as well as various models estimated by instrumental variables methods. The validity of
the procedures is unaffected by the presence of identification problems or “weak instruments”, so
no detection of such problems is required. We study two distinct approaches for various models
considered by Pagan (1984). The first one is an instrument substitution method which generalizes
an approach proposed by Anderson and Rubin (1949) and Fuller (1987) for different (although re-
lated) problems, while the second one is based on splitting the sample. The instrument substitution
method uses the instruments directly, instead of generated regressors, in order to test hypotheses
about the “structural parameters” of interest and build confidence sets. The second approach relies
on “generated regressors”, which allows a gain in degrees of freedom, and a sample split technique.
For inference about general possibly nonlinear transformations of model parameters, projection
techniques are proposed. A distributional theory is obtained under the assumptions of Gaussian er-
rors and strictly exogenous regressors. We show that the various testsand confidence sets proposed
are (locally) “asymptotically valid” under much weaker assumptions. The properties of the tests
proposed are examined in simulation experiments. In general, they outperform the usual asymp-
totic inference methods in terms of both reliability and power. Finally, the techniques suggested are
applied to a model of Tobin’sq and to a model of academic performance.

Key words: simultaneous equations; structural model; instrumental variables; weak instruments;
generated regressor; Anderson-Rubin method; pivotal function; sample-split; exact test; confidence
region; projection techniques; Tobin’sq; academic performance.

JEL classification numbers: C1, C12, C3, C5, E22, I2, J24.
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RÉSUMÉ

Nous proposons des tests et régions de confiance exactes pour des modèles comportant des
variables inobserv́ees ou des régresseurs estiḿes de m̂eme que pour divers modèles estiḿes par la
méthode des variables instrumentales. La validité des proćedures propośees n’est pas influencée par
la pŕesence de problèmes d’identification ou d’instruments faibles, de sorte que la détection de tels
probl̀emes n’est pas requise pour les appliquer. De façon plus spécifique, nouśetudions deux ap-
proches diff́erentes pour divers modèles consid́eŕes par Pagan (1984). La première est une ḿethode
de substitution d’instruments qui géńeralise des techniques proposées par Anderson et Rubin (1949)
et Fuller (1984) pour des problèmes diff́erents, tandis que la seconde méthode est fond́ee sur une
subdivision de l’́echantillon. La ḿethode de substitution d’instruments utilise directement les in-
struments disponibles, plutôt que des ŕegresseurs estiḿes, afin de tester des hypothèses et construire
des ŕegions de confiance sur les “paramètres structuraux” du modèle. La seconde ḿethode s’appuie
sur des ŕegresseurs estiḿes, ce qui permet un gain de degrés de libert́e, ainsi que sur une technique
de subdivision de l’́echantillon. Pour faire de l’inférence sur des transformation géńerales, pos-
siblement non-lińeaires, des param̀etres du mod̀ele, nous proposons l’utilisation de techniques de
projection. Nous fournissons une théorie distributionnelle exacte sous une hypothèse de normalité
des perturbations et de régresseurs strictement exogènes. Nous montrons que les tests et régions
de confiance ainsi obtenus sont aussi (localement) “asymptotiquement valides” sous des hypothèses
distributionnelles beaucoup plus faibles. Nousétudions les propriét́es des tests proposés dans le
cadre d’une exṕerience de simulation. En géńeral, celles-ci sont plus fiables et ont une meilleure
puissance que les techniques traditionnelles. Finalement, les techniques propośees sont appliqúees
à un mod̀ele duq de Tobin et̀a un mod̀ele de performance scolaire.

Mots-clefs: équations simultańees; mod̀ele structurel; variables instrumentales; instruments faibles;
régresseur estiḿe; méthode d’Anderson-Rubin; fonction pivotale; subdivision d’échantillon;
inférenceà distance finie; test exact; région de confiance; techniques de projection;q de Tobin;
performance scolaire.

Classification JEL: C1, C12, C3, C5, E22, I2, J24.
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1. Introduction

A frequent problem in econometrics and statistics consists in making inferences on models which
contain unobserved explanatory variables, such as expectational or latent variables and variables
observed with error; see, for example, Barro (1977), Pagan (1984, 1986) and the survey of Oxley
and McAleer (1993). A common solution to such problems is based on using instrumental variables
to replace the unobserved variables by proxies obtained from auxiliary regressions (generated re-
gressors). It is also well known that using such regressors raises difficulties for making tests and
confidence sets, and it is usually proposed to replace ordinary least squares (OLS) standard errors
by instrumental variables (IV) based standard errors; see Pagan (1984, 1986) and Murphy and Topel
(1985). In any case, all the methods proposed to deal with such problemsonly have an asymptotic
justification, which means that the resulting tests and confidence sets can be extremely unreliable
in finite samples. In particular, such difficulties occur in situations involving “weak instruments”,
a problem which has received considerable attention recently; see, forexample, Nelson and Startz
(1990a, 1990b), Buse (1992), Maddala and Jeong (1992), Bound, Jaeger, and Baker (1993, 1995),
Angrist and Krueger (1995), Hall, Rudebusch, and Wilcox (1996), Dufour (1997), Shea (1997),
Staiger and Stock (1997) and Wang and Zivot (1998) and Zivot, Startz, and Nelson (1998) [for
some early results relevant to the same issue, see also Nagar (1959), Richardson (1968) and Sawa
(1969)].

In this paper, we treat these issues from a finite sample perspective and we propose finite sample
tests and confidence sets for models with unobserved and generated regressors. We also consider a
number of related problems in the more general context of linear simultaneousequations. To get re-
liable tests and confidence sets, we emphasize the derivation of truly pivotal (or boundedly pivotal)
statistics, as opposed to statistics which are only asymptotically pivotal; for a general discussion of
the importance of such statistics for inference, see Dufour (1997). We study two distinct approaches
for various models considered by Pagan (1984). The first one is an instrument substitution method
which generalizes an approach proposed by Anderson and Rubin (1949) and Fuller (1987, Section
1.4) for different (although related) problems, while the second one is based on splitting the sample.
The instrument substitution method uses the instruments directly, instead of generated regressors,
in order to test hypotheses and build confidence sets about “structuralparameters”. The second
approach relies on “generated regressors”, allowing a gain in degrees of freedom, and a sample
split technique. Depending on the problem considered, we derive eitherexactsimilar tests (and
confidence sets) or conservative procedures. The hypotheses for which we obtain similar tests (and
correspondingly similar confidence sets) include: (a) hypotheses whichset the value of the unob-
served (expected) variable coefficient vector [as in Anderson and Rubin (1949) and Fuller (1987)];
(b) analogous restrictions taken jointly with general linear constraints on thecoefficients of the (ob-
served) exogenous variables in the equation of interest; and (c) hypothesis about the coefficients
of “surprise” variables when such variables are included in the equation. Tests for these hypothe-
ses are based on Fisher-type statistics, but the confidence sets typically involve nonlinear (although
quite tractable) inequalities. For example, when only one unobserved variable (or endogenous ex-
planatory variable) appears in the model, the confidence interval for the associated coefficient can
be computed easily on finding the roots of a quadratic polynomial. Note that Anderson-Rubin-type
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methods have not previously been suggested in the context of the general Pagan (1984) setup. The
general setup we consider here includes as special cases the ones studied by Pagan (1984), Fuller
(1987) and Zivot, Startz, and Nelson (1998), allowing for structural equations which include more
than one endogenous “explanatory” variable as well as exogenous variables, so the hypotheses of
type (a) we consider and the associated confidence sets are in fact moregeneral than those con-
sidered by Fuller (1987, Section 1.4) and Zivot, Startz, and Nelson (1998). In particular, for the
case where the structural equation studied includes one endogenous explanatory variable, we ex-
tend the range of cases where close-form quadratic confidence intervals [similar to those described
by Fuller (1987), Dufour (1997), and Zivot, Startz, and Nelson (1998)] are available. Further, prob-
lems such as those described in (b) and (c) above have not apparently been considered at all from
this perspective in the earlier literature.

In the case of the instrument substitution method, the tests and confidence sets so obtained can be
interpreted as likelihood ratio (LR) procedures (based on appropriatelychosen reduced form alter-
natives), or equivalently as profile likelihood techniques [for further discussion of such techniques,
see Bates and Watts (1988, Chapter 6), Meeker and Escobar (1995) and Chen and Jennrich (1996)].
The exact distributional theory is obtained under the assumptions of Gaussian errors and strictly
exogenous regressors, which ensures that we have well-defined testable models. Although we stress
here applications to models with unobserved regressors, the extensions of Anderson–Rubin (AR)
procedures that we discuss are also of interest for inference in various structural models which are
estimated by instrumental variable methods (e.g., simultaneous equations models).Furthermore, we
observe that the tests and confidence sets proposed are (locally) “asymptotically valid” under much
weaker distributional assumptions (which may involve non-Gaussian errorsand weakly exogenous
instruments).

It is important to note that the confidence sets obtained by the methods described above, unlike
Wald-type confidence sets, are unbounded with non-zero probability. As emphasized from a general
perspective in Dufour (1997), this is a necessary property of any valid confidence set for a parameter
that may not be identifiable on some subset of the parameter space. As a result, confidence proce-
dures that do not have this property have true level zero, and the sizesof the corresponding tests
(like Wald-type tests) must deviate arbitrarily from their nominal levels. It is easy to see that such
difficulties occur in models with unobserved regressors, models with generated regressors, simulta-
neous equations models, and different types of the error-in-variablesmodels. In the context of the
first type of model, we present below simulation evidence that strikingly illustrates these difficul-
ties. In particular, our simulation results indicate that tests based on instrumentsubstitution methods
have good power properties with respect to Wald-type tests, a feature previously pointed out for the
AR tests by Maddala (1974) in a comparative study for simultaneous equations [on the power of
AR tests, see also Revankar and Mallela (1972)]. Furthermore, we find that generated regressors
sample-split tests perform better when the generated regressors are obtained from a relatively small
fraction of the sample (e.g., 10% of the sample) while the rest of the sample is used for the main
regression (in which generated regressors are used).

An apparent shortcoming of the similar procedures proposed above, and probably one of the
reasons why AR tests have not become widely used, is the fact that they are restricted to testing
hypotheses which specify the values of the coefficients of all the endogenous (or unobserved) ex-
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planatory variables, excluding the possibility of considering a subset of coefficients (e.g., individual
coefficients). We show that inference on individual parameters or subvectors of coefficients is how-
ever feasible by applying a projection technique analogous to the ones used in Dufour (1989, 1990),
Dufour and Kiviet (1996, 1998) and Kiviet and Dufour (1997). Wealso show that such techniques
may be used for inference on general possibly nonlinear transformations of the parameter vector of
interest.

The plan of the paper is as follows. In Section 2, we describe the main model which may con-
tain several unobserved variables (analogous to the “anticipated” partsof those variables), and we
introduce the instrument substitution method for this basic model with various testsand confidence
sets for the coefficients of the unobserved variables. In Section 3, we propose the sample split
method for the same model with again the corresponding tests and confidencesets. In Section 4, we
study the problem of testing joint hypotheses about the coefficients of the unobserved variables and
various linear restrictions on the coefficients of other (observed) regressors in the model. Section
5 extends these results to a model which also contains error terms of the unobserved variables (the
“unanticipated” parts of these variables). In Section 6, we consider the problem of making inference
about general nonlinear transformations of model coefficients. Then,in Section 7, we discuss the
“asymptotic validity” of the proposed procedures under weaker distributional assumptions. Sec-
tion 8 presents the results of simulation experiments in which the performance ofour methods is
compared with some widely used asymptotic procedures. Section 9 presents applications of the
proposed methods to a model of Tobin’sq and to an economic model of educational performance.
The latter explains the relationship between students’ academic performance, their personal char-
acteristics and some socio-economic factors. The first example illustrates inference in presence of
good instruments, while in the second example only poor instruments are available. As expected,
confidence intervals for Tobin’sq based on the Wald-type procedures largely coincide with those
resulting from our methods. On the contrary, large discrepancies arise between the confidence in-
tervals obtained from the asymptotic and the exact inference methods when poor instruments are
used. We conclude in Section 10.

2. Exact inference by instrument substitution

In this section, we develop finite sample inference methods based on instrument substitution meth-
ods for models with unobserved and generated regressors. We first derive general formulae for the
test statistics and then discuss the corresponding confidence sets. We consider the following basic
setup which includes as special cases Models 1 and 2 studied by Pagan (1984):

(2.1) y = Z∗δ +Xγ +e,

(2.2) Z∗ = WB+U∗ , Z = Z∗ +V∗

wherey is aT×1 vector of observations on a dependent variable,Z∗ is aT×G matrix of unobserved
variables,X is aT×K matrix of exogenous explanatory variables in the structural model,Z is aT×
G matrix of observed variables,W is aT×q matrix of variables related toZ∗, while e= (e1, . . . ,eT)′,
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U∗ = [u′∗1, . . . ,u
′
∗T ]′ andV∗ = [v′∗1, . . . ,v

′
∗T ]′ are T × 1 andT ×G matrices of disturbances. The

matrices of unknown coefficientsδ , γ, andB have dimensions respectivelyG×1, K×1 andq×G.
In order to handle common variables in both equations (2.1) and (2.2), like for example the constant
term, we allow for the presence of common columns in the matricesW andX. In the setup of Pagan
(1984),U∗ is assumed to be identically zero(U∗ = 0), et andv∗t are uncorrelated[E(etv∗t) = 0], and
the exogenous regressorsX are excluded from the “structural” equation (2.1). In some cases below,
we will need to reinstate some of the latter assumptions.

The finite sample approach we adopt in this paper requires additional assumptions, especially
on the distributional properties of the error term. Since (2.2) entailsZ =WB+V whereV =U∗+V∗,
we will suppose the following conditions are satisfied:

(2.3) X andW are independent ofeandV∗ ;

(2.4) rank(X) = K , 1≤ rank(W) = q < T , G≥ 1, 1≤ K +G < T ;

(2.5) (et , v′∗t)
′ ind
∼ N[0, Ω ] , t = 1, . . . ,T ;

(2.6) det(Ω) > 0.

If K = 0, X is simply dropped from equation (2.1). Note that no assumption on the distribution of
U∗ is required. Assumptions (2.3) – (2.6) can be relaxed if they are replacedby assumptions on the
asymptotic behavior of the variables asT → ∞. Results on the asymptotic “validity” of the various
procedures proposed in this paper are presented in Section 7.

Let us now consider the null hypothesis:

(2.7) H0 : δ = δ 0 .

The instrument substitution method is based on replacing the unobserved variable by a set of instru-
ments. First, we substitute (2.2) into (2.1):

(2.8) y = (Z−V∗)δ +Xγ +e= Zδ +Xγ +(e−V∗δ ) .

Then subtractingZδ 0 on both sides of (2.8), we get:

(2.9) y−Zδ 0 = WB(δ −δ 0)+Xγ +u

whereu = e−V∗δ 0 +U∗(δ − δ 0). Now suppose thatW andX haveK2 columns in common(0≤
K2 < q) while the other columns ofX are linearly independent ofW:

(2.10) W = [W1, X2] , X = [X1, X2] , rank[W1, X1, X2] = q1 +K < T

whereW1, X1 and X2 are T × q1, T ×K1 and T ×K2 matrices, respectively (K = K1 + K2, q =
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q1 +K2). We can then rewrite (2.9) as

(2.11) y−Zδ 0 = W1δ 1∗ +Xγ∗ +u

whereδ 1∗ = B1(δ −δ 0), γ2∗ = γ2+B2(δ −δ 0), γ∗ = (γ ′1, γ ′2∗)′, Bi is aKi ×G matrix (i = 1, 2) and
B = [B′

1,B
′
2]
′.

It is easy to see that model (2.11) underH0 satisfies all the assumptions of the classical linear
model. Furthermore, sinceδ 1∗ = 0 whenδ = δ 0, we can testH0 by a standardF-test of the null
hypothesis

(2.12) H0∗ : δ 1∗ = 0.

ThisF-statistic has the form

(2.13) F(δ 0; W1) =
(y−Zδ 0)

′P(M(X)W1)(y−Zδ 0)/q1

(y−Zδ 0)′M([W1, X]) (y−Zδ 0)/(T −q1−K)

whereP(A) = A(A′A)−1A′ andM(A) = IT −P(A) for any full column rank matrixA. Whenδ = δ 0,
we haveF(δ 0; W1) ∼ F(q1, T − q1 −K), so thatF(δ 0; W1) > F(α; q1, T − q1 −K) is a critical
region with levelα for testingδ = δ 0, whereP[F(δ 0; W1) ≤ F(α; q1, T −q1−K)] = 1−α . The
essential ingredient of the test is the fact thatq1 ≥ 1, i.e. some instruments must be excluded fromX
in (2.1). On the other hand, the usual order condition for “identification”(q1 ≥ G) is not necessary
for applying this procedure. In other words, it is possible to test certain hypotheses aboutδ even if
the latter vector is not completely identifiable. It is then straightforward to see that the set

(2.14) Cδ (α) = {δ 0 : F(δ 0; W1) ≤ F(α; q1, T −q1−K)}

is a confidence set with level 1−α for the coefficientδ . The tests based on the statisticF(δ 0; W1)
and the above confidence set generalize the procedures described by Fuller (1987, pp. 16-17), for
a model with one unobserved variable(G = 1), X limited to a constant variable(K = 1) and two
instruments(q = 2, including a constant), and by Zivot, Startz, and Nelson (1998) for a model with
one unobserved variable(G = 1), no exogenous variables and an arbitrary number of instruments
(q≥ 1).

Consider now the case whereZ is a T × 1 vector andX is a T ×K matrix. In this case, the
confidence set (2.14) for testingH0 : δ = δ 0 has the following general form:

(2.15) Cδ (α) =

{

δ 0 :
(y−Zδ 0)

′A1(y−Zδ 0)

(y−Zδ 0)′A2(y−Zδ 0)
×

ν2

q1
≤ Fα

}

whereFα = F(α; q1, T −q1−K) andν2 = T −q1−K and the matricesA1 = P(M(X)W1), A2 =
M([W1, X]). Since(ν2/q1) only takes positive values, the inequality in (2.15) is equivalent to the
quadratic inequality:

(2.16) aδ 2
0 +bδ 0 +c≤ 0
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TABLE 1
CONFIDENCE SETS BASED ON THE QUADRATIC INEQUALITYaδ 2

0 +bδ 0 +c≤ 0

∆ ≥ 0 ∆ < 0
(real roots) (complex roots)

a > 0 [δ 1∗, δ 2∗] Empty
a < 0 (−∞, δ 1∗] ∪ [δ 2∗, ∞) (−∞, +∞)

a = 0 b > 0
(

−∞, − c
b

]

b < 0
[

− c
b , ∞

)

b = 0, c > 0 Empty
b = 0, c≤ 0 (−∞, +∞)

wherea = Z′CZ, b = −2y′CZ, c = y′Cy, C = A1−GαA2 andGα = (q1/ν2)Fα . Again, the above
quadratic confidence intervals may be viewed as generalizations of the quadratic confidence inter-
vals described by Fuller (1987, page 55) and Zivot, Startz, and Nelson(1998).1

In empirical work, some problems may arise due to the high dimensions of the matricesM(X)
andM([W1, X]). A simple way to avoid this difficulty consists in using vectors of residuals fromap-
propriate OLS regressions. Consider the coefficienta = Z′CZ. We may replace it by the expression
Z′A1Z−GαZ′A2Z and then rewrite both terms as follows:

Z′A1Z = (Z′M(X))(M(X)W1) [(M(X)W1)
′(M(X)W1)]

−1(M(X)W1)
′(M(X)Z) ,

Z′A2Z = Z′M([W1, X])Z = [M([W1, X])Z]′[M([W1, X])Z] .

In the above expressions,M(X)Z is the vector of residuals obtained by regressingZ onX, M(X)W1

is the vector of residuals from the regression ofW1 on X, and finallyM([W1, X])Z is a vector of
residuals from the regression ofZ on X andW1. We can proceed in the same way to compute
the two other coefficients of the quadratic inequality (2.16). This will requireonly two additional
regressions:y onX, andy on bothX andW1.

It is easy to see that the confidence set (2.16) is determined by the roots ofthe second order
polynomial in (2.16). The shape of this confidence set depends on the signs ofa and∆ = b2−4ac.
All possible options are summarized in Table 1 whereδ 1∗ denotes the smaller root and byδ 2∗ the
larger root of the polynomial (when both roots are real).

Note that the confidence setCδ (α) may be empty or unbounded with a non-zero probability.
Since the reduced form fory can be written

(2.17) y = W1π1 +X1π12+X2π22+vy

whereπ1 = B1δ , π21 = γ1, π22 = γ2 +B2γ andvy = e+U∗δ , we see that the conditionπ1 = B1δ
may be interpreted as an overidentifying restriction. Jointly withδ = δ 0, this condition entails the

1 We proposed this generalization independently of Zivot, Startz, and Nelson (1998); see Dufour and Jasiak (1993).
For further discussion of quadratic confidence intervals, see also Fieller (1954) and Dufour (1997, Section 5.1).
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hypothesisH0∗ : B1(δ −δ 0) = 0 which is tested by the statisticF(δ 0; W1). Thus an empty confidence
set means the conditionB1(δ − δ 0) = 0 is rejected for any value ofδ 0 and so indicates that the
overidentifying restrictions entailed by the structural model (2.1) - (2.2) are not supported by the
data, i.e. the specification is rejected. However, if the model is correctly specified, the probability
of obtaining an empty confidence set is not greater thanα. On the other hand, the possibility of
an unbounded confidence set is anecessarycharacteristic of any valid confidence set in the present
context, because the structural parameterδ may not be identifiable [see Dufour (1997)]. Unbounded
confidence sets are most likely to occur whenδ is not identified or close to being unidentified, for
then all values ofδ are almost observationally equivalent. Indeed an unbounded confidence set
obtains whena < 0 or (equivalently) whenF(Π1 = 0) < Fα , whereF(Π1 = 0) is theF-statistic for
testingΠ1 = 0 in the regression

(2.18) Z = W1Π1 +XΠ +vZ .

In other words, the confidence interval (2.15) is unbounded if and onlyif the coefficients of the
exogenous regressors inW1 [which is excluded from the structural equation (2.1)] are not signifi-
cantly related toZ at levelα : i.e., W1 can be interpreted as a matrix of “weak instruments” forZ. In
contrast, Wald-type confidence sets forδ are typically bounded with probability one, so their true
level must be zero. Note finally that an unbounded confidence set can be informative:e.g., the set
(−∞, δ 1∗]∪ [δ 2∗, ∞) may exclude economically important values ofδ (δ = 0 for example).

3. Inference with generated regressors

Test statistics similar to those of the previous section may alternatively be obtained from linear re-
gressions with generated regressors. To obtain finite sample inferencesin such contexts, we propose
to compute adjusted values from an independent sample. In particular, this can be done by applying
a sample split technique.

Consider again the model described by (2.1) to (2.6). In (2.9), a naturalthing to do would consist
in replacingWBby WB̂, whereB̂ is an estimator ofB. TakeB̂ = (W′W)−1W′Z, the least squares
estimate ofB based on (2.2). Then we have:

(3.1) y−Zδ 0 = WB̂(δ −δ 0)+Xγ +[u+W(B− B̂)(δ −δ 0)] = Ẑδ 0∗ +Xγ +u∗

whereδ 0∗ = δ − δ 0 andu∗ = e−V∗δ 0 + [U∗ +W(B− B̂) ](δ − δ 0). Again, the null hypothesis
δ = δ 0 may be tested by testingH0∗ : δ 0∗ = 0 in model (3.1). Here the standardF statistic forH0∗

is obtained by replacingW1 by Ẑ in (2.13), i.e.

(3.2) F(δ 0; Ẑ) =
(y−Zδ 0)

′P(M(X)Ẑ)(y−Zδ 0)/G

(y−Zδ 0)′M([Ẑ, X]) (y−Zδ 0)/(T −G−K)
;

if K = 0 [no X matrix in (2.1)], we conventionally setM(X) = IT and[Ẑ, X] = Ẑ. However, to get
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a null distribution forF(δ 0; Ẑ), we will need further assumptions. For example, in addition to the
assumptions (2.1) to (2.6), suppose, as in Pagan (1984), that

(3.3) eandV ≡U∗ +V∗ are independent.

In this case, whenδ = δ 0 = 0, Ẑ andu∗ are independent and, conditional onẐ, model (3.1) satisfies
all the assumptions of the classical linear model (with probability 1). Thus the null distribution of
the statisticF(0; Ẑ) for testingδ 0 = 0 is F(G, T −G−K). Unfortunately, this property does not
extend to the more general statisticF(δ 0; Ẑ) whereδ 0 6= 0 becausêZ andu∗ are not independent in
this case. A similar observation (in an asymptotic context) was made by Pagan (1984).

To deal with more general hypotheses, suppose now that an estimateB̃ of B such that

(3.4) B̃ is independent ofeandV∗

is available, and replacêZ = WB̂ by Z̃ = WB̃ in (3.1). We then get

(3.5) y−Zδ 0 = Z̃δ 0∗ +Xγ +u∗∗

whereu∗∗ = e−V∗δ 0+[U∗+W(B− B̃)] (δ −δ 0). Under the assumptions (2.1) – (2.6) withδ = δ 0

and conditional oñZ (or B̃), model (3.5) satisfies all the assumptions of the classical linear model
and the usualF-statistic for testingδ 0∗ = 0,

(3.6) F(δ 0; Z̃) =
(y−Zδ 0)

′P(M(X)Z̃)(y−Zδ 0)/G

(y−Zδ 0)′M([Z̃, X])(y−Zδ 0)/(T −G−K)

where the usual notation has been adopted, follows anF(G, T−G−K) distribution. Consequently,
the critical regionF(δ 0; Z̃) > F(α; G, T−G−K) has sizeα. Note that condition (3.3) is not needed
for this result to hold. Furthermore

(3.7) C̃δ (α) = {δ 0 : F(δ 0; Z̃) ≤ F(α; G, T −G−K)}

is a confidence set forδ with size 1−α. For scalarδ (G = 1), this confidence set takes a form
similar to the one in (2.15), except thatA1 = P(M(X)Z̃) andA2 = M([Z̃, X]).

A practical problem here consists in finding the independent estimateB̃. Under the assump-
tions (2.1) – (2.6), this can be done easily by splitting the sample. LetT = T1 + T2, where
T1 > G + K and T2 ≥ q, and write: y = (y′(1) , y′(2))

′, X = (X′
(1) , X′

(2))
′, Z = (Z′

(1) , Z′
(2))

′, W =

(W′
(1) , W′

(2))
′,e= (e′(1) , e′(2))

′,V∗ = (V ′
∗(1) , V ′

∗(2))
′ and(U ′

∗(1) , U ′
∗(2))

′, where the matricesy(i), X(i) ,

Z(i) , W(i) , e(i) , V∗(i) andU∗(i) haveTi rows(i = 1, 2). Consider now the equation

(3.8) y(1)−Z(1)δ 0 = Z̃(1)δ 0∗ +X(1)γ +u(1)∗∗

whereZ̃(1) = W(1)B̃, B̃ = [W′
(2)W(2)]

−1W′
(2)Z(2) is obtained from the second sample, andu(1)∗∗ =

e(1) −V∗(1)δ 0 + [U∗(1) +W(1)(B− B̂) ](δ − δ 0). Clearly B̃ is independent ofe(1) andV∗(1), so the
statisticF(δ 0; Z̃(1)) based on equation (3.8) follows aF(G, T1−K−G) distribution whenδ = δ 0.
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A sample split technique has also been suggested by Angrist and Krueger(1995) to build a new
IV estimator, called Split Sample Instrumental Variables (SSIV) estimator. Its advantage over the
traditional IV method is that SSIV yields an estimate biased toward zero, ratherthan toward the
probability limit of the OLS estimator in finite sample if the instruments are weak. Angrist and
Krueger show that an unbiased estimate of the relevant bias can be calculated and, consequently, an
asymptotically unbiased estimator (USSIV) can be derived. In their approach, Angrist and Krueger
rely on splitting the sample in half,i.e., settingT1 = T2 = T

2 whenT is even. However, in our setup,
different choices forT1 andT2 are clearly possible. Alternatively, one could select at random the
observations assigned to the vectorsy(1) andy(2). As we will show later (see Section 8) the number
of observations retained for the first and the second subsample have a direct impact on the power
of the test. In particular, it appears that one can get a more powerful test once we use a relatively
small number of observations for computing the adjusted values and keep more observations for
the estimation of the structural model. This point is illustrated below by simulation experiments.
Finally, it is of interest to observe that sample splitting techniques can be usedin conjunction with
the Boole-Bonferroni inequality to obtain finite-sample inference procedures in other contexts, such
as seemingly unrelated regressions and models with moving average errors;for further discussion,
the reader may consult Dufour and Torrès (1998).

4. Joint tests onδ and γ

The instrument substitution and sample split methods described above can easily be adapted to test
hypotheses on the coefficients of both the latent variables and the exogenous regressors. In this
section, we deriveF-type tests for general linear restrictions on the coefficient vector. Consider
again model (2.1) – (2.6), which after substituting the term(Z−V∗) for the latent variable yields the
following equation:

(4.1) y = (Z−V∗)δ +Xγ +e= Zδ +Xγ +(e−V∗δ ) .

We first consider a hypothesis which fixes simultaneouslyδ and an arbitrary set of linear transfor-
mations ofγ:

H0 : δ = δ 0 and R1γ = ν10

whereR1 is ar1×K fixed matrix such that 1≤ rank(R1) = r1 ≤ K. The matrixR1 can be viewed as
a submatrix of aK×K matrixR= [R′

1, R′
2]
′ where det(R) 6= 0, so that we can write

(4.2) Rγ =

[

R1

R2

]

γ =

[

R1γ
R2γ

]

=

[

ν1

ν2

]

.

Let XR = XR−1 = [XR1, XR2] whereXR1 andXR2 areT × r1 andT × r2 matrices(r2 = K − r1). Then
we can rewrite (4.1) as

(4.3) y = Zδ +XR1ν1 +XR2ν2 +(e−V∗δ ) .
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SubtractingZδ 0 andXR1ν10 on both sides, we get

(4.4) y−Zδ 0−XR1ν10 = [W1B1 +X2B2] (δ −δ 0)+XR1(ν1−ν10)
+XR2ν2 +[e−V∗δ 0 +U∗(δ −δ 0)] .

Suppose now thatW andX haveK2 columns in common (with 0≤K2 < q), while the other columns
of X are linearly independent ofW as in (2.10). SinceX = [X1, X2] = XRR= XR1R1+XR2R2 , we can
write X = [X1, X2] = [XR1R11+ XR2R21, XR1R12+ XR2R22] , whereR1 = [R11, R12], R2 = [R21, R22]
andRi j is ar i ×K j matrix (i, j = 1, 2). Then replaceX2 by XR1R12+XR2R22 in (4.4):

(4.5) y−Zδ 0−XR1ν10 = W1δ ∗
1 +XR1γ∗1 +XR2γ∗2 +u

whereδ ∗
1 = B1(δ − δ 0), γ∗1 = R12B2(δ − δ 0) + (ν1− ν10), γ∗2 = R22B2(δ − δ 0)+ ν2, andu =

e−V∗δ 0+U∗(δ −δ 0). Consequently, we can testH0 by testingH ′
0 : δ ∗

1 = 0, γ∗1 = 0,in (4.5), which
leads to the statistic:

(4.6) F(δ 0, ν10; W1, XR1) =
{y(δ 0, ν10)

′P(M(XR2)WR1)y(δ 0, ν10)/(q1 + r1)}

{y(δ 0, ν10)′M([W1, X])y(δ 0, ν10)/(T −q1−K)}

where y(δ 0, ν10) = y − Zδ 0 − XR1ν10 and WR1 = [W1, XR1]; if r2 = 0, we set M(XR2) =
IT. . Under H0, F(δ 0, ν10; W1, XR1) ∼ F(q1 + r1, T − q1 − K) and we rejectH0 at level
α when F(δ 0, ν10; W1, XR1) > F(α; q1 + r1, T − q1 − K). Correspondingly,{(δ ′

0, ν ′
10)

′ :
F(δ 0, ν10; W1, XR1) ≤ F(α; q1 + r1, T −q1−K)} is a confidence set with level 1−α for δ and
ν1 = R1γ1.

Suppose now we employ the procedure with generated regressors usingan estimator̃B indepen-
dent ofu andV. We can then proceed in the following way. SettingZ̃ = WB̃ andV̂ = Z− Z̃, we
have:

(4.7) y−Zδ 0−XR1ν10 = Z̃δ ∗
1 +XR1ν∗

1 +XR2ν2 +u∗∗

where δ ∗
1 = δ − δ 0, ν∗

1 = ν1−ν10 andu∗∗ = e−V∗δ 0 +[U∗ +W(B− B̃)](δ − δ 0). In this case
we will simply test the hypothesisH0 : δ ∗

1 = 0, ν∗
1 = 0. TheF statistic forH0 takes the form:

(4.8) F(δ 0, ν10; Z̃, XR1) =
{y(δ 0, ν10)

′P(M(XR2)Z̃R1)y(δ 0, ν10)/(G+ r1)}

{y(δ 0, ν10)′M([Z̃, X])y(δ 0, ν10)/(T −G−K)}

wherey(δ 0, ν10) = y−Zδ 0−XR1ν10, andZ̃R1 = [Z̃, XR1]. UnderH0, F(δ 0, ν10; Z̃, XR1) ∼ F(G+
r1, T −G−K). The corresponding critical region with levelα is given byF(δ 0, ν10; Z̃, XR1) >
F(α; G + r1, T − G − r1) , and the confidence set at level 1− α is thus {(δ ′

0, ν ′
10)

′ :
F(δ 0, ν10; Z̃, XR1) ≤ F(α; G+ r1, T −G−K}.
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5. Inference with a surprise variable

In many economic models we encounter so-called “surprise” terms among the explanatory variables.
These reflect the differences between the expected values of latent variables and their realizations.
In this section we study a model which contains the unanticipated part ofZ [Pagan (1984, model 4)]
as an additional regressor beside the latent variable, namely:

(5.1) y = Z∗δ +(Z−Z∗)γ +Xβ +e= Zδ +V∗γ +Xβ +e−V∗δ ,

(5.2) Z = Z∗ +V∗ = WB+(U∗ +V∗) = WB+V ,

where the general assumptions (2.3) – (2.6) still hold. The term(Z−Z∗) represents the unanticipated
part ofZ. This setup raises more difficult problems especially for inference onγ. Nevertheless we
point out here that the procedures described in the preceding sectionsfor inference onδ and γ
remain applicable essentially without modification, and we show that similar procedures can be
obtained as well for inference onγ provided we make the additional assumption (3.3).

Consider first the problem of testing the hypothesisH0 : δ = δ 0. Applying the same procedure
as before, we get the equation:

(5.3) y−Zδ 0 = WB(δ −δ 0)+Xβ +V∗γ +(e−V∗δ 0)

hence, assuming thatW andX haveK2 columns in common,

(5.4) y−Zδ 0 = W1B1(δ −δ 0)+X1β 1 +X2β ∗
2 +e+V∗(γ −δ 0) = W1δ 1∗ +Xβ ∗ +u

whereδ 1∗ = B1(δ −δ 0), β ∗
2 = β 2 +B2(δ −δ 0), β ∗ = (β ′

1, β ∗
2
′)′ andu = e+V∗(γ −δ 0). Then we

can testδ = δ 0 by using theF-statistic forδ 10 = 0:

(5.5) F(δ 0; W1) =
(y−Zδ 0)

′P(M(X)W1)(y−Zδ 0)/q1

(y−Zδ 0)′M[X(W1)] (y−Zδ 0)/(T −q1−K)
.

Whenδ = δ 0, F(δ 0; W1)∼F(q1, T−q1−K). It follows thatF(δ 0; W1) > F(α; q−K2, T−q1−K)
is a critical region with levelα for testingδ = δ 0 while {δ 0 : F(δ 0; W1) ≤ F(α; q1, T −q1−K)}
is a confidence set with level 1−α for δ . Thus, the procedure developed for the case where no
surprise variable is present applies without change. If generated regressors are used, we can write:

(5.6) y−Zδ 0 = WB̂(δ −δ 0)+Xβ +e+V∗(γ −δ 0)+V̂(δ −δ 0) .

ReplacingWB̂ by Z̃ = WB̃, whereB̃ is an estimator independent ofeandV, we get

(5.7) y−Zδ 0 = Z̃δ ∗ +Xβ +u

whereδ ∗ = δ − δ 0 ,u = e+V∗(γ − δ 0)+ Ṽ(δ − δ 0) andṼ = Z− Z̃. Here the hypothesisδ = δ 0
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entailsH ′
0 : δ ∗ = 0. TheF-statisticF(δ 0; Z̃) defined in (3.6) follows anF(G, T−G−K) distribution

whenδ = δ 0. Consequently, the tests and confidence set procedures based onF(δ 0; Z̃) apply in
the same way. Similarly, it is easy to see that the joint inference procedures described in Section 4
also apply without change.

Let us now consider the problem of testing an hypothesis on the coefficient of the surprise term,
i.e. H0 : γ = γ0. In this case, it appears more difficult to obtain a finite-sample test under the
assumptions (2.1) – (2.6). So we will assume that the following conditions, which are similar to
assumptions made by Pagan (1984), hold:

(5.8) a)U∗ = 0; b)eandV are independent.

Then we can write:

(5.9) y = Z∗δ +(Z−Z∗)γ +Xβ +e= Zγ +W1δ ∗
1 +Xβ ∗ +e.

SubtractingZγ0 on both sides yields

(5.10) y−Zγ0 = Zγ∗ +W1δ 1∗ +Xβ ∗ +e

whereγ∗ = γ − γ0. We can thus testγ = γ0 by testingγ∗ = 0 in (5.10), using

(5.11) F(γ0; Z) =
(y−Zγ0)

′P(M([W1, X])Z)(y−Zγ0)/G
(y−Zγ0)

′M([W1, Z, X]) (y−Zγ0)/(T −G−q1−K)
.

Whenγ = γ0, F(γ0; Z) ∼ F(G, T −G−q1−K) so thatF(γ0; Z) ≥ F(α; G, T −G−q1−K) is a
critical region with levelα for γ = γ0 and

(5.12) {γ0 : F(γ0; Z) ≤ F(α; G, T −G−q1−K)}

is a confidence set with level 1−α for γ. Whenγ is a scalar, this confidence set can be written as:

(5.13)

{

γ0 :
(y−Zγ0)

′D(y−Zγ0)

(y−Zγ0)
′E(y−Zγ0)

×
ν2

ν1
≤ Fα

}

whereν1 = G = 1, ν2 = T −G−q1−K, D = P(M([W1, X])), E = M([W1, Z, X]). Since the ratio
ν2/ν1 always takes positive values, the confidence set is obtained by finding the valuesγ0 that
satisfy the inequalityaγ2

0+bγ0+c≤ 0, wherea= Z′LZ , b=−2Z′Ly, c= y′Ly, L = D−HαE and
Hα = (ν1/ν2)Fα . Finally it is straightforward to see that the problem of testing a joint hypothesis of
the typeH0 : γ = γ0, R1β = ν10 can be treated by methods similar to the ones presented in Section
4.
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6. Inference on general parameter transformations

The finite sample tests presented in this paper are based on extensions of Anderson–Rubin statistics.
An apparent limitation of Anderson–Rubin type tests comes from the fact thatthey are designed for
hypothesis fixing the complete vector of the endogenous (or unobserved) regressor coefficients.
In this section, we propose a solution to this problem which is based on applying a projection
technique. Even more generally, we study inference on general nonlinear transformations ofδ in
(2.1), or more generally of(δ ′,ν ′

1)
′ whereν1 = R1γ is a linear transformation ofγ, and we propose

finite sample tests of general restrictions on subvectors ofδ or (δ ′,ν ′
1)

′. For a similar approach, see
Dufour (1989, 1990) and Dufour and Kiviet (1998).

Let θ = δ or θ = (δ ′,ν ′
1)

′ depending on the case of interest. In the previous sections, we derived
confidence sets forθ which take the general form

(6.1) Cθ (α) = {θ 0 : F(θ 0) ≤ Fα}

whereF(θ 0) is a test statistic forθ = θ 0 andFα is a critical value such thatP[θ ∈Cθ (α)] ≥ 1−α .
If θ = θ 0, we have

(6.2) P[θ 0 ∈Cθ (α)] ≥ 1−α , P[θ 0 /∈Cθ (α)] ≤ α .

Consider a (possibly nonlinear) transformationη = f (θ) of θ . Then it is easy to see that

(6.3) Cη(α) ≡ {η0 : η0 = f (θ) for someθ ∈Cθ (α)}

is a confidence set forη with level at least 1−α , i.e.

(6.4) P[η ∈Cη(α)] ≥ P[θ ∈Cθ (α)] ≥ 1−α ,

hence

(6.5) P[η /∈Cη(α)] ≤ α .

Thus, by rejectingH0 : η = η0 whenη0 /∈Cη(α), we get a test of levelα . Further

(6.6) η0 /∈Cη(α) ⇔ η0 6= f (θ 0) , ∀θ 0 ∈Cθ (α)

so that the conditionη0 /∈Cη(α) can be verified by minimizingF(θ 0) over the setf−1(η0) = {θ 0 :
f (θ 0) = η0} and checking whether the infimum is greater thanFα .

When η = f (θ) is a scalar, it is easy to obtain a confidence interval forη by considering
variablesηL = inf{η0 : η0 ∈Cη(α)} andηU = sup{η0 : η0 ∈Cη(α)} obtained by minimizing and
maximizingη0 subject to the restrictionη0 ∈Cη(α). It is then easy to see that

(6.7) P[ηL ≤ η ≤ ηU ] ≥ P[η ∈Cη(α)] ≥ 1−α

so that[ηL,ηU ] is a confidence interval with level 1−α for η . Further, if such confidence intervals
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are built for several parametric functions, sayη i = fi(θ), i = 1, ... ,m, from the same confidence
setCθ (α), the resulting confidence intervals[η iL ,η iU ], i = 1, ... ,m, are simultaneous at level 1−
α, in the sense that the correspondingm−dimensional confidence box contains the true vector
(η1, ... ,ηm) with probability (at least) 1−α; for further discussion of simultaneous confidence
sets, see Miller (1981), Savin (1984) and Dufour (1989). When a setof confidence intervals are not
simultaneous, we will call them “marginal intervals”.

Consider the special case whereθ = δ = (δ 1,δ ′
2)

′ andη = δ 1, i.e. η is an element ofδ . Then
the confidence setCη(α) takes the form:

(6.8) Cη(α) = Cδ 1
(α) = {δ 10 : (δ 10,δ ′

2)
′ ∈Cδ (α), for someδ 2}.

Consequently we must have:

(6.9) P[δ 1 ∈Cδ 1
(α)] ≥ 1−α , P[δ 10 /∈Cδ 1

(α)] ≤ α .

Further if we consider the random variablesδ L
1 = inf{δ 10 : δ 10 ∈Cδ 1

(α)} andδU
1 = sup{δ 10 : δ 10

∈ Cδ 1
(α)} obtained by minimizing and maximizingδ 10 subject to the restrictionδ 10 ∈ Cδ 1

(α),
[δ L

1,δ
U
1 ] is a confidence interval with level 1−α for δ 1. The test which rejectsH0 : δ 1 = δ 10 when

δ 10 /∈Cδ 1
(α) has level not greater thanα . Furthermore,

(6.10) δ 10 /∈Cδ 1
(α) ⇔ F

(

(δ ′
10, δ ′

2)
′
)

> Fα , ∀δ 2 .

Condition (6.10) can be checked by minimizing theF
(

(δ ′
10, δ ′

2)
′
)

statistic with respect toδ 2 and
comparing the minimal value withFα . The hypothesisδ 1 = δ 10 is rejected if the infimum of
F

(

(δ ′
10, δ ′

2)
′
)

is greater thanFα . In practice, the minimizations and maximizations required by
the above procedures can be performed easily through standard numerical techniques.

Finally, it is worthwhile noting that, even though the simultaneous confidence set Cθ (α) for θ
may be interpreted as a confidence set based on inverting LR-type tests for θ = θ 0 or as a profile
likelihood confidence set [see Meeker and Escobar (1995) or Chen and Jennrich (1996)], projection-
based confidence sets, such asCη(α), are not (strictly speaking) LR confidence sets.

7. Asymptotic validity

In this section we show that the finite sample inference methods described above remain valid under
weaker assumptions provided the number of observations is sufficiently large. Consider again the
model described by (2.1) – (2.6) and (2.10), which yields the following equations:

(7.1) y = Zδ +Xγ +u ,

(7.2) Z = W1B1 +X2B2 +V ,

whereu = e−Vδ . If we are prepared to accept a procedure which is only asymptotically “valid”,
we can relax the finite-sample assumptions (2.3) – (2.6) since the normality of error terms and their
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independence are no longer necessary. To do this, let us focus on thestatisticF(δ 0; W1) defined in
(2.13). Then, under general regularity conditions, we can show:
a) under the null hypothesisδ = δ 0 theF-statistic in (2.13),

(7.3) F(δ 0; W1) =
(y−Zδ 0)

′M(X)W1[W′
1M(X)W1]

−1W′
1M(X)(y−Zδ 0)/q1

(y−Zδ 0)′M([X, W1]) (y−Zδ 0)/(T −q1−K)
,

follows aχ2
q1

/q1 distribution asymptotically (asT → ∞);
b) under the fixed alternativeδ = δ 1, providedB1(δ 1− δ 0) 6= 0, the value of (2.13) tends to get
infinitely large asT increases,i.e. the test based onF(δ 0; W1) is consistent.

Assume that the following limits hold jointly:

(7.4)

(

u′u
T

,
u′V
T

,
V ′V
T

)

→
(

σ2
u, ΣuV, ΣV

)

,

(7.5)

(

X′X
T

,
X′W1

T
,

W′
1W1

T

)

→ (ΣXX, ΣXW1, ΣW1W1) ,

(7.6) (T− 1
2 X′u, T− 1

2 W′
1u, T− 1

2 X′V, T− 1
2 W′

1V) ⇒ Φ ≡ (ΦXu, ΦW1u, ΦXV, ΦW1V) ,

where→ and⇒ denote respectively convergence in probability and convergence in distribution as
T → ∞, and the joint distribution of the random variables inΦ is multinormal with the covariance
matrix of (Φ ′

Xu, Φ ′
W1u)

′ given by

Σ = V

[

ΦXu

ΦW1u

]

=

[

σ2ΣXX σΣXW1

σΣW1X ΣW1W1

]

whereΣXW1 = Σ ′
W1X and det(Σ) 6= 0. We know from equation (2.11) that

y−Zδ 0 = W1B1(δ −δ 0)+Xγ∗ +u.

Under the null hypothesisδ = δ 0, the numerator ofF(δ 0; W1) is equal to

N = u′M(X)W1[W′
1M(X)W1]

−1W′
1M(X)u/q1

= u′(I −P)W1[W′
1(I −P)W1]

−1W′
1(I −P)u/q1

=
[

T− 1
2 W′

1(I −P)u
]′

[

1
T W′

1(I −P)W1
]−1

[

T− 1
2 W′

1(I −P)u
]

/q1

whereP = P(X) = X(X′X)−1X′. Under the assumptions (7.4) to (7.6), we have the following con-
vergence:

T− 1
2 W′

1(I −P)u = T− 1
2 W′

1u−
(

1
T W′

1X
) (

1
T X′X

)−1
(

T− 1
2 X′u

)

⇒ ΦW1|X ≡ ΦW1u−ΣW1X Σ−1
XX ΦXu
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where
V[ΦW1|X] = V[ΦW1u]+ΣW1X Σ−1

XXV[ΦXu]Σ−1
XX ΣXW1

− E[ΦW1u Φ ′
Xu]Σ

−1
XX ΣXW1 −ΣW1X Σ−1

XX E[ΦXuΦ ′
W1u]

= ΣW1W1 −ΣW1X Σ−1
XX ΣXW1

and
1
T W′

1(I −P)W1 = 1
T W′

1W1−
1
T W′

1X
(

1
T X′X

)−1 (

1
T X′W1

)

→ ΣW1W1 −ΣW1X Σ−1
XX ΣXW1.

Consequently

N ⇒ Φ ′
W1|X

(

ΣW1W1 −ΣW1X Σ−1
XX Σ ′

XW1

)−1 ΦW1|X/q1 ∼ χ2(q1)/q1.

This means that we can define the confidence intervals as the sets of pointsδ 0 for which the statis-
tic (7.3) fails to reject, using the asymptoticχ2

q1
/q1 critical values or the somewhat stronger (and

probably more accurate) critical values of the Fisher distribution. Furthermore, it is easy to see that,
both under the null and the alternative, the denominatorD converges toσ2

u asT → ∞:

D = u′M([X, W1])u/T

= u′u
T − u′[X,W1]{[X,W1]

′[X,W1]}
−1[X,W1]u

T → σ2
u.

Consider now a fixed alternativeδ = δ 1. Whenδ = δ 1, we have

N = [W1B1(δ 1−δ 0)+u]′M(X)W1[W′
1M(X)W1]

−1W′
1M(X) [W1B1(δ 1−δ 0)+u]/q1

= T− 1
2 [(W′

1M(X)W1)B1(δ 1−δ 0)+W′
1M(X)u)]′

[

W′
1M(X)W1

T

]−1

×T− 1
2 [(W′

1M(X)W1)B1(δ 1−δ 0)+W′
1M(X)u)]/q1.

The behavior of the variableN depends on the convergence limits of the terms on the right-hand
side of the last equation. It means that we can find the limit ofN by showing the convergence of the
individual components. The major building block of the expression forN is

T− 1
2 [W′

1M(X)W1B1(δ 1−δ 0)+W′
1M(X)u] = T

1
2

(

W′
1M(X)W1

T

)

B1(δ 1−δ 0)

+ T− 1
2 W′

1M(X)u.

As we have shown,T− 1
2 W′

1M(X)u converges in distribution to a random variableΦW1|X and the

term T
1
2

(

W′
1M(X)W1

T

)

B1(δ 1 − δ 0) diverges in probability asT gets large. Consequently, under a

fixed alternative, the whole expression goes to infinity, and the test is consistent. It is easy to prove
similar asymptotic results for the other tests proposed in this paper.

16



8. Monte Carlo study

In this section, we present the results of a small Monte Carlo experiment comparing the perfor-
mance of the exact tests proposed above with other available (asymptotically justified) procedures,
especially Wald-type procedures.

A total number of one thousand realizations of an elementary version of the model (2.1)–(2.2),
equivalent to Model 1 discussed by Pagan (1984), were simulated for asample of sizeT = 100. In
this particular specification, only one latent variableZ is present. The error terms ineandV (where
e andV are vectors of length 100) are independent withN(0, 1) distributions. We allow for the
presence of only one instrumental variableW in the simulated model, which was also independently
drawn (once) from aN(0, 1) distribution. Following Pagan’s original specification, there is no
constant term or any exogenous variables included.

The explanatory power of the instrumental variableW depends on the value of the parameterB.
Hence, we letB take the following values: 0, 0.05, 0.1, 0.5 and 1. WhenB is close or equal to zero,
W has little or no explanatory power,i.e. W is a bad instrument for the latent variableZ. For each
value ofB we consider five null hypotheses:

H0 : δ = δ 0 , for δ 0 = 0, 1, 5, 10 and 50,

each one being tested against four alternative hypotheses of the form

H1 : δ = δ 1 , for δ 1 = δ 0 + p∗I(δ 0) .

The alternativeH1 is constructed by adding an increment to the value ofδ 0 wherep∗ = 0, 0.5, 1, 2
and 4, andI(δ 0) = 1 for δ 0 = 0, andI(δ 0) = δ 0 otherwise.

Table 2 summarizes the results. In the first 3 columns, we report the values of B, δ 0 and the alter-
nativeδ 1. When the entries in columns II and III are equal, we haveδ 0 = δ 1, and the corresponding
row reports the levels of the tests. The next three columns (IV, V and VI) show the performance
of the Wald-type IV-based test [as proposed by Pagan (1984)], which consists in correcting the
understated standard errors of a two stage procedure by replacing them by a 2SLS standard error.
We report the corresponding results in column IV [asymptotic (As.)]. In cases where the level of
Pagan’s test exceeds 5%, we consider two correction methods. The first method is based on the
critical value of the test at the 5% level for specific values ofδ 0 andB in each row of the table
[locally size-corrected tests; column V (C.L.)]. The critical value is obtainedfrom an independent
simulation with 1000 realizations of the model. Another independent simulation allows us to com-
pute the critical value at 5% level in an extreme case when the instrumental variable is very bad,i.e.
by supposingB= 0 also for each value ofδ 0 [globally size-corrected tests; column VI (C.G.)]. This
turns out to yield larger critical values and is thus closer to the theoretically correct critical value to
be used here (on the assumption thatB is actually unknown). In column VII, we present the power
of the exact test based on the instrument substitution method. In the following four columns (VIII
to XI) we show the performance of the exact test based on splitting the sample, where the numbers
of observations used to estimate the structural equation are, respectively, 25, 50, 75 and 90 over 100
observations. Finally, we report the level and power of a naive two-stage test as well as the results
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of a test obtained by replacing the latent variableZ∗ in the structural equation by the observed value
Z.

Let us first discuss the reliability of the asymptotic procedures. The level of the IV test proposed
by Pagan exceeds 5% essentially always when the parameterB is less then 0.5, sometimes by very
wide margins. The tests based on the two-stage procedure or replacing thelatent variable by the
vector of observed values are both extremely unreliable no matter the value of the parameterB.
The performance of Pagan’s test improves once we move to higher valuesof the parameterB, i.e.
when the quality of the instrument increases. The improvement is observed both in terms of level
and power. It is however important to note that Pagan’s test has, in general, the same or less power
than the exact tests. The only exception is the sample split test reported in column VIII, where only
25 observations were retained to estimate the structural equation. ForB higher then 0.5, the two
other asymptotic tests are still performing worse then the other tests. They areindeed extremely
unreliable. In the same range ofB, the exact tests behave very well. They show the best power
properties compared to the asymptotically based procedures and in general outperform the other
tests.

9. Empirical illustrations

In this section, we present empirical results on inference in two distinct economic models with latent
regressors. The first example is based on Tobin’s marginalq model of investment [Tobin (1969)],
with fixed assets used as the instrumental variable forq. The second model stems from educational
economics and relates students’ academic achievements to a number of personal characteristics and
other socioeconomic variables. Among the personal characteristics, we encounter a variable defined
as “self–esteem” which is viewed as an imperfect measure of a latent variable and is instrumented
by measures of the prestige of parents’ professional occupation. Thefirst example is one where we
have good instruments, while the opposite holds for the second example.

Consider first Tobin’s marginalq model of investment [Tobin (1969)]. Investment of an indi-
vidual firm is defined as an increasing function of the shadow value of capital, equal to the present
discounted value of expected marginal profits. In Tobin’s original setup, investment behavior of all
firms is similar and no difference arises from the degree of availability of external financing. In fact,
investment behavior varies across firms and is determined to a large extent by financial constraints
some firms are facing in the presence of asymmetric information. For those firms, external financ-
ing may either be too costly or not provided for other reasons. Thus investment depends heavily on
the firm’s own source of financing, namely the cash flow. To account fordifferences in investment
behavior implied by financial constraints, several authors [Abel (1979), Hayashi (1982, 1985), Abel
and Blanchard (1986), Abel and Eberly (1993)] introduced the cashflow as an additional regressor
to Tobin’sq model. It can be argued that another explanatory variable controlling the profitability of
investment is also required. For this reason, one can argue that the firm’sincome has to be included
in the investment regression as well. The model is thus

(9.1) Ii = γ0 +δQi + γ1CFi + γ2Ri +ei
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TABLE 2
SIMULATION STUDY OF TEST PERFORMANCE FOR A MODEL WITH UNOBSERVED REGRESSORS

Parameter values Rejection frequencies
B δ 0 δ 1 Wald-type IS Split-sample 2S OLS

As. C.L. C.G. 25 50 75 90
I II III IV V VI VII VIII IX X XI XII XIII

0.00 0.0 0.0 0.1 · · 5.1 5.1 6.1 5.2 5.4 5.1 ·
0.00 0.0 0.5 0.0 · · 4.7 5.1 4.4 4.1 3.9 4.7 ·
0.00 0.0 1.0 0.0 · · 5.6 4.8 5.5 5.7 5.4 5.6 ·
0.00 0.0 2.0 0.0 · · 4.2 4.5 4.5 3.8 4.5 4.2 ·
0.00 0.0 4.0 0.0 · · 5.2 5.3 5.9 4.3 5.0 5.2 ·

0.00 1.0 1.0 7.3 5.1 5.1 5.0 4.6 4.9 4.8 5.2 15.7 4.7
0.00 1.0 1.5 6.8 5.5 5.5 4.4 4.8 4.4 5.4 6.1 15.7 6.8
0.00 1.0 2.0 7.6 5.9 5.9 5.0 4.3 4.8 4.8 5.1 17.9 6.5
0.00 1.0 3.0 8.6 6.6 6.6 6.3 5.0 4.9 5.0 5.8 19.9 7.0
0.00 1.0 5.0 6.6 4.9 4.9 4.4 4.3 4.6 5.5 4.6 18.1 5.1

0.00 5.0 5.0 54.1 5.5 5.5 5.1 5.5 4.2 5.2 4.9 70.5 69.3
0.00 5.0 7.5 52.8 5.4 5.4 4.9 6.1 4.9 5.1 4.6 69.7 69.0
0.00 5.0 10.0 56.5 5.7 5.7 4.8 4.5 6.1 5.0 4.8 71.7 71.5
0.00 5.0 15.0 50.7 4.6 4.6 4.8 4.5 4.3 4.5 3.8 66.6 67.0
0.00 5.0 25.0 52.7 5.2 5.2 4.6 4.5 4.6 5.6 5.0 67.8 68.8

0.00 10.0 10.0 69.0 4.5 4.5 4.9 5.3 6.0 4.9 5.1 84.5 85.0
0.00 10.0 15.0 68.4 5.7 5.7 5.9 4.7 5.0 5.6 4.5 84.3 83.9
0.00 10.0 20.0 68.6 5.0 5.0 5.7 4.3 4.9 4.7 5.2 84.6 84.3
0.00 10.0 30.0 70.2 4.9 4.9 4.5 5.4 5.2 5.0 5.2 85.4 84.4
0.00 10.0 50.0 68.7 5.3 5.3 4.8 4.2 5.1 5.6 5.0 83.6 83.1

0.00 50.0 50.0 86.5 6.4 6.4 5.4 4.4 5.0 5.1 5.4 96.9 96.5
0.00 50.0 75.0 85.2 6.7 6.7 6.2 3.9 5.0 6.6 6.7 95.1 96.1
0.00 50.0 100.0 87.4 5.2 5.2 4.6 6.5 5.0 4.5 5.5 96.8 96.4
0.00 50.0 150.0 85.8 6.5 6.5 5.8 5.0 5.3 5.9 5.9 97.1 97.1
0.00 50.0 250.0 86.7 6.8 6.8 5.9 4.8 6.0 6.2 5.8 97.1 97.3

0.05 0.0 0.0 0.0 · · 4.8 5.0 3.6 3.6 5.3 4.8 ·
0.05 0.0 0.5 0.2 · · 4.9 5.1 5.5 4.8 5.2 4.9 ·
0.05 0.0 1.0 0.0 · · 7.4 5.4 5.7 6.2 7.6 7.4 ·
0.05 0.0 2.0 0.3 · · 16.6 8.7 11.7 14.7 15.7 16.6 ·
0.05 0.0 4.0 1.0 · · 47.8 16.4 26.9 38.1 44.0 47.8 ·
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TABLE 2 (continued)

0.05 1.0 1.0 6.9 5.2 5.6 4.7 4.8 4.4 4.8 5.5 16.9 7.9
0.05 1.0 1.5 6.0 4.6 4.7 5.4 6.0 6.0 5.4 5.2 16.9 7.5
0.05 1.0 2.0 4.7 3.9 3.9 5.3 5.7 4.6 5.1 5.2 18.1 7.6
0.05 1.0 3.0 4.0 2.7 2.7 9.9 6.3 7.4 8.4 10.5 25.3 7.4
0.05 1.0 5.0 2.6 2.1 2.1 27.0 9.0 14.9 23.2 25.4 51.1 5.6

0.05 5.0 5.0 33.8 4.6 1.6 4.6 5.8 5.3 5.2 4.8 71.7 72.7
0.05 5.0 7.5 21.0 2.3 0.2 6.3 4.8 4.6 5.3 6.0 69.7 71.4
0.05 5.0 10.0 12.4 0.4 0.1 8.7 4.8 5.6 7.6 8.5 71.9 69.9
0.05 5.0 15.0 5.1 0.1 0.0 14.8 6.1 8.6 11.7 13.2 81.2 66.9
0.05 5.0 25.0 3.9 0.0 0.0 47.1 15.3 26.2 39.1 43.0 93.6 59.0

0.05 10.0 10.0 34.9 7.6 0.2 6.3 6.6 6.3 6.4 6.5 84.8 84.0
0.05 10.0 15.0 22.9 1.3 0.0 6.4 4.4 5.8 5.8 5.9 85.8 78.9
0.05 10.0 20.0 14.1 0.6 0.0 8.6 5.1 6.1 6.7 7.6 88.9 79.0
0.05 10.0 30.0 5.1 0.0 0.0 14.5 6.7 10.4 13.3 13.9 90.0 74.2
0.05 10.0 50.0 4.4 0.1 0.0 52.5 18.6 30.1 40.8 49.1 97.5 62.2

0.05 50.0 50.0 32.7 5.1 0.0 4.7 4.7 6.0 5.2 4.5 97.5 92.0
0.05 50.0 75.0 21.2 1.7 0.0 6.4 4.5 4.9 5.3 6.2 96.9 89.2
0.05 50.0 100.0 14.3 0.6 0.0 8.5 5.8 7.0 7.2 7.3 97.7 86.5
0.05 50.0 150.0 6.4 0.3 0.0 17.6 7.0 11.1 15.1 15.8 97.0 79.8
0.05 50.0 250.0 3.2 0.0 0.0 51.3 16.0 28.3 38.7 46.1 99.8 65.3

0.10 0.0 0.0 0.0 · · 4.8 4.2 4.9 4.5 5.0 4.8 ·
0.10 0.0 0.5 0.2 · · 8.2 6.8 7.1 6.9 7.4 8.2 ·
0.10 0.0 1.0 0.1 · · 15.8 7.1 8.9 13.9 13.5 15.8 ·
0.10 0.0 2.0 2.4 · · 49.4 16.9 29.3 40.7 46.0 49.4 ·
0.10 0.0 4.0 8.8 · · 97.1 47.7 78.9 93.2 95.9 97.1 ·

0.10 1.0 1.0 7.3 4.4 5.6 4.7 5.3 5.1 4.5 4.7 15.2 14.0
0.10 1.0 1.5 4.4 2.9 3.8 6.6 4.4 5.6 6.3 6.2 19.8 16.2
0.10 1.0 2.0 3.0 1.9 2.3 10.6 6.6 7.3 9.5 10.0 25.8 14.3
0.10 1.0 3.0 0.9 0.7 0.9 28.3 9.3 18.7 23.8 26.6 49.5 10.9
0.10 1.0 5.0 0.6 0.3 0.5 80.1 26.4 49.4 66.1 74.1 92.4 7.4

0.10 5.0 5.0 17.4 4.6 0.6 5.2 5.2 4.7 4.8 5.4 71.5 78.9
0.10 5.0 7.5 5.8 1.1 0.0 7.2 6.0 6.4 7.4 7.5 73.7 74.4
0.10 5.0 10.0 2.3 0.2 0.0 16.5 7.9 11.1 14.0 16.0 81.6 73.0
0.10 5.0 15.0 1.0 0.0 0.0 50.5 15.4 27.2 38.7 45.7 94.8 65.2
0.10 5.0 25.0 0.4 0.0 0.0 97.0 45.5 76.6 89.4 95.0 100.0 46.9
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TABLE 2 (continued)

0.10 10.0 10.0 17.1 5.6 0.0 4.7 4.6 4.7 6.0 5.7 84.6 86.0
0.10 10.0 15.0 6.0 1.5 0.0 7.0 6.4 7.0 8.0 6.7 85.0 84.8
0.10 10.0 20.0 2.7 0.1 0.0 14.1 6.5 10.4 11.3 13.2 90.7 79.4
0.10 10.0 30.0 0.8 0.0 0.0 51.9 18.0 28.8 40.9 47.9 97.8 68.9
0.10 10.0 50.0 0.5 0.1 0.0 96.5 49.5 77.6 91.6 94.1 100.0 49.3

0.10 50.0 50.0 19.8 4.8 0.0 5.9 4.5 5.1 5.1 4.8 97.0 89.6
0.10 50.0 75.0 6.5 0.8 0.0 7.7 5.5 5.7 6.6 6.6 97.4 86.1
0.10 50.0 100.0 3.5 0.5 0.0 17.7 9.4 12.3 15.7 17.3 97.7 82.2
0.10 50.0 150.0 0.9 0.0 0.0 45.9 16.4 27.7 39.5 43.5 99.6 73.1
0.10 50.0 250.0 0.8 0.0 0.0 97.2 48.9 78.5 94.0 95.6 100.0 49.7

0.50 0.0 0.0 2.7 · · 4.6 5.4 4.3 4.8 4.4 4.6 ·
0.50 0.0 0.5 60.3 · · 67.7 24.1 41.8 55.0 63.8 67.7 ·
0.50 0.0 1.0 98.8 · · 99.9 68.7 92.8 99.1 99.6 99.9 ·
0.50 0.0 2.0 99.6 · · 100.0 98.4 100.0 100.0 100.0 100.0 ·
0.50 0.0 4.0 99.0 · · 100.0 100.0 100.0 100.0 100.0100.0 ·

0.50 1.0 1.0 5.3 4.8 4.2 5.0 4.7 5.1 4.9 4.6 17.6 98.4
0.50 1.0 1.5 8.5 5.2 2.6 41.4 15.5 24.4 32.4 39.3 64.4 92.8
0.50 1.0 2.0 68.0 58.1 47.4 93.4 39.7 68.6 84.3 90.6 98.4 62.6
0.50 1.0 3.0 98.7 98.2 97.5 100.0 90.3 99.8 100.0 100.0 100.0 1.7
0.50 1.0 5.0 99.8 99.7 99.6 100.0 100.0 100.0 100.0 100.0100.0 0.1

0.50 5.0 5.0 7.4 5.6 0.0 5.1 4.2 5.0 4.4 5.3 69.6 100.0
0.50 5.0 7.5 9.7 1.7 0.0 66.6 18.4 39.4 54.5 61.6 97.7 99.9
0.50 5.0 10.0 92.6 69.1 0.0 99.7 63.9 90.5 97.9 99.4 100.0 99.2
0.50 5.0 15.0 99.1 97.9 0.0 100.0 98.8 100.0 100.0 100.0 100.0 5.4
0.50 5.0 25.0 99.6 99.1 0.0 100.0 100.0 100.0 100.0 100.0100.0 0.1

0.50 10.0 10.0 6.9 5.2 0.0 5.1 5.5 5.2 4.2 5.6 83.5 100.0
0.50 10.0 15.0 8.6 1.0 0.0 67.9 21.7 39.9 55.4 62.0 99.6 99.7
0.50 10.0 20.0 92.1 74.2 0.0 99.7 66.6 93.2 98.7 99.8 100.0 99.1
0.50 10.0 30.0 99.5 99.0 0.0 100.0 99.4 100.0 100.0 100.0 100.0 5.6
0.50 10.0 50.0 99.5 99.1 0.0 100.0 100.0 100.0 100.0 100.0100.0 0.0

0.50 50.0 50.0 8.3 6.7 0.0 4.6 3.9 4.5 4.4 4.5 96.3 100.0
0.50 50.0 75.0 8.9 3.7 0.0 69.8 21.8 39.1 56.1 64.7 99.9 100.0
0.50 50.0 100.0 94.3 88.8 0.0 99.6 63.2 92.3 98.5 99.5 100.0 99.4
0.50 50.0 150.0 98.8 98.3 0.0 100.0 99.4 100.0 100.0 100.0 100.0 5.2
0.50 50.0 250.0 99.5 99.0 0.0 100.0 100.0 100.0 100.0 100.0100.0 0.3
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TABLE 2 (continued)

1.00 0.0 0.0 5.1 · · 5.6 4.9 5.0 5.6 5.8 5.6 ·
1.00 0.0 0.5 99.5 · · 99.5 64.9 91.2 98.5 99.2 99.5 ·
1.00 0.0 1.0 100.0 · · 100.0 99.2 100.0 100.0 100.0 100.0 ·
1.00 0.0 2.0 100.0 · · 100.0 100.0 100.0 100.0 100.0100.0 ·
1.00 0.0 4.0 100.0 · · 100.0 100.0 100.0 100.0 100.0100.0 ·

1.00 1.0 1.0 6.8 7.2 3.8 6.3 5.4 7.0 6.9 6.8 17.9 99.7
1.00 1.0 1.5 87.9 89.2 82.2 93.3 39.5 68.3 84.7 90.1 98.1 33.7
1.00 1.0 2.0 100.0 100.0 100.0 100.0 89.9 99.8 100.0 100.0 100.0 0.7
1.00 1.0 3.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0100.0 57.3
1.00 1.0 5.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0100.0 98.1

1.00 5.0 5.0 4.8 4.4 0.0 4.1 5.5 4.4 4.7 4.8 67.2 100.0
1.00 5.0 7.5 98.8 98.3 0.0 99.6 62.5 91.5 98.0 99.4 100.0 67.6
1.00 5.0 10.0 100.0 100.0 0.0 100.0 99.0 100.0 100.0 100.0 100.0 1.3
1.00 5.0 15.0 100.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0100.0 65.9
1.00 5.0 25.0 100.0 100.0 7.3 100.0 100.0 100.0 100.0 100.0100.0 98.3

1.00 10.0 10.0 5.1 4.4 0.0 6.0 6.2 5.8 6.9 6.3 85.3 100.0
1.00 10.0 15.0 98.8 98.5 0.0 99.6 63.1 91.1 97.7 99.4 100.0 69.5
1.00 10.0 20.0 100.0 100.0 0.0 100.0 99.0 100.0 100.0 100.0 100.0 0.6
1.00 10.0 30.0 100.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0100.0 66.5
1.00 10.0 50.0 100.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0100.0 99.2

1.00 50.0 50.0 5.2 5.0 0.0 5.5 5.5 5.3 5.2 6.9 96.8 100.0
1.00 50.0 75.0 99.0 98.7 0.0 99.9 65.8 91.4 98.3 99.3 100.0 68.1
1.00 50.0 100.0 100.0 100.0 0.0 100.0 98.8 100.0 100.0 100.0 100.0 0.6
1.00 50.0 150.0 100.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0100.0 67.0
1.00 50.0 250.0 100.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0100.0 99.0

Notes:

I: value of parameterB; VIII: sample split test using 25 observations
II: null hypothesis; for the structural equation;
III: alternative hypothesis; IX: sample split using 50 observations;
IV: Pagan’s test; X: sample split using 75 observations;
V: Pagan’s test locally size-corrected XI: sample split using 90 observations;

(B known); XII: two-stage test (2S);
VI: Pagan’s test globally size-corrected XIII: test with latent variable replaced by

(B = 0); observed vector (OLS).
VII: instrument substitution test (IS);

22



whereIi denotes the investment expenses of an individual firmi, CFi andRi its cash flow and income
respectively, whileQi is Tobin’sq measured by equity plus debt and approximated empirically by
adding data on current debt, long term debt, deferred taxes and credit,minority interest and equity
less inventory;δ andγ = (γ0, γ1, γ2)

′ are fixed coefficients to be estimated. Given the compound
character ofQi , which is constructed from several indexes, fixed assets are used as an explanatory
variable forQi in the regression which completes the model:

(9.2) Qi = β 0 +β 1Fi +vi .

For the purpose of building finite-sample confidence intervals following the instrument substitution
method, the latter equation may be replaced (without any change to the results)by the more general
equation (called below the “full instrumental regression”):

(9.3) Qi = β 0 +β 1Fi +β 3CFi +β 4Ri +vi .

Our empirical work is based on “Stock Guide Database” containing data on companies listed
at the Toronto and Montreal stock exchange markets between 1987 and 1991. The records consist
of observations on economic variables describing the firms’ size and performance, like fixed capital
stock, income, cash flow, stock market price, etc. All data on the individualcompanies have previ-
ously been extracted from their annual, interim and other reports. We retained a subsample of 9285
firms whose stocks were traded on the Toronto and Montreal stock exchange markets in 1991.

Since we are interested in comparing our inference methods to the widely usedWald-type tests,
we first consider the approach suggested by Pagan (1984). Since usual estimators of coefficient
variances obtained from the OLS estimation of equation (9.1) withQi replaced byQ̂i are inconsis-
tent [for a proof, see Pagan (1984)], Pagan proposed to use standard two-stage least squares (2SLS)
methods, which yield in the present context (under appropriate regularityconditions) asymptotically
valid standard errors and hypothesis tests. For the 2SLS estimation of model (9.1)–(9.2), the depen-
dent variableIi is first regressed on all the exogenous variables of the system, i.e., the constant,CFi ,
Ri andFi , whereFi is the identifying instrument forQi , and then the fitted valueŝQi are substituted
for Qi in the second stage regression.

The results are summarized in Tables 3A, while the instrumental OLS regressions appear in 3B.
From the latter, we see that the identifying instrument forQ is strongly significant and so appears
to be a “good” instrument. Table 3C presents 95% (marginal) confidence intervals for Tobin’sq
parameter based on various methods, as well as projection-based simultaneous confidence intervals
for the coefficients of equation (9.1). The three first intervals are obtained from, respectively, 2SLS,
two-stage and augmented two-stage methods by adding or subtracting 1.96 timesthe standard error
to/from the estimated parameter value.2 Below we report the exact confidence intervals (instrument
substitution and sample split) based on the solution of quadratic equations as described in Sections
2 and 3. Recall that the precision of the confidence intervals depends, inthe case of the sample split
method, on the number of observations retained for the estimation of the structural equation. We

2 The augmented two-stage method uses all the available instruments to compute the generated regressors (full in-
strumental regression), rather than the restricted instrumental equation(9.2). As with the two-stage method, OLS-based
coefficient standard errors obtained in this way are inconsistent; see Pagan (1984) for further discussion.
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TABLE 3
TOBIN’ S Q MODEL N = 9285

A) 2SLS estimators of investment equation (9.1 )

Dependent variable: INVESTMENT(I)
Explanatory Estimated Standardt statistic p-value

variable coefficient error

Constant 0.0409 0.0064 6.341 0.0000
Q 0.0052 0.0013 3.879 0.0001
CF 0.8576 0.0278 30.754 0.0000
R 0.0002 0.0020 0.109 0.9134

B) Instrumental OLS regressionsDependent variable:Q

Full instrumental regression Equation (9.2)
Regressor Estimated Stand. t p-value Estimated Stand. t p-value

coefficient error coefficient error
Constant 0.6689 0.0919 7.271 0.0000 1.0853 0.1418 7.650 0.0000
F -2.7523 0.0527 -52.195 0.0000 2.4063 0.0400 60.100 0.0000
CF 21.2102 0.3188 66.517 0.0000
R 1.2273 0.0291 42.111 0.0000

C) Confidence intervals

Marginal confidence intervals forδ Projection-based simultaneous confidence
intervals (instrument substitution)

Method Interval Coefficient Interval
2SLS [0.0026, 0.0078] γ0 [0.0257, 0.0564]
Augmented two-stage [0.0025, 0.0079] δ [0.0037, 0.0072]
Two-stage [−0.0091, −0.0029] γ1 [0.7986, 0.9366]
Instrument substitution [0.0025, 0.0078] γ2 [0.0033, 0.0042]
Sample split 50% [0.0000, 0.0073]
Sample split 75% [0.0017, 0.0077]
Sample split 90% [0.0023, 0.0078]

24



thus show the results for, respectively, 50%, 75% and 90% of the entire sample (selected randomly).
The simultaneous confidence intervals for the elements of the vectorθ = (γ0,δ ,γ1,γ2)

′ are obtained
by first building a simultaneous confidence setCθ (α), with level 1−α = 0.95 forθ according to the
instrument substitution method described in Section 4 and then by both minimizing andmaximizing
each coefficient subject to the restrictionθ ∈Cθ (α) [see Section 6]. The program used to perform
these constrained optimizations is the subroutine NCONF from the IMSL mathematical library.
The corresponding four-dimensional confidence box has level 95% (or possibly more), i.e. we have
simultaneous confidence intervals (at level 95%).

From these results, we see that all the confidence intervals forδ , except for the two-stage interval
(which is not asymptotically valid), are quite close to each other. Among the finite-sample intervals,
the ones based on the instrument substitution and the 90% sample split method appear to be the most
precise. It is also worthwhile noting that the projection-based simultaneous confidence intervals all
appear to be quite short. This shows that the latter method works well in the present context and can
be implemented easily.

Let us now consider another example where, on the contrary, important discrepancies arise
between the intervals based on the asymptotic and the exact inference methods. Montmarquette
and Mahseredjian [Montmarquette and Mahseredjian (1989), Montmarquette, Houle, Crespo, and
Mahseredjian (1989)] studied students’ academic achievements as a function of personal and so-
cioeconomic explanatory variables. Students’ school results in French and mathematics are mea-
sured by the grade, taking values on the interval 0−100. The grade variable is assumed to depend
on personal characteristics, such as age, intellectual ability (IQ) observed in kindergarten and “self–
esteem” measured on an adapted children self–esteem scale ranging from0 to 40. Other explanatory
variables include parents’ income, father’s and mother’s education measured in number of years of
schooling, the number of siblings, student’s absenteeism, his own educationand experience as well
as the class size. We examine the significance of self–esteem, which is viewedas an imperfectly
measured latent variable to explain the first grader’s achievements in mathematics. The self esteem
of younger children was measured by a French adaptation of the McDaniel–Piers scale. Noting the
measurement scale may not be equally well adjusted to the age of all students and due to the high
degree of arbitrariness in the choice of this criterion, the latter was instrumented by Blishen indices
reflecting the prestige of father’s and mother’s professional occupations in order to take account of
eventual mismeasurement.

The data stem from a 1981–1982 survey of first graders attending Montreal francophone public
elementary schools. The sample consists of 603 observations on students’achievements in mathe-
matics. The model considered is:

(9.4) LMATi = β 0 +δ SEi +β 1 IQi +β 2 I i +β 3FEi +β 4MEi +β 5SNi

+ β 6A i +β 7ABPi +β 8EXi +β 9EDi +β 10ABSi +β 11CSi +ei

where (for each individuali) LMAT = ℓn(grade/(100− grade)), SE= ℓn(self esteem test result/(40
− self esteem test result)), IQ is a measure of intelligence (observed in kindergarten), I is parents’
income, FE and ME are father’s and mother’s years of schooling, SN denotes the sibling’s number,
A is the age of the student, ABP is a measure of teacher’s absenteeism, EX indicates the years of
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student’s work experience, ED measures his education in years, ABS is student’s absenteeism and
CS denotes the class size. Finally, the instrumental regression is:

(9.5) SEi = γ0 + γ1FPi + γ2MPi +vi

where FP and MP correspond to the prestige of the father and mother’s profession expressed in
terms of Blishen indices. We consider also the more general instrumental regression which includes
all the explanatory variables on the right-hand side of (9.4) except SE. The 2SLS estimates and
projection-based simultaneous confidence are reported in Table 4A while the results of the instru-
mental regressions appear in Table 4B.

Standard (bounded) Wald-type confidence intervals are of course entailed by the 2SLS esti-
mation. Forδ however, the instrument substitution method yields the confidence interval defined
by the inequality:−31.9536δ 2

0 − 84.7320δ 0 − 850.9727≤ 0. Since the roots of this second or-
der polynomial are complex anda < 0, this confidence interval actually covers the whole real line.
Indeed, from the full instrumental regression and usingt-tests as well as the relevantF-test (Table
4B), we see that the coefficients of FP and MP are not significantly different from zero, i.e. the latter
appear to be poor instruments. So the fact that we get here an unbounded confidence interval for
δ is expected in the light of the remarks at the end of Section 2. The projection-based confidence
intervals (Table 4A) yield the same message forδ , although it is of interest to note that the intervals
for the other coefficients of the model can be quite short despite the fact that δ may be difficult to
identify. As in the case of multicollinearity problems in linear regressions, inference about some
coefficients of a model remains feasible even if the certain parameters are not identifiable.

10. Conclusions

The inference methods presented in this paper are applicable to a variety ofmodels, such as re-
gressions with unobserved explanatory variables or structural models which can be estimated by
instrumental variable methods (e.g., simultaneous equations models). They may be considered as
extensions of Anderson-Rubin procedures where the major improvementconsists of providing tests
of hypotheses on subsets or elements of the parameter vector. This is accomplished via a projection
technique allowing for inference on general possibly nonlinear transformations of the parameter
vector of interest. We emphasized that our test statistics, being pivotal or at least boundedly pivotal
functions, yield valid confidence sets which are unbounded with a non-zero probability. The un-
boundedness of confidence sets is of particular importance when the instruments are poor and the
parameter of interest is not identifiable or close to being unidentified. Accordingly, a valid confi-
dence set should cover the entire set of real numbers since all values are observationally equivalent
[see Dufour (1997) and Gleser and Hwang (1987)]. Our empirical results indicate that inference
methods based on Wald-type statistics are unreliable in the presence of poorinstruments since such
methods typically yield bounded confidence sets with probability one. The results in this paper
thus underscore another shortcoming of Wald-type procedures which isquite distinct from other
problematic properties, such as non-invariance to reparameterizations [see Dagenais and Dufour
(1991)].
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TABLE 4
MATHEMATICS ACHIEVEMENT MODEL N = 603

2SLS estimators of achievement equation (9.4) Projection-based
Dependent variable: LMAT 95% confidence intervals
Explanatory Estimated Standardt statistic p-value (instrument substitution)

variable coefficient error
Constant -4.1557 0.9959 -4.173 0.0000 [-4.8601 , -3.7411]
SE 0.2316 0.3813 0.607 0.5438 (−∞,+∞)
IQ 0.0067 0.0015 4.203 0.0000 [0.006600 , 0.006724]
I 0.0002 0.3175 0.008 0.9939 [-0.09123 , 0.10490]
FE 0.0015 0.0089 0.172 0.8636 [-0.00914 , 0.01889]
ME 0.0393 0.0117 3.342 0.0009 [0.02868 , 0.05762]
SN -0.0008 0.0294 -0.029 0.9767 [-0.1546 , 0.1891]
A 0.0144 0.0070 2.050 0.0408 [0.01272 , 0.01877]
ABP -0.0008 0.0005 -1.425 0.1548 [-0.003778 , 0.000865]
EX -0.0056 0.0039 -1.420 0.1561 [-0.01307 , 0.00333]
ED -0.0007 0.0206 -0.035 0.9718 [-0.0123 , 0.2196]
ABS -0.0001 0.0002 -0.520 0.6033[-0.0001764 , 0.0000786]
CS -0.0184 0.0093 -1.964 0.0500 [-0.03003 , -0.009790]

Marginal 95% quadratic confidence interval forδ (−∞,+∞)

Instrumental OLS regressionsDependent variable: SE

Full instrumental regression Equation (9.5)
Regressor Estimated Stand. t p-value Estimated Stand. t p-value

coefficient error coefficient error
Constant -1.2572 1.0511 -1.1960 0.232 0.8117 0.1188 6.830 0.0000
FP 0.5405 0.3180 1.7000 0.090 0.5120 0.2625 1.951 0.0516
FM 0.3994 0.3327 1.2004 0.230 0.6170 0.2811 2.194 0.0286
IQ 0.003822 0.000611 6.2593 0.000
I 0.02860 0.03161 0.9049 0.366 F-statistic for significance of FP and
FE -0.01352 0.01136 -1.1899 0.235 FM in full instrumental regression:
ME -0.004028 0.01517 -0.2655 0.791 F(2,589) = 2.654 (p-value= 0.078)
SN -0.01439 0.03325 -0.4326 0.665
A 0.003216 0.008161 0.3941 0.694
ABP 0.000698 0.000577 1.2108 0.226
EX -0.002644 0.004466 -0.5920 0.554
ED -0.02936 0.02080 -1.4117 0.159
ABS 0.000426 0.000194 2.1926 0.029
CS 0.01148 0.009595 1.1966 0.232
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In general, non-identifiability of parameters results either from low quality instruments or, more
fundamentally, from a poor model specification. A valid test yielding an unbounded confidence
set becomes thus a relevant indicator of problems involving the econometric setup. The power
properties of exact and Wald-type tests were compared in a simulation-based experiment. The test
performances were examined by simulations on a simple model with varying levelsof instrument
quality and the extent to which the null hypotheses differ from the true parameter value. We found
that the tests proposed in this paper were preferable to more usual IV-based Wald-type methods from
the points of view of level control and power. This seems to occur despite the fact that AR-type pro-
cedures involve “projections onto a high-dimensional subspace which could result in reduced power
and thus wide confidence regions” [Staiger and Stock (1997, p. 570)]. However, it is important to
remember that size-correcting Wald-type procedures requires one to use huge critical values that
can easily destroy power. Wald-type procedures can be made useful only at the cost introducing im-
portant and complex restrictions on the parameter space that one is not generally prepare to impose;
for further discussion of these difficulties, see Dufour (1997, Section6).

It is important to note that although the simulations were performed under the normality as-
sumption, our tests yield valid inferences in more general cases involving non-Gaussian errors and
weakly exogenous instruments. This result has a theoretical justification and is also confirmed by
our empirical examples. Since the inference methods we propose are as well computationally easy
to perform, they can be considered as a reliable and a powerful alternative to more usual Wald-type
procedures.
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