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FINITE SAMPLE LIMITED INFORMATION INFERENCE
METHODS FOR STRUCTURAL EQUATIONS AND
MODELS WITH GENERATED REGRESSORS∗

By Jean-Marie Dufour and Joann Jasiak1

Université de Montréal and York University, Canada

We propose exact tests and confidence sets for various structural models typ-
ically estimated by IV methods, such as models with unobserved regressors,
which remain valid despite the presence of identification problems or weak
instruments. Two approaches are considered: (1) an instrument substitution
method, which generalizes the Anderson–Rubin procedure, and (2) a sample-
split method, that allows the use of “generated regressors.” Projection tech-
niques are also proposed for inference on general parameter transformations.
The asymptotic theory of the tests under weaker assumptions is discussed. Sim-
ulation results are presented. The suggested techniques are applied to a model
of Tobin’s q and to a model of academic performance.

1. introduction

A frequent problem in econometrics and statistics consists in making inferences
on models which contain unobserved explanatory variables, such as expectational or
latent variables and variables observed with error; see, for example, Barro (1977),
Pagan(1984, 1986), and the survey of Oxley and McAleer(1993). A common solu-
tion to such problems is based on using instrumental variables to replace the unob-
served variables by proxies obtained from auxiliary regressions (generated regressors).
It is also well known that using such regressors raises difficulties for making tests
and confidence sets, and it is usually proposed to replace ordinary least squares
(OLS) standard errors by instrumental variables (IV) based standard errors; see
Pagan (1984, 1986) and Murphy and Topel (1985). In any case, all the methods pro-
posed to deal with such problems only have an asymptotic justification, which means
that the resulting tests and confidence sets can be extremely unreliable in finite sam-
ples. In particular, such difficulties occur in situations involving “weak instruments,”
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a problem which has received considerable attention recently; see, for example,
Nelson and Startz (1990a, 1990b), Buse (1992), Maddala and Jeong (1992), Bound
et al. (1993, 1995), Angrist and Krueger (1995), Hall et al. (1996), Dufour (1997),
Shea (1997), Staiger and Stock (1997), Wang and Zivot (1998), and Zivot et al. (1998).
For some early results relevant to the same issue, see also Nagar (1959), Richardson
(1968), Sawa (1969).

In this article, we treat these issues from a finite sample perspective and we pro-
pose finite sample tests and confidence sets for models with unobserved and gener-
ated regressors. We also consider a number of related problems in the more gen-
eral context of linear simultaneous equations. To get reliable tests and confidence
sets, we emphasize the derivation of truly pivotal (or boundedly pivotal) statistics,
as opposed to statistics which are only asymptotically pivotal; for a general discus-
sion of the importance of such statistics for inference, see Dufour (1997). We study
two distinct approaches for various models considered by Pagan (1984). The first
one is an instrument substitution method which generalizes an approach proposed
by Anderson and Rubin (1949) and Fuller (1987: Section 1.4) for different (although
related) problems, while the second one is based on splitting the sample. The instru-
ment substitution method uses the instruments directly, instead of generated regres-
sors, in order to test hypotheses and build confidence sets about “structural param-
eters.” The second approach relies on “generated regressors,” allowing a gain in
degrees of freedom, and a sample split technique. Depending on the problem con-
sidered, we derive either exact similar tests (and confidence sets) or conservative
procedures. The hypotheses for which we obtain similar tests (and correspondingly
similar confidence sets) include: (a) hypotheses which set the value of the unob-
served (expected) variable coefficient vector (as in Anderson and Rubin, 1949, and
Fuller, 1987); (b) analogous restrictions taken jointly with general linear constraints
on the coefficients of the (observed) exogenous variables in the equation of interest;
and (c) hypotheses about the coefficients of “surprise” variables when such vari-
ables are included in the equation. Tests for these hypotheses are based on Fisher-
type statistics, but the confidence sets typically involve nonlinear (although quite
tractable) inequalities. For example, when only one unobserved variable (or endoge-
nous explanatory variable) appears in the model, the confidence interval for the asso-
ciated coefficient can be computed easily on finding the roots of a quadratic polyno-
mial. Note that Anderson–Rubin-type methods have not previously been suggested
in the context of the general Pagan (1984) setup. The general setup we consider here
includes as special cases the ones studied by Pagan (1984), Fuller (1987), and Zivot
et al. (1998), allowing for structural equations which include more than one endoge-
nous “explanatory” variable as well as exogenous variables, so that the hypotheses
of type (a) we consider and the associated confidence sets are in fact more general
than those considered by Fuller (1987: Section 1.4) and Zivot et al. (1998). In par-
ticular, for the case where the structural equation studied includes one endogenous
explanatory variable, we extend the range of cases where close-form quadratic con-
fidence intervals (similar to those described by Fuller, 1987; Dufour, 1997; Zivot et
al., 1998) are available. Further, problems such as those described in (b) and (c)
above have not apparently been considered at all from this perspective in the earlier
literature.
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In the case of the instrument substitution method, the tests and confidence
sets so obtained can be interpreted as likelihood ratio (LR) procedures (based on
appropriately chosen reduced form alternatives), or equivalently as profile likelihood
techniques (for further discussion of such techniques, see Bates and Watts, 1988:
Chapter 6; Meeker and Escobar, 1995; Chen and Jennrich, 1996). The exact distri-
butional theory is obtained under the assumptions of Gaussian errors and strictly
exogenous regressors, which ensures that we have well-defined testable models.
Although we stress here applications to models with unobserved regressors, the
extensions of Anderson–Rubin (AR) procedures that we discuss are also of inter-
est for inference in various structural models which are estimated by instrumental
variable methods (e.g., simultaneous equations models). Furthermore, we observe
that the tests and confidence sets proposed are (locally) “asymptotically valid” under
much weaker distributional assumptions (which may involve non-Gaussian errors
and weakly exogenous instruments).

It is important to note that the confidence sets obtained by the methods described
above, unlike Wald-type confidence sets, are unbounded with nonzero probability. As
emphasized from a general perspective in Dufour (1997), this is a necessary property
of any valid confidence set for a parameter that may not be identifiable on some sub-
set of the parameter space. As a result, confidence procedures that do not have this
property have true level zero, and the sizes of the corresponding tests (like Wald-type
tests) must deviate arbitrarily from their nominal levels. It is easy to see that such dif-
ficulties occur in models with unobserved regressors, models with generated regres-
sors, simultaneous equations models, and different types of the error-in-variables
models. In the context of the first type of model, we present below simulation evi-
dence that strikingly illustrates these difficulties. In particular, our simulation results
indicate that tests based on instrument substitution methods have good power prop-
erties with respect to Wald-type tests, a feature previously pointed out for the AR
tests by Maddala (1974) in a comparative study for simultaneous equations (on the
power of AR tests, see also Revankar and Mallela, 1972). Furthermore, we find that
generated regressor sample-split tests perform better when the generated regressors
are obtained from a relatively small fraction of the sample (e.g., 10 percent of the
sample) while the rest of the sample is used for the main regression (in which gen-
erated regressors are used).

An apparent shortcoming of the similar procedures proposed above, and probably
one of the reasons why AR tests have not become widely used, is the fact that they
are restricted to testing hypotheses which specify the values of the coefficients of
all the endogenous (or unobserved) explanatory variables, excluding the possibility
of considering a subset of coefficients (e.g., individual coefficients). We show that
inference on individual parameters or subvectors of coefficients is, however, feasible
by applying a projection technique analogous to the ones used in Dufour(1989, 1990),
Dufour and Kiviet(1996, 1998), and Kiviet and Dufour (1997). We also show that such
techniques may be used for inference on general possibly nonlinear transformations
of the parameter vector of interest.

The plan of the article is as follows. In Section 2, we describe the main model which
may contain several unobserved variables (analogous to the “anticipated” parts of
those variables), and we introduce the instrument substitution method for this basic
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model with various tests and confidence sets for the coefficients of the unobserved
variables. In Section 3 , we propose the sample split method for the same model with
again the corresponding tests and confidence sets. In Section 4, we study the prob-
lem of testing joint hypotheses about the coefficients of the unobserved variables and
various linear restrictions on the coefficients of other (observed) regressors in the
model. Section 5 extends these results to a model which also contains error terms of
the unobserved variables (the “unanticipated” parts of these variables). In Section 6,
we consider the problem of making inferences about general nonlinear transforma-
tions of model coefficients. Then, in Section 7, we discuss the “asymptotic validity” of
the proposed procedures under weaker distributional assumptions. Section 8 presents
the results of simulation experiments in which the performance of our methods is
compared with some widely used asymptotic procedures. Section 9 presents applica-
tions of the proposed methods to a model of Tobin’s q and to an economic model of
educational performance. The latter explains the relationship between students’ aca-
demic performance, their personal characteristics, and some socioeconomic factors.
The first example illustrates inference in the presence of good instruments, while
in the second example only poor instruments are available. As expected, confidence
intervals for Tobin’s q based on the Wald-type procedures largely coincide with those
resulting from our methods. On the contrary, large discrepancies arise between the
confidence intervals obtained from the asymptotic and the exact inference methods
when poor instruments are used. We conclude in Section 10.

2. exact inference by instrument substitution

In this section, we develop finite sample inference methods based on instrument
substitution methods for models with unobserved and generated regressors. We first
derive general formulae for the test statistics and then discuss the corresponding
confidence sets. We consider the basic setup which includes as special cases Models 1
and 2 studied by Pagan (1984):

y = Z∗δ+Xγ + e(2.1)

Z∗ = WB +U∗ Z = Z∗ + V∗(2.2)

where y is a T × 1 vector of observations on a dependent variable, Z∗ is a T ×
G matrix of unobserved variables, X is a T × K matrix of exogenous explanatory
variables in the structural model, Z is a T ×G matrix of observed variables, W is a
T × q matrix of variables related to Z∗, while e = �e1� � � � � eT �′, U∗ = �u′

∗1� � � � � u
′
∗T 	′,

and V∗ = �v′
∗1� � � � � v

′
∗T 	′ are T × 1 and T ×G matrices of disturbances. The matrices

of unknown coefficients δ� γ, and B have dimensions respectively G× 1� K × 1, and
q × G. In order to handle common variables in both equations (2.1) and (2.2), like
the constant term, we allow for the presence of common columns in the matrices W

and X. In the setup of Pagan (1984), U∗ is assumed to be identically zero �U∗ = 0�� et

and v∗t are uncorrelated �E�etv∗t� = 0	� and the exogenous regressors X are excluded
from the “structural” equation (2.1). In some cases below, we will need to reinstate
some of the latter assumptions.
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The finite sample approach we adopt in this article requires additional assump-
tions, especially on the distributional properties of the error term. Since (2.2) entails
Z = WB + V where V = U∗ + V∗� we will suppose that the following conditions are
satisfied:

X and W are independent of e and V∗
(2.3)

rank�X� = K 1 ≤ rank�W � = q < T� G ≥ 1� 1 ≤ K +G < T 
(2.4)

�et� v
′
∗t�′

ind∼ N�0��	� t = 1� � � � � T 
(2.5)

det��� > 0�(2.6)

If K = 0, X is simply dropped from Equation (2.1). Note that no assumption on
the distribution of U∗ is required. Assumptions (2.3)–(2.6) can be relaxed if they
are replaced by assumptions on the asymptotic behavior of the variables as T → ∞.
Results on the asymptotic “validity” of the various procedures proposed in this article
are presented in Section 7.

Let us now consider the null hypothesis:

H0 � δ = δ0�(2.7)

The instrument substitution method is based on replacing the unobserved variable by
a set of instruments. First, we substitute (2.2) into (2.1):

y = �Z − V∗�δ+Xγ + e = Zδ+Xγ + �e− V∗δ��(2.8)

Then, subtracting Zδ0 on both sides of (2.8), we get

y − Zδ0 = WB�δ− δ0� +Xγ + u(2.9)

where u = e − V∗δ0 + U∗�δ − δ0�� Now suppose that W and X have K2 columns in
common �0 ≤ K2 < q� while the other columns of X are linearly independent of W ,

W = �W1�X2	� X = �X1�X2	� rank�W1�X1�X2	 = q1 +K < T(2.10)

where W1, X1, and X2 are T × q1, T × K1, and T × K2 matrices, respectively (K =
K1 +K2, q = q1 +K2). We can then rewrite (2.9) as

y − Zδ0 = W1δ1∗ +Xγ∗ + u(2.11)

where δ1∗ = B1�δ− δ0�, γ2∗ = γ2 + B2�δ− δ0�� γ∗ = �γ′
1� γ

′
2∗�′, Bi is a Ki ×G matrix

�i = 1� 2�, and B = �B′
1� B

′
2	′�

It is easy to see that model (2.11) under H0 satisfies all the assumptions of the
classical linear model. Furthermore, since δ1∗ = 0 when δ = δ0, we can test H0 by a
standard F-test of the null hypothesis,

H0∗ � δ1∗ = 0�(2.12)
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This F-statistic has the form

F�δ0
W1� =
�y − Zδ0�′P�M�X�W1��y − Zδ0�/q1

�y − Zδ0�′M��W1�X	��y − Zδ0�/�T − q1 −K�(2.13)

where P�A� = A�A′A�−1A′ and M�A� = IT − P�A� for any full column rank matrix
A� When δ = δ0, we have F�δ0
W1� ∼ F�q1� T − q1 − K�� so that F�δ0
W1� >

F�α
 q1� T − q1 − K� is a critical region with level α for testing δ = δ0� where
P�F�δ0
W1� ≤ F�α
 q1� T − q1 − K�	 = 1 − α. The essential ingredient of the test
is the fact that q1 ≥ 1, i.e., some instruments must be excluded from X in (2.1).
On the other hand, the usual order condition for “identification” �q1 ≥ G� is not
necessary for applying this procedure. In other words, it is possible to test certain
hypotheses about δ even if the latter vector is not completely identifiable. It is then
straightforward to see that the set

Cδ�α� = �δ0 � F�δ0
W1� ≤ F�α
 q1� T − q1 −K��(2.14)

is a confidence set with level 1 − α for the coefficient δ. The tests based on the
statistic F�δ0
 W1� and the above confidence set generalize the procedures described
by Fuller (1987: pp. 16–17), for a model with one unobserved variable �G = 1��
X limited to a constant variable �K = 1�, and two instruments �q = 2� including
a constant), and by Zivot et al.(1998) for a model with one unobserved variable
�G = 1�, no exogenous variables, and an arbitrary number of instruments �q ≥ 1��

Consider now the case where Z is a T × 1 vector and X is a T ×K matrix. In this
case, the confidence set (2.14) for testing H0 � δ = δ0 has the general form

Cδ�α� =
{
δ0 �

�y − Zδ0�′A1�y − Zδ0�
�y − Zδ0�′A2�y − Zδ0�

× ν2

q1
≤ Fα

}
(2.15)

where Fα = F�α
 q1� T − q1 − K� and ν2 = T − q1 − K and the matrices A1 =
P�M�X�W1��A2 = M��W1�X	�� Since �ν2/q1� only takes positive values, the inequal-
ity in (2.15) is equivalent to the quadratic inequality

aδ2
0 + bδ0 + c ≤ 0(2.16)

where a = Z′CZ� b = −2y ′CZ� c = y ′Cy�C = A1 − GαA2, and Gα = �q1/ν2�Fα.
Again, the above quadratic confidence intervals may be viewed as generalizations of
the quadratic confidence intervals described by Fuller (1987: p. 55) and Zivot et al.
(1998).2

In empirical work, some problems may arise due to the high dimensions of the
matrices M�X� and M��W1� X	�. A simple way to avoid this difficulty consists in
using vectors of residuals from appropriate OLS regressions. Consider the coefficient

2 We proposed this generalization independently of Zivot et al. (1998); see Dufour and Jasiak
(1993). For further discussion of quadratic confidence intervals, see also Fieller (1954) and Dufour
(1997: Section 5.1).
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Table 1
confidence sets based on the quadratic inequality aδ2

0 + bδ0 + c ≤ 0

' ≥ 0 ' < 0
(Real Roots) (Complex Roots)

a > 0 �δ1∗� δ2∗	 Empty
a < 0 �−∞� δ1∗	 ∪ �δ2∗�∞� �−∞�+∞�

a = 0 b > 0
(−∞�− c

b

]
b < 0

[− c
b
�∞)

b = 0� c > 0 Empty
b = 0� c ≤ 0 �−∞�+∞�

a = Z′CZ. We may replace it by the expression Z′A1Z −GαZ
′A2Z and then rewrite

both terms as follows:

Z′A1Z = �Z′M�X�� �M�X�W1���M�X�W1�′�M�X�W1�	−1�M�X�W1�′�M�X�Z��
Z′A2Z = Z′M��W1�X	�Z = �M��W1�X	�Z	′�M��W1�X	�Z	�

In the above expressions, M�X�Z is the vector of residuals obtained by regressing Z

on X� M�X�W1 is the vector of residuals from the regression of W1 on X� and finally
M��W1�X	�Z is a vector of residuals from the regression of Z on X and W1. We
can proceed in the same way to compute the two other coefficients of the quadratic
inequality (2.16). This will require only two additional regressions: y on X� and y on
both X and W1�

It is easy to see that the confidence set (2.16) is determined by the roots of the
second order polynomial in (2.16). The shape of this confidence set depends on the
signs of a and ' = b2 − 4ac� All possible options are summarized in Table 1 where
δ1∗ denotes the smaller root and δ2∗ the larger root of the polynomial (when both
roots are real).

Note that the confidence set Cδ�α� may be empty or unbounded with a nonzero
probability. Since the reduced form for y can be written

y = W1π1 +X1π12 +X2π22 + vy(2.17)

where π1 = B1δ� π21 = γ1� π22 = γ2 + B2γ, and vy = e + U∗δ, we see that the
condition π1 = B1δ may be interpreted as an overidentifying restriction. Jointly with
δ = δ0� this condition entails the hypothesis H0∗ � B1�δ− δ0� = 0 which is tested by
the statistic F�δ0
W1�� Thus an empty confidence set means the condition B1�δ −
δ0� = 0 is rejected for any value of δ0 and so indicates that the overidentifying
restrictions entailed by the structural model (2.1), (2.2) are not supported by the
data; i.e., the specification is rejected. However, if the model is correctly specified,
the probability of obtaining an empty confidence set is not greater than α� On the
other hand, the possibility of an unbounded confidence set is a necessary characteristic
of any valid confidence set in the present context, because the structural parameter
δ may not be identifiable (see Dufour, 1997). Unbounded confidence sets are most
likely to occur when δ is not identified or close to being unidentified, for then all
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values of δ are almost observationally equivalent. Indeed an unbounded confidence
set obtains when a < 0 or (equivalently) when F�)1 = 0� < Fα� where F�)1 = 0� is
the F-statistic for testing )1 = 0 in the regression

Z = W1)1 +X)+ vZ�(2.18)

In other words, the confidence interval (2.15) is unbounded if and only if the coef-
ficients of the exogenous regressors in W1 [which is excluded from the structural
equation (2.1)] are not significantly related to Z at level α � i.e., W1 can be inter-
preted as a matrix of “weak instruments” for Z� In contrast, Wald-type confidence
sets for δ are typically bounded with probability one, so their true level must be
zero. Note finally that an unbounded confidence set can be informative: e.g., the set
�−∞� δ1∗	 ∪ �δ2∗� ∞� may exclude economically important values of δ �δ = 0 for
example).

3. inference with generated regressors

Test statistics similar to those of the previous section may alternatively be obtained
from linear regressions with generated regressors. To obtain finite sample inferences
in such contexts, we propose to compute adjusted values from an independent sample.
In particular, this can be done by applying a sample split technique.

Consider again the model described by (2.1) to (2.6). In (2.9), a natural thing
to do would consist in replacing WB by W B̂, where B̂ is an estimator of B. Take
B̂ = �W ′W �−1W ′Z� the least squares estimate of B based on (2.2). Then we have

y − Zδ0 = W B̂�δ− δ0� +Xγ + �u+W �B − B̂��δ− δ0�	 = Ẑδ0∗ +Xγ + u∗(3.1)

where δ0∗ = δ − δ0 and u∗ = e − V∗δ0 + �U∗ + W �B − B̂� 	�δ − δ0�. Again, the null
hypothesis δ = δ0 may be tested by testing H0∗ � δ0∗ = 0 in model (3.1). Here the
standard F-statistic for H0∗ is obtained by replacing W1 by Ẑ in (2.13), i.e.,

F�δ0
 Ẑ� = �y − Zδ0�′P�M�X�Ẑ��y − Zδ0�/G
�y − Zδ0�′M��Ẑ�X	��y − Zδ0�/�T −G−K�

�(3.2)

If K = 0 [no X matrix in (2.1)], we conventionally set M�X� = IT and �Ẑ� X	 =
Ẑ� However, to get a null distribution for F�δ0
 Ẑ�, we will need further assump-
tions. For example, in addition to the assumptions (2.1) to (2.6), suppose, as in
Pagan (1984), that

e and V ≡ U∗ + V∗ are independent.(3.3)

In this case, when δ = δ0 = 0� Ẑ and u∗ are independent and, conditional on Ẑ,
model (3.1) satisfies all the assumptions of the classical linear model (with probability
1). Thus the null distribution of the statistic F�0
 Ẑ� for testing δ0 = 0 is F�G�T −
G − K�. Unfortunately, this property does not extend to the more general statistic
F�δ0
 Ẑ� where δ0 �= 0 because Ẑ and u∗ are not independent in this case. A similar
observation (in an asymptotic context) was made by Pagan (1984).
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To deal with more general hypotheses, suppose now that an estimate B̃ of B, such
that

B̃ is independent of e and V∗(3.4)

is available, and replace Ẑ = W B̂ by Z̃ = W B̃ in (3.1). We then get

y − Zδ0 = Z̃δ0∗ +Xγ + u∗∗(3.5)

where u∗∗ = e− V∗δ0 + �U∗ +W �B− B̃�	 �δ− δ0�. Under the assumptions (2.1)–(2.6)
with δ = δ0 and conditional on Z̃ (or B̃), model (3.5) satisfies all the assumptions of
the classical linear model and the usual F-statistic for testing δ0∗ = 0�

F�δ0
 Z̃� = �y − Zδ0�′P�M�X�Z̃��y − Zδ0�/G
�y − Zδ0�′M��Z̃�X	��y − Zδ0�/�T −G−K�

(3.6)

where the usual notation has been adopted, follows an F�G�T −G−K� distribution.
Consequently, the critical region F�δ0
 Z̃� > F�α
G�T −G−K� has size α� Note that
condition (3.3) is not needed for this result to hold. Furthermore

C̃δ�α� = �δ0 � F�δ0
 Z̃� ≤ F�α
G�T −G−K��(3.7)

is a confidence set for δ with size 1 − α� For scalar δ �G = 1�, this confidence
set takes a form similar to the one in (2.15), except that A1 = P�M�X�Z̃� and
A2 = M��Z̃�X	��

A practical problem here consists in finding the independent estimate B̃. Under the
assumptions (2.1)–(2.6), this can be done easily by splitting the sample. Let T = T1 +
T2, where T1 > G+K and T2 ≥ q, and write y = �y ′

�1�� y
′
�2��′�X = �X ′

�1��X
′
�2��′, Z =

�Z′
�1�� Z

′
�2��′, W = �W ′

�1��W
′
�2��′, e = �e′�1�� e′�2��′, V∗ = �V ′

∗�1�� V
′
∗�2��′, and �U ′

∗�1��U
′
∗�2��′�

where the matrices y�i�� X�i�� Z�i��W�i�� e�i�� V∗�i�, and U∗�i� have Ti rows �i = 1� 2��
Consider now the equation

y�1� − Z�1�δ0 = Z̃�1�δ0∗ +X�1�γ + u�1�∗∗(3.8)

where Z̃�1� = W�1�B̃� B̃ = �W ′
�2�W�2�	−1W ′

�2�Z�2� is obtained from the second sample,
and u�1�∗∗ = e�1� − V∗�1�δ0 + �U∗�1� +W�1��B− B̂�	�δ− δ0�� Clearly B̃ is independent of
e�1� and V∗�1�� so the statistic F�δ0
 Z̃�1�� based on equation (3.8) follows a F�G�T1 −
K −G� distribution when δ = δ0.

A sample-split technique has also been suggested by Angrist and Krueger (1995) to
build a new IV estimator, called split sample instrumental variables (SSIV) estimator.
Its advantage over the traditional IV method is that SSIV yields an estimate biased
toward zero, rather than toward the probability limit of the OLS estimator in a finite
sample if the instruments are weak. Angrist and Krueger show that an unbiased
estimate of the relevant bias can be calculated and, consequently, an asymptotically
unbiased estimator (USSIV) can be derived. In their approach, Angrist and Krueger
rely on splitting the sample in half, i.e., setting T1 = T2 = T

2 when T is even. However,
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in our setup, different choices for T1 and T2 are clearly possible. Alternatively, one
could select at random the observations assigned to the vectors y�1� and y�2�� As we
will show later (see Section 8) the number of observations retained for the first and
the second subsample has a direct impact on the power of the test. In particular, it
appears that one can get a more powerful test once we use a relatively small number
of observations for computing the adjusted values and keep more observations for
the estimation of the structural model. This point is illustrated below by simulation
experiments. Finally, it is of interest to observe that sample splitting techniques can
be used in conjunction with the Boole–Bonferroni inequality to obtain finite-sample
inference procedures in other contexts, such as seemingly unrelated regressions and
models with moving average errors; for further discussion, the reader may consult
Dufour and Torrès (1998).

4. joint tests on δ and γ

The instrument substitution and sample split methods described above can easily
be adapted to test hypotheses on the coefficients of both the latent variables and
the exogenous regressors. In this section, we derive F-type tests for general linear
restrictions on the coefficient vector. Consider again model (2.1)–(2.6 ), which after
substituting the term �Z − V∗� for the latent variable yields the following equation:

y = �Z − V∗�δ+Xγ + e = Zδ+Xγ + �e− V∗δ��(4.1)

We first consider a hypothesis which fixes simultaneously δ and an arbitrary set of
linear transformations of γ,

H0 � δ = δ0� R1γ = ν10

where R1 is a r1 × K fixed matrix such that 1 ≤ rank�R1� = r1 ≤ K� The matrix R1

can be viewed as a submatrix of a K ×K matrix R = �R′
1� R′

2	′ where det�R� �= 0, so
that we can write

Rγ =
[

R1

R2

]
γ =

[
R1γ

R2γ

]
=

[
ν1

ν2

]
�(4.2)

Let XR = XR−1 = �XR1
� XR2

	 where XR1
and XR2

are T × r1 and T × r2 matrices
�r2 = K − r1�. Then we can rewrite (4.1) as

y = Zδ+XR1
ν1 +XR2

ν2 + �e− V∗δ��(4.3)

Subtracting Zδ0 and XR1
ν10 on both sides, we get

y − Zδ0 −XR1
ν10 = �W1B1 +X2B2	�δ− δ0� +XR1

�ν1 − ν10�
+XR2

ν2 + �e− V∗δ0 +U∗�δ− δ0�	�
(4.4)

Suppose now that W and X have K2 columns in common (with 0 ≤ K2 < q��
while the other columns of X are linearly independent of W as in (2.10). Since
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X = �X1�X2	 = XRR = XR1
R1 + XR2

R2� we can write X = �X1�X2	 = �XR1
R11 +

XR2
R21�XR1

R12 +XR2
R22	� where R1 = �R11� R12	, R2 = �R21� R22	, and Rij is a ri ×Kj

matrix �i� j = 1� 2�� Then replace X2 by XR1
R12 +XR2

R22 in (4.4):

y − Zδ0 −XR1
ν10 = W1δ

∗
1 +XR1

γ∗
1 +XR2

γ∗
2 + u(4.5)

where δ∗
1 = B1�δ− δ0�, γ∗

1 = R12B2�δ− δ0� + �ν1 − ν10�, γ∗
2 = R22B2�δ− δ0� + ν2, and

u = e− V∗δ0 +U∗�δ− δ0�� Consequently, we can test H0 by testing H ′
0 � δ∗

1 = 0� γ∗
1 =

0� in (4.5), which leads to the statistic

F�δ0� ν10
W1�XR1
� = �y�δ0� ν10�′P�M�XR2

�WR1
�y�δ0� ν10�/�q1 + r1��

�y�δ0� ν10�′M��W1�X	�y�δ0� ν10�/�T − q1 −K��(4.6)

where y�δ0� ν10� = y −Zδ0 −XR1
ν10 and WR1

= �W1�XR1
	
 if r2 = 0� we set M�XR2

� =
IT�� Under H0� F�δ0� ν10
W1�XR1

� ∼ F�q1 + r1� T − q1 −K� and we reject H0 at level
α when F�δ0� ν10
W1�XR1

� > F�α
 q1 + r1� T − q1 −K�. Correspondingly, ��δ′
0� ν

′
10�′ �

F�δ0� ν10
W1�XR1
� ≤ F�α
 q1 + r1� T − q1 − K�� is a confidence set with level 1 − α

for δ and ν1 = R1γ1.
Suppose now we employ the procedure with generated regressors using an

estimator B̃ independent of u and V . We can then proceed in the following way.
Setting Z̃ = W B̃ and V̂ = Z − Z̃� we have

y − Zδ0 −XR1
ν10 = Z̃δ∗

1 +XR1
ν∗

1 +XR2
ν2 + u∗∗(4.7)

where δ∗
1 = δ− δ0, ν

∗
1 = ν1 − ν10, and u∗∗ = e− V∗δ0 + �U∗ +W �B − B̃�	�δ− δ0�. In

this case we will simply test the hypothesis H0 � δ∗
1 = 0� ν∗

1 = 0. The F-statistic for H0

takes the form

F�δ0� ν10
 Z̃�XR1
� = �y�δ0� ν10�′P�M�XR2

�Z̃R1
�y�δ0� ν10�/�G+ r1��

�y �δ0� ν10�′M��Z̃�X	�y�δ0� ν10�/�T −G−K��
(4.8)

where y�δ0� ν10� = y − Zδ0 − XR1
ν10 and Z̃R1

= �Z̃�XR1
	. Under H0, F�δ0� ν10
 Z̃�

XR1
� ∼ F�G+ r1� T −G−K�� The corresponding critical region with level α is given

by F�δ0� ν10
 Z̃�XR1
� > F�α
G+ r1� T −G− r1�� and the confidence set at level 1−α

is thus ��δ′
0� ν

′
10�′ � F�δ0� ν10
 Z̃�XR1

� ≤ F�α
G+ r1� T −G−K��

5. inference with a surprise variable

In many economic models we encounter so-called “surprise” terms among the
explanatory variables. These reflect the differences between the expected values of
latent variables and their realizations. In this section we study a model which contains
the unanticipated part of Z (Pagan, 1984: model 4) as an additional regressor beside
the latent variable, namely:

y = Z∗δ+ �Z − Z∗�γ +Xβ+ e = Zδ+ V∗γ +Xβ+ e− V∗δ�(5.1)

Z = Z∗ + V∗ = WB + �U∗ + V∗� = WB + V�(5.2)
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where the general assumptions (2.3)–(2.6) still hold. The term �Z − Z∗� represents
the unanticipated part of Z. This setup raises more difficult problems especially for
inference on γ. Nevertheless we point out here that the procedures described in
the preceding sections for inference on δ and γ remain applicable essentially with-
out modification, and we show that similar procedures can be obtained as well for
inference on γ provided we make the additional assumption (3.3).

Consider first the problem of testing the hypothesis H0 � δ = δ0. Applying the same
procedure as before, we get the equation

y − Zδ0 = WB�δ− δ0� +Xβ+ V∗γ + �e− V∗δ0��(5.3)

Hence, assuming that W and X have K2 columns in common,

y −Zδ0 = W1B1�δ− δ0�+X1β1 +X2β
∗
2 + e+ V∗�γ− δ0� = W1δ1∗ +Xβ∗ +u(5.4)

where δ1∗ = B1�δ − δ0�, β∗
2 = β2 + B2�δ − δ0�, β∗ = �β′

1� β
∗
2
′�′, and u = e + V∗�γ −

δ0�. Then we can test δ = δ0 by using the F-statistic for δ10 = 0:

F�δ0
W1� =
�y − Zδ0�′P�M�X�W1� �y − Zδ0�/q1

�y − Zδ0�′M�X�W1�	�y − Zδ0�/�T − q1 −K� �(5.5)

When δ = δ0, F�δ0
W1� ∼ F�q1� T − q1 − K�. It follows that F�δ0
W1� > F�α
 q −
K2� T − q1 − K� is a critical region with level α for testing δ = δ0 while �δ0 �
F�δ0
W1� ≤ F�α
 q1� T − q1 − K�� is a confidence set with level 1 − α for δ. Thus,
the procedure developed for the case where no surprise variable is present applies
without change. If generated regressors are used, we can write

y − Zδ0 = W B̂�δ− δ0� +Xβ+ e+ V∗�γ − δ0� + V̂ �δ− δ0��(5.6)

Replacing W B̂ by Z̃ = W B̃, where B̃ is an estimator independent of e and V , we get

y − Zδ0 = Z̃δ∗ +Xβ+ u(5.7)

where δ∗ = δ− δ0� u = e+ V∗�γ− δ0� + Ṽ �δ− δ0� and Ṽ = Z − Z̃� Here the hypoth-
esis δ = δ0 entails H ′

0 � δ∗ = 0. The F-statistic F�δ0
 Z̃� defined in (3.6) follows an
F�G�T − G − K� distribution when δ = δ0. Consequently, the tests and confidence
set procedures based on F�δ0
 Z̃� apply in the same way. Similarly, it is easy to see
that the joint inference procedures described in Section 4 also apply without change.

Let us now consider the problem of testing an hypothesis on the coefficient of
the surprise term, i.e., H0 � γ = γ0. In this case, it appears more difficult to obtain
a finite-sample test under the assumptions (2.1)–(2.6). So we will assume that the
following conditions, which are similar to assumptions made by Pagan (1984) setup,
hold:

U∗ = 0�(5.8a)

e and V are independent.(5.8b)
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Then we can write

y = Z∗δ+ �Z − Z∗�γ +Xβ+ e = Zγ +W1δ
∗
1 +Xβ∗ + e�(5.9)

Subtracting Zγ0 on both sides yields

y − Zγ0 = Zγ∗ +W1δ1∗ +Xβ∗ + e(5.10)

where γ∗ = γ − γ0. We can thus test γ = γ0 by testing γ∗ = 0 in (5.10), using

F�γ0
Z� = �y − Zγ0�′P�M��W1�X	�Z��y − Zγ0�/G
�y − Zγ0�′M��W1� Z�X	��y − Zγ0�/�T −G− q1 −K� �(5.11)

When γ = γ0, F�γ0
Z� ∼ F�G�T −G− q1 −K� so that F�γ0
Z� ≥ F�α
G�T −G−
q1 −K� is a critical region with level α for γ = γ0 and

�γ0 � F�γ0
Z� ≤ F�α
G�T −G− q1 −K��(5.12)

is a confidence set with level 1 − α for γ. When γ is a scalar, this confidence set can
be written as {

γ0 �
�y − Zγ0�′D�y − Zγ0�
�y − Zγ0�′E�y − Zγ0�

× ν2

ν1
≤ Fα

}
(5.13)

where ν1 = G = 1, ν2 = T − G − q1 − K, D = P�M��W1�X	��, and E =
M��W1� Z�X	�� Since the ratio ν2/ν1 always takes positive values, the confidence set
is obtained by finding the values γ0 that satisfy the inequality aγ2

0 + bγ0 + c ≤ 0�
where a = Z′LZ� b = −2Z′Ly� c = y ′Ly� L = D−HαE, and Hα = �ν1/ν2�Fα. Finally
it is straightforward to see that the problem of testing a joint hypothesis of the type
H0 � γ = γ0� R1β = ν10 can be treated by methods similar to the ones presented in
Section 4.

6. inference on general parameter transformations

The finite sample tests presented in this article are based on extensions of
Anderson–Rubin statistics. An apparent limitation of Anderson–Rubin-type tests
comes from the fact that they are designed for hypotheses fixing the complete vector
of the endogenous (or unobserved) regressor coefficients. In this section, we pro-
pose a solution to this problem which is based on applying a projection technique.
Even more generally, we study inference on general nonlinear transformations of
δ in (2.1), or more generally of �δ′� ν′

1�′ where ν1 = R1γ is a linear transformation
of γ� and we propose finite sample tests of general restrictions on subvectors of δ

or �δ′� ν′
1�′� For a similar approach, see Dufour (1989, 1990) and Dufour and Kiviet

(1998).
Let θ = δ or θ = �δ′� ν′

1�′ depending on the case of interest. In the previous
sections, we derived confidence sets for θ which take the general form

Cθ�α� = �θ0 � F�θ0� ≤ Fα�(6.1)
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where F�θ0� is a test statistic for θ = θ0 and Fα is a critical value such that P�θ ∈
Cθ�α�	 ≥ 1 − α. If θ = θ0, we have

P�θ0 ∈ Cθ�α�	 ≥ 1 − α� P �θ0 /∈ Cθ�α�	 ≤ α�(6.2)

Consider a (possibly nonlinear) transformation η = f �θ� of θ. Then it is easy to see
that

Cη�α� ≡ �η0 � η0 = f �θ� for some θ ∈ Cθ�α��(6.3)

is a confidence set for η with level at least 1 − α� i.e.,

P�η ∈ Cη�α�	 ≥ P�θ ∈ Cθ�α�	 ≥ 1 − α�(6.4)

hence

P�η /∈ Cη�α�	 ≤ α�(6.5)

Thus, by rejecting H0 � η = η0 when η0 /∈ Cη�α�, we get a test of level α. Further

η0 /∈ Cη�α� ⇔ η0 �= f �θ0��∀θ0 ∈ Cθ�α�(6.6)

so that the condition η0 /∈ Cη�α� can be verified by minimizing F�θ0� over the set
f−1�η0� = �θ0 � f �θ0� = η0� and checking whether the infimum is greater than Fα.

When η = f �θ� is a scalar, it is easy to obtain a confidence interval for η by
considering variables ηL = inf�η0 � η0 ∈ Cη�α�� and ηU = sup�η0 � η0 ∈ Cη�α��
obtained by minimizing and maximizing η0 subject to the restriction η0 ∈ Cη�α�� It
is then easy to see that

P�ηL ≤ η ≤ ηU 	 ≥ P�η ∈ Cη�α�	 ≥ 1 − α(6.7)

so that �ηL�ηU 	 is a confidence interval with level 1 − α for η. Further, if such
confidence intervals are built for several parametric functions, say ηi = fi�θ�� i =
1� � � � �m� from the same confidence set Cθ�α�� the resulting confidence intervals
�ηiL� ηiU 	� i = 1� � � � �m� are simultaneous at level 1 − α� in the sense that the cor-
responding m-dimensional confidence box contains the true vector �η1� � � � � ηm� with
probability (at least) 1− α
 for further discussion of simultaneous confidence sets, see
Miller (1981), Savin (1984), and Dufour (1989). When sets of confidence intervals are
not simultaneous, we will call them “marginal intervals.”

Consider the special case where θ = δ = �δ1� δ
′
2�′ and η = δ1� i.e. η is an element

of δ� Then the confidence set Cη�α� takes the form

Cη�α� = Cδ1
�α� = �δ10 � �δ10� δ

′
2�′ ∈ Cδ�α�� for some δ2��(6.8)

Consequently we must have

P�δ1 ∈ Cδ1
�α�	 ≥ 1 − α� P�δ10 /∈ Cδ1

�α�	 ≤ α�(6.9)
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Further if we consider the random variables δL
1 = inf�δ10 � δ10 ∈ Cδ1

�α�� and δU
1 =

sup�δ10 � δ10 ∈ Cδ1
�α�� obtained by minimizing and maximizing δ10 subject to the

restriction δ10 ∈ Cδ1
�α�, �δL

1 � δ
U
1 	 is a confidence interval with level 1 − α for δ1� The

test which rejects H0 � δ1 = δ10 when δ10 /∈ Cδ1
�α� has a level not greater than α.

Furthermore,

δ10 /∈ Cδ1
�α� ⇔ F

(�δ′
10� δ

′
2�′

)
> Fα�∀δ2(6.10)

Condition (6.10) can be checked by minimizing the F��δ′
10� δ

′
2�′� statistic with respect

to δ2 and comparing the minimal value with Fα. The hypothesis δ1 = δ10 is rejected
if the infimum of F��δ′

10� δ′
2�′� is greater than Fα. In practice, the minimizations and

maximizations required by the above procedures can be performed easily through
standard numerical techniques.

Finally, it is worthwhile noting that, even though the simultaneous confidence set
Cθ�α� for θ may be interpreted as a confidence set based on inverting LR-type tests
for θ = θ0 [or a profile likelihood confidence set; see Meeker and Escobar (1995) or
Chen and Jennrich (1996)], projection-based confidence sets, such as Cη�α�� are not
(strictly speaking) LR confidence sets.

7. asymptotic validity

In this section we show that the finite sample inference methods described above
remain valid under weaker assumptions provided the number of observations is suf-
ficiently large. Consider again the model described by (2.1)–(2.6) and (2.10), which
yields the following equations

y = Zδ+Xγ + u� Z = W1B1 +X2B2 + V�(7.1)

where u = e− Vδ. If we are prepared to accept a procedure which is only asymptot-
ically “valid,” we can relax the finite-sample assumptions (2.3)–(2.6) since the nor-
mality of error terms and their independence are no longer necessary. For example,
consider the statistic F�δ0
 W1� defined in (2.13). Then, under general regularity con-
ditions, we can show that:

(a) under the null hypothesis δ = δ0 the F -statistic in (2.13) follows a χ2
q1
/q1

distribution asymptotically (as T → ∞�

(b) under the fixed alternative δ = δ1, provided B1�δ1 − δ0� �= 0� the value of

(2.13) tends to get infinitely large as T increases, i.e., the test based on
F�δ0
 W1� is consistent.

In particular, the following conditions are sufficient for the latter properties to
hold: (

u′u

T
�
u′V

T
�
V ′V

T

)
→(

σ2
u�6uV �6V

)
�(7.2)

(
X ′X

T
�
X ′W1

T
�
W ′

1W1

T

)
→(

6XX�6XW1
�6W1W1

)
�(7.3)

�T−1/2X ′u�T−1/2W ′
1u�T

−1/2X ′V�T−1/2W ′
1V � ⇒ 7≡�7Xu�7W1u

�7XV �7W1V
��(7.4)



830 DUFOUR AND JASIAK

where → and ⇒ denote respectively convergence in probability and convergence in
distribution as T → ∞, and the joint distribution of the random variables in 7 is
multinormal with the covariance matrix of �7′

Xu�7
′
W1u

�′ given by

6 = V

[
7Xu

7W1u

]
=

[
σ26XX σ6XW1

σ6′
XW1

6W1W1

]

where det�6� �= 0� For further details, the reader may consult Dufour and Jasiak
(1993) and Staiger and Stock (1997). It is easy to prove similar asymptotic results for
the other tests proposed in this article.

8. monte carlo study

In this section, we present the results of a small Monte Carlo experiment that
compares the performance of the exact tests proposed above with other available
(asymptotically justified) procedures, especially Wald-type procedures.

A total of 1000 realizations of an elementary version of model (2.1)–(2.2), equiv-
alent to Model 1 discussed by Pagan (1984), were simulated for a sample of size
T = 100� In this particular specification, only one latent variable Z is present. The
error terms in e and V (where e and V are vectors of length 100) are independent
with N�0� 1� distributions. We allow for the presence of only one instrumental vari-
able W in the simulated model, which was also independently drawn (once) from
a N�0� 1� distribution. Following Pagan’s original specification, there is no constant
term or any exogenous variables included.

The explanatory power of the instrumental variable W depends on the value of
the parameter B. Hence, we let B take the following values: 0, 0.05, 0.1, 0.5, and 1.
When B is close or equal to zero, W has little or no explanatory power, i.e., W is a
bad instrument for the latent variable Z� For each value of B we consider five null
hypotheses,

H0 � δ = δ0� for δ0 = 0� 1� 5� 10� and 50�

each one being tested against four alternative hypotheses of the form

H1 � δ = δ1� for δ1 = δ0 + p∗I�δ0��

The alternative H1 is constructed by adding an increment to the value of δ0 where
p∗ = 0, 0.5, 1, 2, and 4, and I�δ0� = 1 for δ0 = 0� and I�δ0� = δ0 otherwise.

Table 2 summarizes the results. In the first three columns, we report the values
of B� δ0, and the alternative δ1� When the entries in columns II and III are equal,
we have δ0 = δ1� and the corresponding row reports the levels of the tests. The next
three columns (IV, V, and VI) show the performance of the Wald-type IV-based test
(as proposed by Pagan, 1984), which consists in correcting the understated standard
errors of a two-stage procedure by replacing them by a 2SLS standard error. We
report the corresponding results in column IV [asymptotic (As.)]. In cases where the
level of Pagan’s test exceeds 5 percent, we consider two correction methods. The first
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Table 2
simulation study of test performance for a model with unobserved regressors

Parameter Values Rejection Frequencies

Wald-type Split-sample

B δ0 δ1 As. C.L. C.G. IS 25 50 75 90 2S OLS

I II III IV V VI VII VIII IX X XI XII XIII

0.00 0.0 0.0 0.1 · · 5.1 5.1 6.1 5.2 5.4 5.1 ·
0.00 0.0 0.5 0.0 · · 4.7 5.1 4.4 4.1 3.9 4.7 ·
0.00 0.0 1.0 0.0 · · 5.6 4.8 5.5 5.7 5.4 5.6 ·
0.00 0.0 2.0 0.0 · · 4.2 4.5 4.5 3.8 4.5 4.2 ·
0.00 0.0 4.0 0.0 · · 5.2 5.3 5.9 4.3 5.0 5.2 ·

0.00 1.0 1.0 7.3 5.1 5.1 5.0 4.6 4.9 4.8 5.2 15.7 4.7
0.00 1.0 1.5 6.8 5.5 5.5 4.4 4.8 4.4 5.4 6.1 15.7 6.8
0.00 1.0 2.0 7.6 5.9 5.9 5.0 4.3 4.8 4.8 5.1 17.9 6.5
0.00 1.0 3.0 8.6 6.6 6.6 6.3 5.0 4.9 5.0 5.8 19.9 7.0
0.00 1.0 5.0 6.6 4.9 4.9 4.4 4.3 4.6 5.5 4.6 18.1 5.1

0.00 5.0 5.0 54.1 5.5 5.5 5.1 5.5 4.2 5.2 4.9 70.5 69.3
0.00 5.0 7.5 52.8 5.4 5.4 4.9 6.1 4.9 5.1 4.6 69.7 69.0
0.00 5.0 10.0 56.5 5.7 5.7 4.8 4.5 6.1 5.0 4.8 71.7 71.5
0.00 5.0 15.0 50.7 4.6 4.6 4.8 4.5 4.3 4.5 3.8 66.6 67.0
0.00 5.0 25.0 52.7 5.2 5.2 4.6 4.5 4.6 5.6 5.0 67.8 68.8

0.00 10.0 10.0 69.0 4.5 4.5 4.9 5.3 6.0 4.9 5.1 84.5 85.0
0.00 10.0 15.0 68.4 5.7 5.7 5.9 4.7 5.0 5.6 4.5 84.3 83.9
0.00 10.0 20.0 68.6 5.0 5.0 5.7 4.3 4.9 4.7 5.2 84.6 84.3
0.00 10.0 30.0 70.2 4.9 4.9 4.5 5.4 5.2 5.0 5.2 85.4 84.4
0.00 10.0 50.0 68.7 5.3 5.3 4.8 4.2 5.1 5.6 5.0 83.6 83.1

0.00 50.0 50.0 86.5 6.4 6.4 5.4 4.4 5.0 5.1 5.4 96.9 96.5
0.00 50.0 75.0 85.2 6.7 6.7 6.2 3.9 5.0 6.6 6.7 95.1 96.1
0.00 50.0 100.0 87.4 5.2 5.2 4.6 6.5 5.0 4.5 5.5 96.8 96.4
0.00 50.0 150.0 85.8 6.5 6.5 5.8 5.0 5.3 5.9 5.9 97.1 97.1
0.00 50.0 250.0 86.7 6.8 6.8 5.9 4.8 6.0 6.2 5.8 97.1 97.3

0.05 0.0 0.0 0.0 · · 4.8 5.0 3.6 3.6 5.3 4.8 ·
0.05 0.0 0.5 0.2 · · 4.9 5.1 5.5 4.8 5.2 4.9 ·
0.05 0.0 1.0 0.0 · · 7.4 5.4 5.7 6.2 7.6 7.4 ·
0.05 0.0 2.0 0.3 · · 16.6 8.7 11.7 14.7 15.7 16.6 ·
0.05 0.0 4.0 1.0 · · 47.8 16.4 26.9 38.1 44.0 47.8 ·

0.05 1.0 1.0 6.9 5.2 5.6 4.7 4.8 4.4 4.8 5.5 16.9 7.9
0.05 1.0 1.5 6.0 4.6 4.7 5.4 6.0 6.0 5.4 5.2 16.9 7.5
0.05 1.0 2.0 4.7 3.9 3.9 5.3 5.7 4.6 5.1 5.2 18.1 7.6
0.05 1.0 3.0 4.0 2.7 2.7 9.9 6.3 7.4 8.4 10.5 25.3 7.4
0.05 1.0 5.0 2.6 2.1 2.1 27.0 9.0 14.9 23.2 25.4 51.1 5.6

(continued)
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Table 2
continued

Parameter Values Rejection Frequencies

B δ0 δ1 Wald-type IS Split-sample 2S OLS
As. C.L. C.G. 25 50 75 90

I II III IV V VI VII VIII IX X XI XII XIII

0.05 5.0 5.0 33.8 4.6 1.6 4.6 5.8 5.3 5.2 4.8 71.7 72.7
0.05 5.0 7.5 21.0 2.3 0.2 6.3 4.8 4.6 5.3 6.0 69.7 71.4
0.05 5.0 10.0 12.4 0.4 0.1 8.7 4.8 5.6 7.6 8.5 71.9 69.9
0.05 5.0 15.0 5.1 0.1 0.0 14.8 6.1 8.6 11.7 13.2 81.2 66.9
0.05 5.0 25.0 3.9 0.0 0.0 47.1 15.3 26.2 39.1 43.0 93.6 59.0

0.05 10.0 10.0 34.9 7.6 0.2 6.3 6.6 6.3 6.4 6.5 84.8 84.0
0.05 10.0 15.0 22.9 1.3 0.0 6.4 4.4 5.8 5.8 5.9 85.8 78.9
0.05 10.0 20.0 14.1 0.6 0.0 8.6 5.1 6.1 6.7 7.6 88.9 79.0
0.05 10.0 30.0 5.1 0.0 0.0 14.5 6.7 10.4 13.3 13.9 90.0 74.2
0.05 10.0 50.0 4.4 0.1 0.0 52.5 18.6 30.1 40.8 49.1 97.5 62.2

0.05 50.0 50.0 32.7 5.1 0.0 4.7 4.7 6.0 5.2 4.5 97.5 92.0
0.05 50.0 75.0 21.2 1.7 0.0 6.4 4.5 4.9 5.3 6.2 96.9 89.2
0.05 50.0 100.0 14.3 0.6 0.0 8.5 5.8 7.0 7.2 7.3 97.7 86.5
0.05 50.0 150.0 6.4 0.3 0.0 17.6 7.0 11.1 15.1 15.8 97.0 79.8
0.05 50.0 250.0 3.2 0.0 0.0 51.3 16.0 28.3 38.7 46.1 99.8 65.3

0.10 0.0 0.0 0.0 · · 4.8 4.2 4.9 4.5 5.0 4.8 ·
0.10 0.0 0.5 0.2 · · 8.2 6.8 7.1 6.9 7.4 8.2 ·
0.10 0.0 1.0 0.1 · · 15.8 7.1 8.9 13.9 13.5 15.8 ·
0.10 0.0 2.0 2.4 · · 49.4 16.9 29.3 40.7 46.0 49.4 ·
0.10 0.0 4.0 8.8 · · 97.1 47.7 78.9 93.2 95.9 97.1 ·
0.10 1.0 1.0 7.3 4.4 5.6 4.7 5.3 5.1 4.5 4.7 15.2 14.0
0.10 1.0 1.5 4.4 2.9 3.8 6.6 4.4 5.6 6.3 6.2 19.8 16.2
0.10 1.0 2.0 3.0 1.9 2.3 10.6 6.6 7.3 9.5 10.0 25.8 14.3
0.10 1.0 3.0 0.9 0.7 0.9 28.3 9.3 18.7 23.8 26.6 49.5 10.9
0.10 1.0 5.0 0.6 0.3 0.5 80.1 26.4 49.4 66.1 74.1 92.4 7.4

0.10 5.0 5.0 17.4 4.6 0.6 5.2 5.2 4.7 4.8 5.4 71.5 78.9
0.10 5.0 7.5 5.8 1.1 0.0 7.2 6.0 6.4 7.4 7.5 73.7 74.4
0.10 5.0 10.0 2.3 0.2 0.0 16.5 7.9 11.1 14.0 16.0 81.6 73.0
0.10 5.0 15.0 1.0 0.0 0.0 50.5 15.4 27.2 38.7 45.7 94.8 65.2
0.10 5.0 25.0 0.4 0.0 0.0 97.0 45.5 76.6 89.4 95.0 100.0 46.9

0.10 10.0 10.0 17.1 5.6 0.0 4.7 4.6 4.7 6.0 5.7 84.6 86.0
0.10 10.0 15.0 6.0 1.5 0.0 7.0 6.4 7.0 8.0 6.7 85.0 84.8
0.10 10.0 20.0 2.7 0.1 0.0 14.1 6.5 10.4 11.3 13.2 90.7 79.4
0.10 10.0 30.0 0.8 0.0 0.0 51.9 18.0 28.8 40.9 47.9 97.8 68.9
0.10 10.0 50.0 0.5 0.1 0.0 96.5 49.5 77.6 91.6 94.1 100.0 49.3

0.10 50.0 50.0 19.8 4.8 0.0 5.9 4.5 5.1 5.1 4.8 97.0 89.6
0.10 50.0 75.0 6.5 0.8 0.0 7.7 5.5 5.7 6.6 6.6 97.4 86.1
0.10 50.0 100.0 3.5 0.5 0.0 17.7 9.4 12.3 15.7 17.3 97.7 82.2
0.10 50.0 150.0 0.9 0.0 0.0 45.9 16.4 27.7 39.5 43.5 99.6 73.1
0.10 50.0 250.0 0.8 0.0 0.0 97.2 48.9 78.5 94.0 95.6 100.0 49.7

(continued)
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Table 2
continued

Parameter Values Rejection Frequencies

Wald-type Split-sample

B δ0 δ1 As. C.L. C.G. IS 25 50 75 90 2S OLS

I II III IV V VI VII VIII IX X XI XII XIII

0.50 0.0 0.0 2.7 · · 4.6 5.4 4.3 4.8 4.4 4.6 ·
0.50 0.0 0.5 60.3 · · 67.7 24.1 41.8 55.0 63.8 67.7 ·
0.50 0.0 1.0 98.8 · · 99.9 68.7 92.8 99.1 99.6 99.9 ·
0.50 0.0 2.0 99.6 · · 100.0 98.4 100.0 100.0 100.0 100.0 ·
0.50 0.0 4.0 99.0 · · 100.0 100.0 100.0 100.0 100.0 100.0 ·
0.50 1.0 1.0 5.3 4.8 4.2 5.0 4.7 5.1 4.9 4.6 17.6 98.4
0.50 1.0 1.5 8.5 5.2 2.6 41.4 15.5 24.4 32.4 39.3 64.4 92.8
0.50 1.0 2.0 68.0 58.1 47.4 93.4 39.7 68.6 84.3 90.6 98.4 62.6
0.50 1.0 3.0 98.7 98.2 97.5 100.0 90.3 99.8 100.0 100.0 100.0 1.7
0.50 1.0 5.0 99.8 99.7 99.6 100.0 100.0 100.0 100.0 100.0 100.0 0.1

0.50 5.0 5.0 7.4 5.6 0.0 5.1 4.2 5.0 4.4 5.3 69.6 100.0
0.50 5.0 7.5 9.7 1.7 0.0 66.6 18.4 39.4 54.5 61.6 97.7 99.9
0.50 5.0 10.0 92.6 69.1 0.0 99.7 63.9 90.5 97.9 99.4 100.0 99.2
0.50 5.0 15.0 99.1 97.9 0.0 100.0 98.8 100.0 100.0 100.0 100.0 5.4
0.50 5.0 25.0 99.6 99.1 0.0 100.0 100.0 100.0 100.0 100.0 100.0 0.1

0.50 10.0 10.0 6.9 5.2 0.0 5.1 5.5 5.2 4.2 5.6 83.5 100.0
0.50 10.0 15.0 8.6 1.0 0.0 67.9 21.7 39.9 55.4 62.0 99.6 99.7
0.50 10.0 20.0 92.1 74.2 0.0 99.7 66.6 93.2 98.7 99.8 100.0 99.1
0.50 10.0 30.0 99.5 99.0 0.0 100.0 99.4 100.0 100.0 100.0 100.0 5.6
0.50 10.0 50.0 99.5 99.1 0.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0

0.50 50.0 50.0 8.3 6.7 0.0 4.6 3.9 4.5 4.4 4.5 96.3 100.0
0.50 50.0 75.0 8.9 3.7 0.0 69.8 21.8 39.1 56.1 64.7 99.9 100.0
0.50 50.0 100.0 94.3 88.8 0.0 99.6 63.2 92.3 98.5 99.5 100.0 99.4
0.50 50.0 150.0 98.8 98.3 0.0 100.0 99.4 100.0 100.0 100.0 100.0 5.2
0.50 50.0 250.0 99.5 99.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 0.3

1.00 0.0 0.0 5.1 · · 5.6 4.9 5.0 5.6 5.8 5.6 ·
1.00 0.0 0.5 99.5 · · 99.5 64.9 91.2 98.5 99.2 99.5 ·
1.00 0.0 1.0 100.0 · · 100.0 99.2 100.0 100.0 100.0 100.0 ·
1.00 0.0 2.0 100.0 · · 100.0 100.0 100.0 100.0 100.0 100.0 ·
1.00 0.0 4.0 100.0 · · 100.0 100.0 100.0 100.0 100.0 100.0 ·
1.00 1.0 1.0 6.8 7.2 3.8 6.3 5.4 7.0 6.9 6.8 17.9 99.7
1.00 1.0 1.5 87.9 89.2 82.2 93.3 39.5 68.3 84.7 90.1 98.1 33.7
1.00 1.0 2.0 100.0 100.0 100.0 100.0 89.9 99.8 100.0 100.0 100.0 0.7
1.00 1.0 3.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 57.3
1.00 1.0 5.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.1

1.00 5.00 5.0 4.8 4.4 0.0 4.1 5.5 4.4 4.7 4.8 67.2 100.0
1.00 5.0 7.5 98.8 98.3 0.0 99.6 62.5 91.5 98.0 99.4 100.0 67.6
1.00 5.0 10.0 100.0 100.0 0.0 100.0 99.0 100.0 100.0 100.0 100.0 1.3
1.00 5.0 15.0 100.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 65.9
1.00 5.0 25.0 100.0 100.0 7.3 100.0 100.0 100.0 100.0 100.0 100.0 98.3

(continued)
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Table 2
continued

Parameter Values Rejection Frequencies

B δ0 δ1 Wald-type IS Split-sample 2S OLS
As. C.L. C.G. 25 50 75 90

I II III IV V VI VII VIII IX X XI XII XIII

1.00 10.0 10.0 5.1 4.4 0.0 6.0 6.2 5.8 6.9 6.3 85.3 100.0
1.00 10.0 15.0 98.8 98.5 0.0 99.6 63.1 91.1 97.7 99.4 100.0 69.5
1.00 10.0 20.0 100.0 100.0 0.0 100.0 99.0 100.0 100.0 100.0 100.0 0.6
1.00 10.0 30.0 100.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 66.5
1.00 10.0 50.0 100.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 99.2

1.00 50.0 50.0 5.2 5.0 0.0 5.5 5.5 5.3 5.2 6.9 96.8 100.0
1.00 50.0 75.0 99.0 98.7 0.0 99.9 65.8 91.4 98.3 99.3 100.0 68.1
1.00 50.0 100.0 100.0 100.0 0.0 100.0 98.8 100.0 100.0 100.0 100.0 0.6
1.00 50.0 150.0 100.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 67.0
1.00 50.0 250.0 100.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 99.0

Notes:

I: value of parameter B; VIII: sample split test using 25 observations
II: null hypothesis; for the structural equation;
III: alternative hypothesis; IX: sample split using 50 observations;
IV: Pagan’s test; X: sample split using 75 observations;
V: Pagan’s test locally size-corrected XI: sample split using 90 observations;

(B known); XII: two-stage test (2S);
VI: Pagan’s test globally size-corrected XIII: test with latent variable replaced by

(B = 0); observed vector (OLS).
VII: instrument substitution test (IS);

method is based on the critical value of the test at the 5 percent level for specific
values of δ0 and B in each row of the table [locally size-corrected tests; column
V (C.L.)]. The critical value is obtained from an independent simulation with 1000
realizations of the model. Another independent simulation allows us to compute the
critical value at 5 percent level in an extreme case when the instrumental variable is
very bad, i.e., by supposing B = 0 also for each value of δ0 [globally size-corrected
tests; column VI (C.G.)]. This turns out to yield larger critical values and is thus closer
to the theoretically correct critical value to be used here (on the assumption that B

is actually unknown). In column VII, we present the power of the exact test based
on the instrument substitution method. In the following four columns (VIII to XI)
we show the performance of the exact test based on splitting the sample, where the
numbers of observations used to estimate the structural equation are, respectively,
25, 50, 75, and 90 over 100 observations. Finally, we report the level and power of a
naive two-stage test as well as the results of a test obtained by replacing the latent
variable Z∗ in the structural equation by the observed value Z.

Let us first discuss the reliability of the asymptotic procedures. The level of the IV
test proposed by Pagan exceeds 5 percent essentially always when the parameter B

is less then 0.5, sometimes by very wide margins. The tests based on the two-stage
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procedure or replacing the latent variable by the vector of observed values are both
extremely unreliable no matter the value of the parameter B. The performance of
Pagan’s test improves once we move to higher values of the parameter B, i.e., when
the quality of the instrument increases. The improvement is observed both in terms
of level and power. It is, however, important to note that Pagan’s test has, in general,
the same or less power than the exact tests. The only exception is the sample split
test reported in column VIII, where only 25 observations were retained to estimate
the structural equation. For B higher then 0.5, the two other asymptotic tests are still
performing worse then the other tests. They are indeed extremely unreliable. In the
same range of B, the exact tests behave very well. They show the best power proper-
ties compared to the asymptotically based procedures and in general outperform the
other tests.

9. empirical illustrations

In this section, we present empirical results on inference in two distinct economic
models with latent regressors. The first example is based on Tobin’s marginal q model
of investment (Tobin, 1969), with fixed assets used as the instrumental variable for
q. The second model stems from educational economics and relates students’ aca-
demic achievements to a number of personal characteristics and other socioeconomic
variables. Among the personal characteristics, we encounter a variable defined as
“self-esteem” which is viewed as an imperfect measure of a latent variable and is
instrumented by measures of the prestige of parents’ professional occupation. The
first example is one where we have good instruments, while the opposite holds for
the second example.

Consider first Tobin’s marginal q model of investment (Tobin, 1969). Investment of
an individual firm is defined as an increasing function of the shadow value of capital,
equal to the present discounted value of expected marginal profits. In Tobin’s original
setup, investment behavior of all firms is similar and no difference arises from the
degree of availability of external financing. In fact, investment behavior varies across
firms and is determined to a large extent by financial constraints some firms are
facing in the presence of asymmetric information. For those firms, external financing
may either be too costly or not provided for other reasons. Thus investment depends
heavily on the firm’s own source of financing, namely the cash flow. To account for
differences in investment behavior implied by financial constraints, several authors
(Abel, 1979; Hayashi, 1982, 1985; Abel and Blanchard, 1986; Abel and Eberly, 1993)
introduced the cash flow as an additional regressor to Tobin’s q model. It can be
argued that another explanatory variable controlling the profitability of investment
is also required. For this reason, one can argue that the firm’s income has to be
included in the investment regression as well. The model is thus

Ii = γ0 + δQi + γ1CFi + γ2Ri + ei(9.1)

where Ii denotes the investment expenses of an individual firm i, CFi and Ri denote
its cash flow and income, respectively, while Qi is Tobin’s q measured by equity plus
debt and approximated empirically by adding data on current debt, long term debt,
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deferred taxes and credit, minority interest, and equity less inventory; δ and γ =
�γ0� γ1� γ2�′ are fixed coefficients to be estimated. Given the compound character of
Qi� which is constructed from several indexes, fixed assets are used as an explanatory
variable for Qi in the regression which completes the model:

Qi = β0 + β1Fi + vi�(9.2)

For the purpose of building finite-sample confidence intervals following the instru-
ment substitution method, the latter equation may be replaced (without any change
to the results) by the more general equation (called below the “full instrumental
regression”)

Qi = β0 + β1Fi + β3CFi + β4Ri + vi�(9.3)

Our empirical work is based on the “Stock Guide Database” containing data on
companies listed at the Toronto and Montreal stock exchange markets between 1987
and 1991. The records consist of observations on economic variables describing the
firms’ size and performance, like fixed capital stock, income, cash flow, stock market
price, etc. All data on the individual companies have previously been extracted from
their annual, interim, and other reports. We retained a subsample of 9285 firms whose
stocks were traded on the Toronto and Montreal stock exchange markets in 1991.

Since we are interested in comparing our inference methods to the widely used
Wald-type tests, we first consider the approach suggested by Pagan (1984). Since
usual estimators of coefficient variances obtained from the OLS estimation of
Equation (9.1) with Qi replaced by Q̂i are inconsistent (for a proof, see Pagan, 1984),
Pagan proposed to use standard two-stage least squares (2SLS) methods, which yield
in the present context (under appropriate regularity conditions) asymptotically valid
standard errors and hypothesis tests. For the 2SLS estimation of model (9.1)–(9.2),
the dependent variable Ii is first regressed on all the exogenous variables of the sys-
tem, i.e., the constant, CFi� Ri, and Fi� where Fi is the identifying instrument for Qi�

and then the fitted values Q̂i are substituted for Qi in the second stage regression.
The results are summarized in Table 3A, while the instrumental OLS regressions

appear in 3B. From the latter, we see that the identifying instrument for Q is strongly
significant and so appears to be a “good” instrument. Table 3C presents 95 percent
(marginal) confidence intervals for Tobin’s q parameter based on various methods,
as well as projection-based simultaneous confidence intervals for the coefficients of
equation (9.1). The three first intervals are obtained from, respectively, 2SLS, two-
stage and augmented two-stage methods by adding or subtracting 1.96 times the
standard error to/from the estimated parameter value.3 Below we report the exact
confidence intervals (instrument substitution and sample split) based on the solution
of quadratic equations as described in Sections 2 and 3. Recall that the precision
of the confidence intervals depends, in the case of the sample split method, on the

3 The augmented two-stage method uses all the available instruments to compute the generated
regressors (full instrumental regression), rather than the restricted instrumental equation (9.2). As
with the two-stage method, OLS-based coefficient standard errors obtained in this way are inconsis-
tent; see Pagan (1984) for further discussion.
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Table 3
tobin’s Q model, N = 9285

(A) 2SLS Estimators of Investment Equation (9.1)

Dependent variable: investment �I�
Explanatory Estimated Standard
variable coefficient error t statistic p-value

Constant 0.0409 0.0064 6.341 0.0000
Q 0.0052 0.0013 3.879 0.0001
CF 0.8576 0.0278 30.754 0.0000
R 0.0002 0.0020 0.109 0.9134

(B) Instrumental OLS Regressions—Dependent Variable: Q

Full Instrumental Regression Equation (9.2)

Regressor Estimated Stand Estimated Stand
coefficient error t p-value coefficient error t p-value

Constant 0.6689 0.0919 7.271 0.0000 1.0853 0.1418 7.650 0.0000
F −2.7523 0.0527 −52.195 0.0000 2.4063 0.0400 60.100 0.0000
CF 21.2102 0.3188 66.517 0.0000
R 1.2273 0.0291 42.111 0.0000

(C) Confidence Intervals

Projection-based simultaneous
confidence intervals

Marginal confidence intervals for δ (instrument substitution)

Method Interval Coefficient Interval

2SLS �0�0026� 0�0078	 γ0 �0�0257� 0�0564	
Augmented two-stage �0�0025� 0�0079	 δ �0�0037� 0�0072	
Two-stage �−0�0091�−0�0029	 γ1 �0�7986� 0�9366	
Instrument substitution �0�0025� 0�0078	 γ2 �0�0033� 0�0042	
Sample split 50 percent �0�0000� 0�0073	
Sample split 75 percent �0�0017� 0�0077	
Sample split 90 percent �0�0023� 0�0078	

number of observations retained for the estimation of the structural equation. We
thus show the results for, respectively, 50, 75, and 90 percent of the entire sample
(selected randomly). The simultaneous confidence intervals for the elements of the
vector θ = �γ0� δ� γ1� γ2�′ are obtained by first building a simultaneous confidence
set Cθ�α�, with level 1 − α = 0�95 for θ according to the instrument substitution
method described in Section 4 and then by both minimizing and maximizing each
coefficient subject to the restriction θ ∈ Cθ�α� (see Section 6). The program used to
perform these constrained optimizations is the subroutine NCONF from the IMSL
mathematical library. The corresponding four-dimensional confidence box has level
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95 percent (or possibly more), i.e., we have simultaneous confidence intervals (at
level 95 percent).

From these results, we see that all the confidence intervals for δ� except for the
two-stage interval (which is not asymptotically valid), are quite close to each other.
Among the finite-sample intervals, the ones based on the instrument substitution and
the 90% sample-split method appear to be the most precise. It is also worthwhile
noting that the projection-based simultaneous confidence intervals all appear to be
quite short. This shows that the latter method works well in the present context and
can be implemented easily.

Let us now consider another example where, on the contrary, important discrep-
ancies arise between the intervals based on the asymptotic and the exact inference
methods. Montmarquette and Mahseredjian (1989), and Montmarquette et al. (1989)
studied students’ academic achievements as a function of personal and socioeco-
nomic explanatory variables. Students’ school results in French and mathematics are
measured by the grade, taking values on the interval 0 − 100� The grade variable
is assumed to depend on personal characteristics, such as age, intellectual ability
(IQ) observed in kindergarten, and “self–esteem” measured on an adapted children
self–esteem scale ranging from 0 to 40. Other explanatory variables include parents’
income, father’s and mother’s education measured in number of years of schooling,
the number of siblings, student’s absenteeism, his own education and experience, as
well as the class size. We examine the significance of self–esteem, which is viewed as
an imperfectly measured latent variable to explain the first grader’s achievements in
mathematics. The self-esteem of younger children was measured by a French adapta-
tion of the McDaniel–Piers scale. Noting the measurement scale may not be equally
well adjusted to the age of all students and due to the high degree of arbitrariness
in the choice of this criterion, the latter was instrumented by Blishen indices reflect-
ing the prestige of father’s and mother’s professional occupations in order to take
account of eventual mismeasurement.

The data stem from a 1981–1982 survey of first graders attending Montreal fran-
cophone public elementary schools. The sample consists of 603 observations on stu-
dents’ achievements in mathematics. The model considered is

LMATi = β0 + δSEi + β1IQi + β2Ii + β3FEi + β4MEi + β5SNi

+β6Ai + β7ABPi + β8EXi + β9EDi + β10ABSi + β11CSi + ei

(9.4)

where (for each individual i� LMAT = ln(grade/(100 − grade)), SE = ln(self-esteem
test result/(40 − self esteem test result)), IQ is a measure of intelligence (observed
in kindergarten), I is parents’ income, FE and ME are father’s and mother’s years
of schooling, SN denotes the sibling’s number, A is the age of the student, ABP is
a measure of teacher’s absenteeism, EX indicates the years of student’s work expe-
rience, ED measures his education in years, ABS is student’s absenteeism, and CS
denotes the class size. Finally, the instrumental regression is

SEi = γ0 + γ1FPi + γ2MPi + vi(9.5)
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where FP and MP correspond to the prestige of the father and mother’s profession
expressed in terms of Blishen indices. We consider also the more general instrumental
regression which includes all the explanatory variables on the right-hand side of (9.4)
except SE. The 2SLS estimates and projection-based simultaneous confidence are
reported in Table 4A while the results of the instrumental regressions appear in
Table 4B.

Table 4
mathematics achievement model, N = 603

2SLS Estimators of Achievement Equation (9.4)
Projection-based

Dependent Variable: LMAT 95 percent confidence
Explanatory Estimated Standard intervals
variable coefficient error t statistic p-value (instrument substitution)

Constant −4.1557 0.9959 −4.173 0.0000 [−4.8601, −3.7411]
SE 0.2316 0.3813 0.607 0.5438 �−∞, +∞�
IQ 0.0067 0.0015 4.203 0.0000 [0.006600, 0.006724]
I 0.0002 0.3175 0.008 0.9939 [−0.09123, 0.10490]
FE 0.0015 0.0089 0.172 0.8636 [−0.00914, 0.01889]
ME 0.0393 0.0117 3.342 0.0009 [0.02868, 0.05762]
SN −0.0008 0.0294 −0.029 0.9767 [−0.1546, 0.1891]
A 0.0144 0.0070 2.050 0.0408 [0.01272, 0.01877]
ABP −0.0008 0.0005 −1.425 0.1548 [−0.003778, 0.000865]
EX −0.0056 0.0039 −1.420 0.1561 [−0.01307, 0.00333]
ED −0.0007 0.0206 −0.035 0.9718 [−0.0123, 0.2196]
ABS −0.0001 0.0002 −0.520 0.6033 [−0.0001764, 0.0000786]
CS −0.0184 0.0093 −1.964 0.0500 [−0.03003, −0.009790]

Marginal 95 percent Quadratic Confidence Interval for δ �−∞, +∞)

Instrumental OLS Regression—Dependent Variable: SE

Full Instrumental Regression Equation (9.5)

Estimated Stand. Estimated Stand.
Regressor coefficient error t p-value coefficient error t p-value

Constant −1.2572 1.0511 −1.1960 0.232 0.8117 0.1188 6.830 0.0000
FP 0.5405 0.3180 1.7000 0.090 0.5120 0.2625 1.951 0.0516
FM 0.3994 0.3327 1.2004 0.230 0.6170 0.2811 2.194 0.0286
IQ 0.003822 0.000611 6.2593 0.000
I 0.02860 0.03161 0.9049 0.366 F-statistic for significance of FP and
FE −0.01352 0.01136 −1.1899 0.235 FM in full instrumental regression:
ME −0.004028 0.01517 −0.2655 0.791 F�2� 589� = 2�654 (p-value = 0.078)
SN −0.01439 0.03325 −0.4326 0.665
A 0.003216 0.008161 0.3941 0.694
ABP 0.000698 0.000577 1.2108 0.226
EX −0.002644 0.004466 −0.5920 0.554
ED −0.02936 0.02080 −1.4117 0.159
ABS 0.000426 0.000194 2.1926 0.029
CS 0.01148 0.009595 1.1966 0.232
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Standard (bounded) Wald-type confidence intervals are of course entailed by the
2SLS estimation. For δ, however, the instrument substitution method yields the
confidence interval defined by the inequality −31�9536δ2

0 − 84�7320δ0 − 850�9727 ≤
0� Since the roots of this second order polynomial are complex and a < 0� this
confidence interval actually covers the whole real line. Indeed, from the full instru-
mental regression and using t-tests as well as the relevant F-test (Table 4B), we see
that the coefficients of FP and MP are not significantly different from zero; i.e., the
latter appear to be poor instruments. So the fact that we get here an unbounded con-
fidence interval for δ is expected in the light of the remarks at the end of Section 2.
The projection-based confidence intervals (Table 4A) yield the same message for δ�

although it is of interest to note that the intervals for the other coefficients of the
model can be quite short despite the fact that δ may be difficult to identify. As in the
case of multicollinearity problems in linear regressions, inference about some coeffi-
cients of a model remains feasible even if the certain parameters are not identifiable.

10. conclusions

The inference methods presented in this article are applicable to a variety of mod-
els, such as regressions with unobserved explanatory variables or structural models
which can be estimated by instrumental variable methods (e.g., simultaneous equa-
tions models). They may be considered as extensions of Anderson–Rubin procedures
where the major improvement consists of providing tests of hypotheses on subsets
or elements of the parameter vector. This is accomplished via a projection technique
allowing for inference on general possibly nonlinear transformations of the parame-
ter vector of interest. We emphasized that our test statistics, being pivotal or at least
boundedly pivotal functions, yield valid confidence sets which are unbounded with
a nonzero probability. The unboundedness of confidence sets is of particular impor-
tance when the instruments are poor and the parameter of interest is not identifi-
able or close to being unidentified. Accordingly, a valid confidence set should cover
the entire set of real numbers since all values are observationally equivalent (see
Dufour, 1997; Gleser and Hwang, 1987). Our empirical results indicate that infer-
ence methods based on Wald-type statistics are unreliable in the presence of poor
instruments since such methods typically yield bounded confidence sets with probabil-
ity one. The results in this article thus underscore another shortcoming of Wald-type
procedures which is quite distinct from other problematic properties, such as nonin-
variance to reparameterizations (see Dagenais and Dufour, 1991).

In general, nonidentifiability of parameters results either from low quality instru-
ments or, more fundamentally, from a poor model specification. A valid test yielding
an unbounded confidence set becomes thus a relevant indicator of problems involv-
ing the econometric setup. The power properties of exact and Wald-type tests were
compared in a simulation-based experiment. The test performances were examined by
simulations on a simple model with varying levels of instrument quality and the extent
to which the null hypotheses differ from the true parameter value. We found that
the tests proposed in this article were preferable to more usual IV-based Wald-type
methods from the points of view of level control and power. This seems to occur
despite the fact that AR-type procedures involve “projections onto a high-dimensional
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subspace which could result in reduced power and thus wide confidence regions”
(Staiger and Stock, 1997: p. 570). However, it is important to remember that size-
correcting Wald-type procedures require one to use huge critical values that can
easily destroy power. Wald-type procedures can be made useful only at the cost
introducing important and complex restrictions on the parameter space that one
is not generally prepare to impose; for further discussion of these difficulties, see
Dufour (1997: Section 6).

It is important to note that although the simulations were performed under the
normality assumption, our tests yield valid inferences in more general cases involving
non-Gaussian errors and weakly exogenous instruments. This result has a theoreti-
cal justification and is also confirmed by our empirical examples. Since the inference
methods we propose are as well computationally easy to perform, they can be con-
sidered as a reliable and a powerful alternative to more usual Wald-type procedures.
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