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In economic analysis, we often assume that there exists an underlying structure which
has generated the observations of real-world data. However, statistical inference can re-
late only to characteristics of the distribution of the observed variables. Statistical models
which are used to explain the behaviour of observed data typically involve parameters and
statistical inference aims at making statements about these parameters. For that purpose, it
is important that different values of a parameter of interest can be characterized in terms of
the data distribution. Otherwise, the problem of drawing inference about this parameter is
plagued by a fundamental indeterminacy and can be viewed as “ill-posed”.

To illustrate, consider X as being normally distributed with mean E(X) = µ1 − µ2.
Then µ1 − µ2 can be estimated using observed X . But the parameters µ1 and µ2 are
not uniquely estimable. In fact, one can think of an infinite number of pairs (µi, µj),
i, j = 1, 2, . . . (i 6= j) such that µi − µj = µ1 − µ2. In order to determine µ1 and µ2

uniquely, we need additional prior information, such as µ2 = 3µ1 or some other assump-
tion. Note, however, that inference about the variance of X remains feasible without extra
assumptions.

More generally, identification failures – or situations that are close to it – complicate
considerably the statistical analysis of models, so that tracking such failures and formulat-
ing restrictions to avoid them is an important problem of econometric modelling.

The problem of whether it is possible to draw inferences from the probability distribu-
tion of the observed variables to an underlying theoretical structure is the concern of econo-
metric literature on identification. The first economists to raise this issue were Working
(1925, 1927) and Wright (1915, 1928). The general formulations of the identification prob-
lems were made by Frisch (1934), Marschak (1942), Haavelmo (1944), Hurwicz (1950),
Koopmans and Reiersøl (1950), Koopmans, Rubin and Leipnik (1950), Wald (1950), and
many others. An extensive treatment of the theory of identification in simultaneous equa-
tion systems was provided by Fisher (1976). Surveys of the subject can be found in Hsiao
(1983), Prakasa Rao (1992),, Bekker and Wansbeek (2001), Manski (2003), and Matzkin



(2007); see also Morgan (1990) and Stock and Trebbi (2003) on the early development of
the subject.

1 Definition of parametric identification
It is generally assumed in econometrics that economic variables whose formation an eco-
nomic theory is designed to explain have the characteristics of random variables. Let y
be a set of such observations. A structure S is a complete specification of the probability
distribution function of y. The set of all a priori possible structures, T , is called a model.
In most applications, y is assumed to be generated by a parametric probability distribution
function F (y, θ ), where the probability distribution function F is assumed known, but the
q×1 parameter vector θ is unknown. Hence, a structure is described by a parametric point
θ , and a model is a set of points A ⊆ Rq.

Definition 1 Two structures, S0 = F (y, θ0) and S∗ = F (y, θ∗) are said to be observation-
ally equivalent if F (y, θ0) = F (y, θ∗) for (‘almost’) all possible y. A model is identifiable
if A contains no two distinct structures which are observationally equivalent. A function of
θ , g(θ), is identifiable if all observationally equivalent structures have the same value for
g(θ).

Sometimes a weaker concept of identifiability is useful.

Definition 2 A structure with parameter value θ0 is said to be locally identified if there ex-
ists an open neighborhood of θ0, W, such that no other θ in W is observationally equivalent
to θ0.

2 General results for identification in parametric models
Lack of identification reflects the fact that a random variable has the same distribution for
some if not all values of the parameter. R. A. Fisher’s information matrix provides a sen-
sitivity measure of the distribution of a random variable due to small changes in the value
of the parameter point (Rao, 1962). It can therefore be shown that, subject to regularity
conditions, θ0 is locally identified if and only if the information matrix evaluated at θ0 is
nonsingular (Rothenberg, 1971).

It is clear that unidentified parameters cannot be consistently estimated. There are
also pathological cases where identified models fail to possess consistent estimators (e.g.,
Gabrielson, 1978). However, in most practical cases, we may treat identifiability and the
existence of a consistent estimator as equivalent; for precise conditions, see Le Cam (1956)
and Deistler and Seifert (1978).
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3 Some specific parametric models
The choice of model structure is one of the basic ingredients in the formulation of the
identification problem. In this section we briefly discuss some identification conditions for
different types of models in order to demonstrate the kind of prior restrictions required.

3.1 Linear regression with collinearity
One of the most common models where an identification problem does occur is the linear
regression model:

y = Xβ + u (1)

where y is an n × 1 vector of dependent observable variables, X is an n × k fixed matrix
of observable variables, β a k × 1 unknown coefficient vector, and u is an n× 1 vector of
disturbances whose components are (say) independent and identically distributed according
to a normal distribution N(0, σ2) with unknown positive variance σ2.

In this model, the value of β must be determined from the expected value of y : E(y) =
Xβ. If the latter equation has a solution for β (i.e., if the model is correct), the solution is
unique if and only the regressor matrix X has rank k. If X has rank zero (which entails
X = 0), all values of β are equivalent (β is completely unidentifiable). If 1 ≤ rank(X) <
k, then not all the components can be determined, but some linear combinations of the
components of β (say c′β) can be determined (i.e., they are identifiable). A necessary
and sufficient condition for c′β to be estimable (identifiable) is that c = (X ′X)d for some
some vector d. Linear combinations that do not satisfy this condition are not identifiable.
The typical way out of such collinearity problems consists in imposing restrictions on β
(identifying restrictions) which set the values of the unidentifiable linear combinations (or
components) of β.

Correspondingly, when X does bot have full rank, the equation (X ′X)β̂ = X ′y which
defines the least squares estimator β̂ does not have a unique solution. But all solutions of the
least squares problem can be determined by considering β̂ = (X ′X)−X ′y where (X ′X)−

is any generalized inverse of (X ′X). Different generalized inverses then correspond to
different identifying restrictions on β. For further discussion, see Rao (1973, Chap. 4).

3.2 Linear simultaneous equations models
Consider a theory which predicts a relationship among the variables as

Byt + Γxt = ut , t = 1, . . . , n, (2)

where yt and ut are G × 1 vectors of observed and unobserved random variables, respec-
tively, xt is a K × 1 vector of observed non-stochastic variables, B and Γ are G × G and
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G×K matrices of coefficients, with B being nonsingular. We assume that the ut are inde-
pendently normally distributed with mean 0 and variance-covariance matrix Σ. Equations
(2) are called structural equations. Solving the endogenous variables, y, as a function of
the exogenous variables, x, and the disturbance u, we obtain:

yt = −B−1Γxt + B−1ut

= Πxt + vt, (3)

where Π = −B−1Γ, Evt = 0, Evtv
′
t = V = B−1Σ(B−1)′. Equations (3) are called the

reduced form equations derived from (2) and give the conditional likelihood of yt for given
xt that summaries the information provided by the observed (yt, xt). The variables in xt

are often also called “instruments”.
From (3), we see that the simultaneous equations model can be viewed as a special case

of a multivariate regression model (MLR), such that the regression coefficient matrix Π
satisfies the equation:

BΠ = −Γ. (4)

Provided the matrix X = [x1, . . . , xn]′ has full rank K (no collinearity), the regression
coefficient matrix Π is uniquely determined by the distribution of Y = [y1, . . . , yn]′ (it is
identifiable). The problem is then whether B and Γ can be uniquely derived from equation
(4). Premultiplying (2) by a G × G nonsingular matrix D, we get a second structural
equation:

B∗yt + Γ ∗xt = u∗t , (5)

where B∗ = DB, Γ ∗ = DΓ, and u∗t = Du. It is readily seen that the reduced form of (5)
is also (3). So equation (4) cannot be uniquely solved for B and Γ , given Π . Therefore,
the two structures are observationally equivalent and the model is non-identifiable.

To make the model identifiable, additional prior restrictions have to be imposed on the
matrices B, Γ and/or Σ. Consider the problem of estimating the parameters of the first
equation in (2), out of a system of G equations. If the parameters cannot be estimated,
the first equation is called unidentified or underidentified. If given the prior information,
there is a unique way of estimating the unknown parameters, the equation is called just
identified. If the prior information allows the parameters to be estimated in two or more
linearly independent ways, it is called overidentified. A necessary condition for the first
equation to be identified is that the number of restrictions on this equation be no less than
G− 1 (order condition). A necessary and sufficient condition is that a specified submatrix
of B, Γ and Σ be of rank G − 1 (rank condition); see Fisher (1976) and Hausman and
Taylor (1983). For instance, suppose the restrictions on the first equation are in the form
that certain variables do not appear. Then this rank condition says that the first equation
is identified if and only if the submatrix obtained by taking the columns of B and Γ with
prescribed zeros in the first row is of rank G− 1 (Koopmans and Reiersol, 1950).
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3.3 Dynamic models
When both lagged endogenous variables and serial correlation in the disturbance term ap-
pear, we need to impose additional conditions to identify a model. For instance, consider
the following two equation system (Koopmans, Rubin and Leipnik, 1950):

y1t + β11y1,t−1 + β12y2,t−1 = u1t ,

β12y1t + y2t = u2t . (6)

If (u1t, u2t) are serially uncorrelated, (6) is identified. If serial correlation in (u1t, u2t) is
allowed, then

y1t + β∗11y1,t−1 + β∗12y2,t−1 = u∗1t ,

β12y1t + y2t = u2t , (7)

is observationally equivalent to (6), where β∗11 = β11 + dβ21, β∗12 = β12 + d, and u∗1t =
u1t + du2t .

Hannan (1971) derives generalized rank conditions for the identification of this type of
model by first assuming that the maximum orders of lagged endogenous and exogenous
variables are known, then imposing restrictions to eliminate redundancy in the specifica-
tion and to exclude transformations of the equations that involve shifts in time. Hatanaka
(1975), on the other hand, assumes that the prior information takes only the form of exclud-
ing certain variables from an equation, and derives a rank condition which allows common
roots to appear in each equation.

3.4 Nonlinear models
For linear models, we have either global identification or else an infinite number of obser-
vationally equivalent structures. For models that are linear in parameters, but nonlinear in
variables, there is a broad class of models whose members can commonly achieve identifi-
cation [Brown (1983), McManus (1992)]. For models linear in the variables but nonlinear
in the parameters, the state of the mathematical art is such that we only talk about local
properties. That is, we cannot tell the true structure from any other substitute; however, we
may be able to distinguish it from other structures which are close to it. A sufficient con-
dition for local identification is that the Jacobian matrix formed by taking the first partial
derivatives of

ωi = Ψi(θ), i = 1, . . . , n,

0 = ϕj(θ), j = 1, . . . , R, (8)

with respect to θ be of full column rank, where the ωi are n population moments of y and
the ϕj are the R a priori restrictions on θ (Fisher, 1976).
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When the Jacobian matrix of (8) has less than full column rank, the model may still
be locally identifiable via conditions implied by the higher-order derivatives. However, the
estimator of a model suffering from first-order lack of identification will in finite samples
behave in a way which is difficult to distinguish from the behaviour of an unidentified
model (Sargan, 1983).

3.5 Bayesian analysis
In Bayesian analysis all quantities, including the parameters, are random variables. Thus,
a model is said to be identified in probability if the posterior distribution for θ is proper.
When the prior distribution for θ is proper, so is the posterior, regardless of the likeli-
hood function of y. In this sense unidentifiability causes no real difficulty in the Bayesian
approach. However, basic to the Bayesian argument is that all probability statements are
conditional, that is, they consist essentially in revising the probability of a fixed event in the
light of various conditioning events, the revision being accomplished by Bayes’ theorem.
Therefore, in order for an experiment to be informative with regard to unknown parameters
(i.e., for the posterior to be different from the prior), the parameter must be identified or
estimable in the classical sense and identification remains as a property of the likelihood
function (Kadane, 1975).

Drèze (1975) has commented that exact restrictions are unlikely to hold with proba-
bility 1 and has suggested using probabilistic prior information. In order to incorporate a
stochastic prior, he has derived necessary rank conditions for the identification of a linear
simultaneous equation model.

4 Definition of identification in nonparametric models
When the restrictions of an economic model specify all functions and distributions up to
the value of a finite dimensional vector, the model is said to be parametric. When some
functions or distributions are left parametrically unspecified, the model is said to be semi-
parametric. The model is nonparametric if none of the functions and distributions are
specified parametrically. The previous discussion is based on parametric specification. We
now turn to the issue of whether economic restrictions such as concavity, continuity and
monotonicity of functions, equilibrium conditions, the implications of optimization, and
so on, may be used to guarantee the identification of some nonparametric models and the
consistency of some nonparametric estimators; see Matzkin (1994).

Formally, an econometric model is specified by a vector of observable dependent and
independent variables, a vector of unobservable variables, and a set of known functional
relationships among the variables. When such functional relationships are unspecified, the
nonparametric identification studies what functions or features of function can be recovered
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from the joint distribution of the observable variables.
The set of restrictions on the unknown functions and distributions in an econometric

model defines the set of functions and distributions to which these belong. Let the model
T denote the set of all a priori possible unknown functions and distributions. Let m denote
a vector of the unknown functions and distributions in T and P (m) denote the joint distri-
bution of the observable variables under m. Then the identification of m can be defined as
follows.

Definition 3 The vector of functions m is identified in T if for any other vector, m∗ ∈ T
such that m 6= m∗, P (m) 6= P (m∗).

Let C(m) denote some feature of m, such as the sign of some coordinate of m.

Definition 4 The feature C(m) of m is identified if C(m) = C(m∗) for all m, m∗ ∈ T
such that P (m) = P (m∗).

5 Examples of nonparametric identification
Contrary to the parametric model, there is no general result for nonparametric identifica-
tion. We shall therefore give some examples of how restrictions can be used to identify
nonparametric functions.

5.1 Generalized regression models
Economists often consider a model of the form

y = g(x) + u. (9)

When E(u|x) = 0 and g(·) is a continuous function g : x → R, then g(·) can be recovered
from the joint distribution of (y, x) because E(y|x) = g(x).

In some cases, the object of interest is not a conditional mean function g(·), but some
“deeper” function, such as a utility function generating the distribution of demand for com-
modities by a consumer. For example, x in (9) can be a price vector for K commodities
and the income of a consumer. Mas-Colell (1977) has shown that we can recover the un-
derlying utility function from the distribution of demand if we restrict g(·) to be monotone
increasing, continuous, concave and strictly quasi-concave functions.

5.2 Simultaneous equations models
Suppose (y, x) satisfies by the structural equations

r(x, y) = u, (10)
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where y and u denote G×1 vectors of observable endogenous and unobservable variables,
respectively, x is a K × 1 vector of observable exogenous variables, r denotes the G un-
known functions, and let p(r) and p(r∗) represent the joint distributions of the observables
under r and r∗ respectively. Assume also that: (i) ∀(x,y), ∂r/∂y has full rank, (ii) there
exists a function π(·) such that y = π(x, u) [for conditions ensuring this, see Benkard and
Berry (2006)], and (iii) u is distributed independently of x. Then a necessary and sufficient
condition guaranteeing that p(r∗) = p(r) is that

rank

(
∂r∗i

∂(x,y)
∂r

∂(x,y)

)
< G + 1, (11)

for all (x,y) and i = 1, . . . , G, and all , where r∗i denotes the i-th coordinate function of
r∗ ∈ T ; see Roehrig (1988) and Matzkin (2007).

5.3 Latent variable models and the measurement of treatment effects
For each person i, let (y∗0i, y∗1i) denote the potential outcomes in the untreated and treated
states, respectively. Then the treatment effect for individual i is

∆i = y∗1i − y∗0i

and the average treatment effect (ATE) is defined as

E(∆i) = E(y∗1i − y∗0i) ; (12)

see Heckman and Vytlacil (2001).
Let the treatment status be denoted by the dummy variable di where di = 1 denotes the

receipt of treatment and di = 0 denotes nonreceipt. The observed data are often in the form

yi = diy
∗
1i + (1− di)y

∗
0i. (13)

Suppose y∗1i = µ1(xi, u1i), y∗0i = µ0(xi, u0i), and d∗i = µD(zi) − udi, where di = 1
if d∗i ≥ 0 and 0 otherwise, xi and zi are vectors of observable exogenous variables and
(u1i, u0i, udi) are unobserved random variables. The average treatment effect and the
complete structural econometric model can be identified with parametric specifications of
(µ1(·), µ0(·), µD(·)) and the joint distributions of (u1i, u0i, udi) even though we do not
simultaneously observe y∗1i and y∗0i. In the case that neither (µ1(·), µ0(·), µD(·)) nor the
joint distribution of (u1, u0, ud) are specified, certain treatment effects may still be non-
parametrically identified under weaker assumptions. For instance, under the assumption
that di is orthogonal to (y∗1i, y

∗
0i) conditional on a set of confounders (x, z) (conditional

independence or ignorable selection), the ATE is identifiable and estimable by comparing
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the difference of the average outcomes from the treatment group and from the untreated
(control) group (Heckman and Robb, 1985, Rosenbaum and Rubin, 1985). If the focus is
on the average treatment effect for someone who would not participate if p(z) ≤ p(z0)
and would participate if p(z) > p(z0) (the local average treatment effect (LATE)), where
p(z) = Prob(d = 1|z) (propensity score), Imbens and Angrist (1994) show that under the
assumptions of separability of the effects of observable factors and unobservable factors
and independence between observed factors and unobserved factors, they can be estimated
by the sample analogue of

∆LATE(x, p(z), p(z0)) ≡ E(y|x, p(z))− E(y|x, p(z0))

p(z)− p(z0)
(14)

where without loss of generality, we assume p(z) > p(z0). The limit of LATE provides the
local instrumental variable (LIV) estimand (Heckman and Vytlacil, 1999):

∆LIV (x, p(z)) ≡ ∂E(y|x, p(z))

∂p(z)
. (15)

Heckman and Vytlacil (2001) give conditions that suitably weighted versions of LIV iden-
tify the ATE.

6 Weak instruments and weak identification
The most common way of trying to achieve identification consists in imposing exclusion
restrictions on the variables of a structural equation. In model (2), suppose that yt and xt

are partitioned as yt = (y1t,y
′
2t,y

′
3t)

′ and xt = (x′1t,x
′
2t)

′ where y1t is a scalar, yit has
dimension Gi (i = 2, 3) and xit has dimension Ki (i = 1, 2). If y3t and x2t are excluded
from the first equation and the coefficient of y1t is normalized to one, this yields an equation
of the form:

y1t − y′2tβ1 = x′1tγ1 + u1t , t = 1, . . . , n. (16)

Let us also rewrite the reduced equation for y2t in terms of x1t and x2t :

y2t = Π21x1t + Π22x2t + v2t . (17)

Then, substituting (17) into (16), we see that the reduced form for y1t is:

y1t = Π11x1t + Π12x2t + v1t , (18)

where v1t = u1t + v′2tβ1, Π11 = γ′1 + β′1Π21 and

Π ′
12 = Π ′

22β1 . (19)
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Since γ1 is free, Π11 is not restricted, but equation (19) determines the identifiability of β1,
hence also of γ1. Provided equation (19) has a solution [i.e., if equation (16) is consistent
with the data], the solution is unique if and only if the rank of the G2 ×K2 matrix Π22 is
equal to G2, the dimension of β1 :

rank(Π22) = G2 . (20)

If rank(Π22) < G2, the vector β1 is not identifiable. However, it is completely uniden-
tifiable only if rank(Π22) = 0, or equivalently if Π22 = 0. If 1 < rank(Π22) < G2, some
linear combinations c′β1 are identifiable, but not all of them. Failure of the identification
condition means that the regressors (or the “instruments”) x2t do not move enough to sep-
arate the effects of the different variables in y2t. Condition (20) underscores two important
things: first, exclusion and normalization restrictions – which are easy to check – are not
sufficient to ensure identification; second, identification depends on the way the exogenous
variables x2t excluded from the structural equation of interest (16) are related to endoge-
nous variables y2t included in the equation. The latter feature is determined by the matrix
Π22 whose rows should be linearly independent. Since Π22 is not observable, this may be
difficult to determine in practice.

A situation that can lead to identification difficulties is the one where the identifica-
tion condition (20) indeed holds, but, in some sense, Π22 is “close” not to have sufficient
rank. In such situations, we say that we have weak instruments. In view of the fact that
the distributions of most statistics move continuously as functions of Π22, the practical
consequences of being close to identification failure are essentially the same. Assessing
the closeness to non-identification may be done in various ways, for example by consid-
ering the eigenvalues of the matrices which measure the “size” of Π22, such as Π22Π

′
22,

Π22X
′
2M(X1)X2Π

′
22 or a concentration matrix Σ

−1/2
22 Π22X

′
2M(X1)X2Π

′
22Σ

−1/2
22 , where

X1 = [x11, . . . , x1n]′, X2 = [x21, . . . , x2n]′, Σ22 is the covariance matrix of v2t, Σ
−1/2
22 is

its square root, and M(X1) = In−X1(X
′
1X1)

−1X ′
1. More generally, any situation where a

parameter may be difficult to determine because we are close to a case where a parameter
ceases to be identifiable may be called weak identification. Weak identification was high-
lighted as a problem of practical interest by Nelson and Startz (1990), Bound, Jaeger and
Baker (1995), Dufour (1997), and Staiger and Stock (1997); for reviews, see Stock, Wright
and Yogo (2002) and Dufour (2003).

7 Statistical consequences of identification failure
Identification failure has several detrimental consequences for statistical analysis:

1. parameter estimates, tests and confidence sets computed for unidentified parameters
have no clear interpretation; this situation may be especially misleading if the statis-
tical instruments used do not reveal the presence of the problem;
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2. consistent estimation is not possible unless additional information is supplied;

3. many standard distributional results used for inference on such models are not any-
more valid, even with a large sample size [see Phillips (1983, 1989) and Rothenberg
(1984)];

4. numerical problems also easily appear, due for example to the need to invert (quasi)
singular matrices.

Weak identification problems lead to similar difficulties, but may be more treacherous
in the sense that standard asymptotic distributional may remain valid, but they constitute
very bad approximations to what happens in finite samples:

1. standard consistent estimators of structural parameters can be heavily biased and
follow distributions whose form is far from the limiting Gaussian distribution, such
as bimodal distributions, even with fairly large samples [Nelson and Startz (1990),
Hillier (1990), Buse (1992)];

2. standard tests and confidence sets, such as Wald-type procedures based on estimated
standard errors, become highly unreliable or completely invalid [Dufour (1997)].

A striking illustration of these problems appears in the reconsideration by Bound,
Jaeger and Baker (1995) of a study on returns to education by Angrist and Krueger (1991).
Using 329000 observations, these authors found that replacing the instruments used by An-
grist and Krueger (1991) with randomly generated (totally irrelevant) instruments produced
very similar point estimates and standard errors. This result indicates that the original in-
struments were weak. Recent work in this area is reviewed in Stock, Wright and Yogo
(2002) and Dufour (2003).

8 Concluding remarks
The study of identifiability is undertaken in order to explore the limitations of statistical
inference (when working with economic data) or to specify what sort of a priori information
is needed to make a model estimable. It is a fundamental problem concomitant with the
existence of a structure. Logically it precedes all problems of estimation or of testing
hypotheses.

An important point that arises in the study of identification is that without a priori re-
strictions imposed by economic theory it would be almost impossible to estimate economic
relationships. In fact, Liu (1960) and Sims (1980) have argued that economic relations are
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not identifiable because the world is so interdependent as to have almost all variables ap-
pearing in every equations, thus violating the necessary condition for identification. How-
ever, almost all the models we discuss in econometrics are only approximate. We use
convenient formulations which behave in a general way that corresponds to our economic
theories and intuitions, and which cannot be rejected by the available data. In this sense,
identification is a property of the model but not necessarily of the real world. It is also
important to be careful about situations where identification almost does not hold (weak
identification), since these are in practice as damaging for statistical analysis as identifica-
tion failure itself.

The problem of identification arises in a number of different fields such as automatic
control, biomedical engineering, psychology, systems science, etc., where the underlying
physical structure may be deterministic [e.g., see Aström and Eykoff (1971)]. It is also
aptly linked to the design of experiments (e.g., Kempthorne, 1947; Bailey, Gilchrist and
Patterson, 1977). Here, we restrict our discussion to economic applications of statistical
identifiability involving random variables.

See also: econometrics; endogeneity and exogeneity; estimation; simultaneous equations
models; treatment effects.
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