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1. Introduction

The ground covered by Kleibergen and Mavroeidis (2009) is impressive. First, the authors survey
new methods for inference in models with possibly weak instruments, especially in view of dealing
with parameter subset inference in a GMM context. The test statistics considered include a number
of concentrated test statistics: a S-type statistic based on the one proposed by Stock and Wright
(2000), a Kleibergen-type (KLM) statistic [Kleibergen (2005)], an overidentification test (JKLM)
derived from the two previous procedures, and a conditionallikelihood-ratio-type (LR-type) statistic
[which extends the method of Moreira (2003)]. Second, the methods are applied to study a currently
popular macroeconomic relation, the new Keynesian Phillips curve (NKPC), which now plays an
important role in decisions about monetary policy. This type of model is especially important in
countries which practice “inflation targeting” (like New Zealand, Canada, Australia, U.K., etc.).

The contribution of the authors is quite welcome, because for many years, it appeared that
macroeconomists had walked out of econometrics and seriousempirical work. Recent econometric
activity around the NKPC is certainly comforting development for econometricians.

I will discuss the paper by Kleibergen and Mavroeidis (2009)in the light of my own work on the
econometric problems associated with weak identification [Dufour (1997, 2003), Dufour and Jasiak
(2001), Dufour (2003), Dufour and Taamouti (2005, 2007), Doko Tchatoka and Dufour (2008)]
as well as NKPCs [Dufour, Khalaf, and Kichian (2006), Dufour, Khalaf, and Kichian (2007b),
Dufour, Khalaf, and Kichian (2007a), Dufour, Khalaf, and Kichian (2008)]. I intend to focus on
some pitfalls associated with the econometric methods proposed by the authors as well as potential
research directions. Specific issues that will be discussedinclude:

1. concerning econometric theory:

(a) inference in the presence of weak identification;

(b) limited information and robustness to missing instruments;

(c) projection methods and subset inference;

2. the meaning of the empirical results presented on NKPCs.

2. Weak identification and statistical inference

In my view, recent econometric work on weak identification provides three main lessons.

1. Asymptotic approximations can easily be misleading. It is especially important in this area to
produce a finite-sample theory at least in a number of reference cases.

2. In structural models with identification difficulties, several of the intuitions which people draw
from studying the linear regression model and using standard asymptotic approximations can
easily be misleading. In particular, standard errors do notconstitute a valid way of assessing

1



parameter uncertainty and do not yield valid confidence intervals [Dufour (1997)]. Further-
more, individual parameters in statistical models are not generally meaningful, although pa-
rameter vectors are. Restrictions on the values of individual coefficients may be empirically
empty, while restrictions on the whole parameter vector areempirically meaningful.

3. To build confidence sets (and to a lesser extent, tests), itis important to look forpivotal func-
tions. Pivots are not generally available for individual parameters, but they can be obtained
for appropriately selected parameter vectors. Given a pivot for a parameter vector, we can
construct valid tests and confidence sets for the parameter vector. Inference on individual
coefficients may then be derived through projection methods.

It is now widely accepted that inference in structural models should take into account the fact
that identification may be weak. In so-called “linear IV regressions”, this means taking care of the
possibility of “weak instruments”. In particular, this hasled to the development of “identification
robust” methods, which are based on first deriving some pivotal functions (at least asymptotically.

The point of departure of this work has been the finite-sampleprocedure proposed long ago by
Anderson and Rubin (1949, AR). However, it was soon noted that the AR procedure may involve
sizeable “power losses” when the number of instruments usedis large, and various methods aimed
at improving this feature have been proposed [Kleibergen (2002), Moreira (2003)]. However, these
“improvements” come at a cost. First, the justification of the methods is only asymptotic, which
of course leaves open the possibility of arbitrary large size distortions even fairly stringent distrib-
utional assumptions (convergence results are not uniform). Second, they are not robust to “missing
instruments” and, more generally, to the formulation of a model for the explanatory endogenous
variables. This latter problem has received little attention in the literature, so it is worthwhile to
explain it in greater detail.

3. Limited information and robustness to missing instruments

A central feature of most situations where IV methods are required come from the fact that instru-
ments may used to solve an endogeneity or an errors-in-variables problem. It is very rare one can
or should use all the possible valid instruments.

Consider the standard model:
y = Y β + X1γ + u , (3.1)

Y = X1Π1 + X2Π2 + V , (3.2)

wherey andY areT × 1 andT × G matrices of endogenous variables,Xi is aT × ki matrix of
exogenous variables (instruments),i = 1, 2, β andγ areG × 1 andk1 × 1 vectors of unknown
coefficients,Π1 andΠ2 arek1 × G andk2 × G matrices of unknown coefficients,u is a vector of
structural disturbances,V is aT × G matrix of reduced-form disturbances, andX = [X1, X2] is a
full-column rankT × k matrix (k = k1 + k2). We wish to test

H0(β0) : β = β0 . (3.3)
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As mentioned above, a solution to the problem of testing in the presence of weak instruments
has been available for more that 50 years [Anderson and Rubin(1949)]. On observing that

y − Y β0 = X1θ1 + X2θ2 + ε (3.4)

whereθ1 = γ + Π1(β − β0), θ2 = Π2(β − β0) andε = u + V (β − β0), H0(β0) can be tested by
testing

H ′
0 : θ2 = 0 . (3.5)

If u is independent ofX andu ∼ N
[

0, σ2
uIT

]

, the AR statistic is the usual F-statistic forH ′
0 :

AR(β0) =
(y − Y β0)

′[M(X1) − M(X)](y − Y β0)/k2

(y − Y β0)
′M(X)(y − Y β0)/(T − k)

∼ F (k2, T − k) , (3.6)

which yields the confidence setCβ(α) = {β0 : AR(β0) ≤ Fα(k2, T − k)} for β.
A drawback of the AR method is that it loses power when too manyinstruments(X2) are used.

Potentially more powerful methods can be obtained by exploiting the special form (3.2) of the model
for Y, which entails (among other things) the assumption that the mean ofY only depends onX1

andX2 :
E(Y ) = X1Π1 + X2Π2 . (3.7)

This is what in the end methods like those proposed by Kleibergen (2002) or Moreira (2003) do.
Now suppose model (3.2) is in fact incomplete, and a third matrix of instruments does indeed

appear in the reduced form forY :

Y = X1Π1 + X2Π2 + X3Π3 + V (3.8)

whereX3 is aT ×k3 matrix of explanatory variables (not necessarily strictlyexogenous). Equation
(3.4) then becomes:

y − Y β0 = X1∆1 + X2∆2 + X3∆3 + ε (3.9)

where∆1 = γ + Π1(β − β0), ∆2 = Π2(β − β0), ∆3 = Π3(β − β0) andε = u + V (β − β0).
Since∆2 = 0 and∆3 = 0 underH0, it is easy to see that the null distribution ofAR(β0) remains
F (k2, T − k). The AR procedure isrobust to missing instruments (or instrument exclusion). It is
also interesting to observe that the vectorsV1, . . . , VT may not follow a Gaussian distribution and
may be heteroskedastic. A similar result obtains if

Y = g(X1, X2, X3, V, Π) (3.10)

whereg(·) is an arbitrary (possibly nonlinear) function.
Alternative methods of inference aimed at being robust to weak identification [Wang and Zivot

(1998), Kleibergen (2002), Moreira (2003)] do not enjoy this type of robustness. The reason is that
most of these methods exploit the specification

Y = X1Π1 + X2Π2 + V (3.11)
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Table 1. Instrument exclusion and the size of tests robust toweak instruments
Random missing instruments

Nominal size= 0.05. Results are given in percentages.

AR ARS K LM LR LR1 LR2 AR ARS K LM LR LR1 LR2

k2 (a) δ = 0 andρ = 0.01 (b) δ = 0 and ρ = 1

2 5.0 5.2 5.2 4.8 5.1 5.1 5.2 5.5 5.9 5.9 5.0 5.8 5.8 5.9
3 3.8 4.6 5.6 3.5 3.6 4.5 4.5 5.0 6.2 5.6 2.0 1.7 5.8 5.8
4 5.4 5.7 5.7 4.9 4.1 5.4 5.6 4.8 5.6 5.5 1.3 1.1 5.6 5.5
5 6.6 7.7 5.9 5.6 3.9 7.4 7.7 4.3 5.0 4.6 0.4 0.4 4.9 5.1
10 4.3 5.6 6.0 4.1 1.7 6.0 6.2 4.2 5.6 4.6 0.0 0.0 4.2 4.3
20 5.5 9.0 8.4 3.0 0.5 9.1 9.2 4.9 7.7 4.8 0.0 0.0 5.3 5.5
40 4.8 12.4 16.5 0.9 0.0 14.6 14.9 4.1 11.0 5.8 0.0 0.0 6.3 6.2

(c) δ = 1 andρ = 0.01 (d) δ = 1 and ρ = 1

2 4.9 5.5 5.5 4.9 5.3 5.3 5.5 4.4 4.8 4.8 4.2 4.8 4.8 4.8
3 5.0 5.5 7.4 4.6 5.3 5.7 5.7 4.4 4.9 5.1 1.8 2.5 5.0 5.0
4 5.0 5.7 11.5 4.5 5.7 5.8 5.9 5.2 6.3 4.7 0.6 0.8 4.6 4.7
5 5.4 6.3 15.7 4.7 5.9 6.6 6.7 5.1 6.2 5.2 0.4 0.8 5.7 6.0
10 4.9 7.2 34.5 3.8 7.7 8.0 7.8 4.8 6.7 6.4 0.1 0.1 6.6 6.7
20 4.7 7.2 56.9 2.9 9.3 10.7 7.8 4.8 7.7 6.6 0.0 0.0 6.7 7.0
40 4.2 11.8 77.3 1.0 29.8 33.5 12.9 5.3 12.5 11.9 0.0 0.0 14.4 15.6

(e) δ = 10 andρ = 0.01 (f) δ = 10 and ρ = 1

2 4.4 4.7 4.7 4.2 4.5 4.5 4.7 5.0 5.4 5.4 4.9 5.2 5.2 5.4
3 4.3 4.4 9.6 4.0 4.4 4.6 4.8 4.8 5.6 5.0 1.8 4.6 6.1 6.3
4 3.3 3.9 15.9 3.1 3.8 3.9 4.0 5.0 6.0 6.6 0.8 5.2 6.1 6.4
5 5.3 5.7 28.9 4.6 5.6 5.8 5.9 4.4 4.9 6.1 0.4 4.4 5.2 5.5
10 5.2 7.0 74.7 4.2 7.5 8.0 7.6 5.0 6.7 15.0 0.1 6.0 7.8 7.4
20 5.1 7.9 94.6 2.6 11.7 12.5 8.9 4.5 7.1 39.8 0.0 8.9 10.7 7.7
40 5.0 10.8 97.9 0.7 33.5 36.2 12.8 5.2 12.4 73.6 0.0 30.5 34.7 14.1

for the reduced form.
In Dufour and Taamouti (2007), we present the results of a simulation study based on a model

of the following form:

y = Y1β1 + Y2β2 + u , (Y1, Y2) = X2Π2 + X3δ + (V1, V2), (3.12)

(ut, V1t, V2t)
′ i.i.d.
∼ N(0, Σ) , Σ =





1 .8 .8
.8 1 .3
.8 .3 1



 , (3.13)

whereδ represents the importance of the excluded instrument; a sample of these results is repro-
duced in Table 1. These show clearly that methods which depend heavily on the specification (3.2)
can suffer from large size distortions. This suggests that the problem of missing instruments may
be as important in practice as the problem of weak instruments.

Methods which yield “power gains” by relying on additional restrictions on the reduced form
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of the model arecloser to full-information methods. Adding restrictions typically allows one
to obtain more power (precision). However, if the restrictions used are not really part of the null
hypothesis of interest, the resulting tests will be plaguedby size distortions. This is the oldtrade-
off between theinefficiency of limited-information methods and thefragility of full-information
methods. In general, the latter cannot be viewed as substitutes for the former. What do we do when
results conflict?

An important challenge consists in finding methods which aremore powerful than AR-type
procedures and robust to missing instruments. This is feasible, for example, by using instrument
reduction and transformation methods in conjunction with split-sample techniques; see Dufour and
Taamouti (2003b, 2003a) and Dufour (2003).

Concerning the GMM procedures used by Kleibergen and Mavroeidis (2009), there is no proof
or discussion whether these enjoy robustness to missing instruments. For example, problems similar
to “missing instruments” may be induced when potentially informative moment equations are not
considered or dropped from the equations used for the GMM inference. Indeed, in the GMM
setup considered by the authors, the assumption (3.2) is replaced by high-level assumptions on
the asymptotic distribution of the derivativesqt(θ) = ∂ft(θ)/∂θ′ of the moment equations [see
Kleibergen and Mavroeidis (2008)]. The latter appear to involve restrictions on the “reduced form”
(model solution), though the exact nature of these restrictions is unclear. It seems plausible that the
S-type procedure be less affected by such problems than the other statistics (since it is the procedure
closest to the original AR method), but this remains to be seen. Anyway, I suggest it would be
important to study this type of difficulty in the context of the models and methods considered by
Kleibergen and Mavroeidis (2009).

4. Projection methods and subset inference

Inference on individual coefficients can be performed by using a projection approach. If

P[β ∈ Cβ(α)] ≥ 1 − α (4.1)

then, for any functiong(β),
P
[

g(β) ∈ g [Cβ(α)]
]

≥ 1 − α . (4.2)

If g(β) is a component ofβ [or a linear transformationg(β) = w′β], the projection-based con-
fidence set can be obtained very easily [Dufour and Jasiak (2001), Dufour and Taamouti (2005),
Dufour and Taamouti (2007)]. This is a generic method with a finite-sample justification. Further-
more, no restriction on the form ofg(·) is required.

Kleibergen (2007) and Kleibergen and Mavroeidis (2008) claim it is possible to produce more
efficient methods for subset inference by considering test statistics where the “nuisance parameters”
have been replaced by point estimates (under the null hypothesis). This is certainly an interesting
contribution. But there are three main limitations.

1. The argument is asymptotic.
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2. In the GMM case, the “regularity conditions” bear not onlyon the moment variablesft(θ)

but also on the derivatives of theseqt(θ) = ∂ft(θ)
∂θ

, which involve implicit restrictions on the
solution (reduced form) of the model.

3. As a result of the previous point, validity in cases where instruments are “missing” remains
unproved (and doubtful).

The projection approach is applicable as soon as a test of thenull hypothesisθ = θ0 is feasible
for all θ0, which requires weaker assumptions than those used by the authors to ensure the validity
of the concentrated identification robust GMM tests they propose. Of course, an interesting related
issue would consist in studying to what extent these assumptions could be relaxed while preserving
the validity of the concentrated test procedures.

5. Work on new Keynesian Phillips curves

In our own work on NKPCs [Dufour, Khalaf, and Kichian (2006),Dufour, Khalaf, and Kichian
(2007b), Dufour, Khalaf, and Kichian (2007a), Dufour, Khalaf, and Kichian (2008)], we focus on
AR-type methods for producing inference on the parameters.Because of the arguments above, we
think such methods are more robust and reliable. We have no reason to change our mind on that
issue. If there is a strong disagreement between such methods and other “identification robust”
methods (which may not be robust to the specification of the reduced-form), we think conclusions
from AR-type methods should prevail.

The parameters of NKPCs depend on deeper structural parameters, on which it is interesting to
draw inference. This is done in our work using AR-type methods. It would be interesting to show
the methods proposed by the authors can be applied for that purpose and what results are obtained.

We agree with the authors, that many NKPC specifications are plagued with identification prob-
lems. But results may change dramatically when the definitions of variables, instruments, or small
elements of the specification are modified. Identification robust methods in this context can prove
to be very useful. Their work and ours (as well as others) provide an interesting illustration of that.
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