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Abstract

The technique of Monte Carlo (MC) tests [Dwass (1957, Annals of Mathematical Statistics

28, 181–187); Barnard (1963, Journal of the Royal Statistical Society, Series B 25, 294)]

provides a simple method for building exact tests from statistics whose finite sample

distribution is intractable but can be simulated (when no nuisance parameter is involved). We

extend this method in two ways: first, by allowing for MC tests based on exchangeable

possibly discrete test statistics; second, by generalizing it to statistics whose null distribution

involves nuisance parameters [maximized MC (MMC) tests]. Simplified asymptotically

justified versions of the MMC method are also proposed: these provide a simple way of

improving standard asymptotics and dealing with nonstandard asymptotics.
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1. Introduction

During the last 25 years, the development of faster and cheaper computers has
made Monte Carlo techniques more affordable and attractive in statistical analysis.
In particular, such techniques may now be used routinely for data analysis.
Important developments in this area include the use of bootstrap techniques for
improving standard asymptotic approximations (for reviews, see Efron, 1982; Beran
and Ducharme, 1991; Efron and Tibshirani, 1993; Hall, 1992; Jeong and Maddala,
1993; Vinod, 1993; Shao and Tu, 1995; Davison and Hinkley, 1997; Chernick, 1999;
Horowitz, 1997) and techniques where estimators and forecasts are obtained from
criteria evaluated by simulation (see McFadden, 1989; Mariano and Brown, 1993;
Hajivassiliou, 1993; Keane, 1993; Gouriéroux and Monfort, 1996; Gallant and
Tauchen, 1996).

With respect to tests and confidence sets, these techniques only have asymptotic
justifications and do not yield inferences that are provably valid (in the sense of
correct levels) in finite samples. Here, it is of interest to note that the use of
simulation in the execution of tests was suggested much earlier than recent bootstrap
and simulation-based techniques. For example, randomized tests have been
proposed long ago as a way of obtaining tests with any given level from statistics
with discrete distributions (e.g., sign and rank tests); see Lehmann (1986). A second
interesting possibility is the technique of Monte Carlo tests originally suggested by
Dwass (1957) for implementing permutation tests and later extended by Barnard
(1963), Hope (1968) and Birnbaum (1974). This technique has the great attraction of
providing exact (randomized) tests based on any statistic whose finite-sample
distribution may be intractable but can be simulated. The validity of the tests so
obtained does not depend at all on the number of replications made (which can be
small). Only the power of the procedure is influenced by the number of replications,
but the power gains associated with lengthy simulations are typically rather small.
For further discussion of Monte Carlo tests, see Besag and Diggle (1977), Dufour
and Kiviet (1996, 1998), Edgington (1980), Edwards (1985), Edwards and Berry
(1987), Foutz (1980), Jöckel (1986), Kiviet and Dufour (1997), Marriott (1979) and
Ripley (1981).

An important limitation of the technique of Monte Carlo tests is the fact
that one needs to have a statistic whose distribution does not depend on
nuisance parameters. This obviously limits considerably its applicability. The main
objective of this paper is to extend the technique of Monte Carlo tests in order
to allow for the presence of nuisance parameters in the null distribution of the
test statistic.

In Section 2, we summarize and extend results on Monte Carlo (MC) tests when
the null distribution of a test statistic does not involve nuisance parameters. In
particular, we put them in a form that will make their extension to cases with
nuisance parameters easy and intuitive, and we generalize them by allowing for MC
tests based on exchangeable (possibly nonindependent) replications and statistics
with discrete distributions. These generalizations allow, in particular, for various
nonparametric tests (e.g., permutation tests) as well as test statistics where certain
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parameters are themselves evaluated by simulation. We deal with possibly
discrete (or mixtures of continuous and discrete distributions) by exploiting
Hájek’s (1969) method of randomized ranks for breaking ties in rank tests,
which is both simple to implement and allows one to easily deal with exchange-
able [as opposed to independent and identically distributed (i.i.d.)] simulations.
On the problem of discrete distributions, it is also of interest that the method
proposed by Jöckel (1986) was derived under the assumption of i.i.d. MC
replications.

In Section 3, we study how the power of Monte Carlo tests is related to the
number of replications used and the sensitivity of the conclusions to the randomized
nature of the procedure. In particular, given the observed (randomized) p-value of
the Monte Carlo test, we see that the probability of an eventual reversal of the
conclusion of the procedure (rejection or acceptance at a given level, e.g. 5%) can
easily be computed.

In Section 4, we present the extension to statistics whose null distribution depends
on nuisance parameters. This procedure is based on considering a simulated p-value
function which depends on nuisance parameters (under the null hypothesis). We
show that maximizing the latter with respect to the nuisance parameters yields a test
with provably exact level, irrespective of the sample size and the number replications
used. For this reason, we call the latter maximized Monte Carlo (MMC) tests. As
one would expect for a statistic whose distribution depends on unknown nuisance
parameters, the probability of type I error for a MMC test can be lower (but not
higher) than the level of the test, so the procedure can be conservative. We also
discuss how this maximization can be achieved in practice, e.g. through simulated

annealing techniques.
In the two next sections, we discuss simplified (asymptotically justified)

approximate versions of the proposed procedures, which involve the use of
consistent set or point estimates of model parameters. In Section 5, we suggest a
method [the consistent set estimate MMC method (CSEMMC)] which is applicable
when a consistent set estimator of the nuisance parameters [e.g., a random subset of
the parameter space whose probability of covering the nuisance parameters
converges to one as the sample size goes to infinity] is available. The approach
proposed involves maximizing the simulated p-value function over the consistent set
estimate, as opposed to the full nuisance parameter space. This procedure may thus
be computationally much less costly. Using a consistent set estimator (or confidence
set), as opposed to a point estimate, to deal with nuisance parameters is especially
useful because it allows one to obtain asymptotically valid tests even when the test
statistic does not converge in distribution or when the asymptotic distribution
depends on nuisance parameters possibly in a discontinuous way. Consequently,
there is no need to study the asymptotic distribution of the test statistic considered or
even to establish its existence.1 This consistent set estimator MMC method
1A case where the distribution of a test statistic does not converge in distribution is the one where the

associated sequence of distribution functions has several accumulation points, allowing different

subsequences to have different limiting distributions.
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(CSEMMC) may be viewed as an asymptotic Monte Carlo extension of finite-sample
two-stage procedures proposed in Dufour (1990), Dufour and Kiviet (1996, 1998),
Campbell and Dufour (1997), and Dufour et al. (1998). These features may be
contrasted with those of bootstrap methods which can fail to provide asymptoti-
cally valid tests when the test statistic simulated has an asymptotic distribution
involving nuisance parameters, especially if the asymptotic distribution has
discontinuities with respect to the nuisance parameters (see Athreya, 1987; Basawa
et al., 1991; Sriram, 1994; Andrews, 2000; Benkwitz et al., 2000; Inoue and Kilian,
2002, 2003).

In Section 6, we consider the simplest form of a Monte Carlo test with nuisance
parameters, i.e. the one where the consistent set estimate has been replaced by a
consistent point estimate. In other words, the distribution of the test statistic is
simulated after replacing the nuisance parameters by a consistent point estimate.
Such a procedure can be interpreted as a parametric bootstrap test based on the
percentile method (see Efron and Tibshirani, 1993, Chapter 16; Hall, 1992). The
term ‘‘parametric’’ may however be misleading here, because such MC tests can be
applied as well to nonparametric (distribution-free) test statistics. We give general
conditions under which a Monte Carlo test obtained after replacing an unknown
nuisance parameter yield an asymptotically valid test in cases where the limit
distribution of the test statistic involves nuisance parameters. Following the
general spirit of Monte Carlo testing and in contrast with typical bootstrap
arguments, the proofs take the number of Monte Carlo simulations as fixed (possibly
very small, such as 19 to obtain a test with level 0.05). As in standard bootstrap
arguments, the conditions considered involve a smooth (continuous) dependence
of the asymptotic distribution upon the nuisance parameters. It is, however,
important to note that these conditions are more restrictive and more difficult to
check than those under which CSEMMC procedures would be applicable. We
conclude in Section 7.
2. Monte Carlo tests without nuisance parameters

Let us consider a family of probability spaces fðZ;AZ;PyÞ : y 2 Og, where Z is a
sample space, AZ a s-algebra of subsets of Z, and O a parameter space (possibly
infinite dimensional). Let also S � SðoÞ, o 2Z, be a real-valued AZ -measurable
function whose distribution is determined by Py0—i.e., y0 is the ‘‘true’’ parameter
vector. We wish to test the hypothesis

H0 : y0 2 O0, (2.1)

where O0 is a nonempty subset of O; using a critical region of the form fSXcg:
Although, in general, the distribution of S under H0 depends on the unknown value
of y0, we shall assume in this section that this distribution does not depend on
(unknown) nuisance parameters, so that we can write

Py½Spx� ¼ F ðxÞ for all y 2 O0, (2.2)
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where F ðxÞ is the unique distribution that S can have under H0. In view of this
assumption, we shall—until further notice—compute probabilities under the
(unique) P � Py0 when y0 2 O0. The constant c is chosen so that

P½SXc� ¼ 1� F ðcÞ þ P½S ¼ c�pa, (2.3)

where a is the desired level of the test ð0oao1Þ. Note that the critical region SXc can
also be put in two useful alternative forms, which are equivalent to SXc with probability
one (i.e., they can differ from the critical region SXc only on a set of zero probability):

GðSÞpGðcÞ, (2.4)

SXF�1½ðF ðcÞ � P½S ¼ c�Þþ� ¼ F�1½ð1� GðcÞÞþ�, (2.5)

where

GðxÞ ¼ P½SXx� ¼ 1� F ðxÞ þ P½S ¼ x� (2.6)

is the ‘‘tail-area’’ or ‘‘p-value’’ function associated with F , and F�1 is the quantile
function of F , with the conventions

F�1ðqþÞ ¼ lim
�#0

F�1ðqþ �Þ ¼ inffF�1ðq0Þ : q04qg; 0pqp1,

F�1ð1þÞ ¼ 1 and F�1ð0þÞ ¼ F�1ð0Þ. For any probability distribution function F ðxÞ,
the quantile function F�1ðqÞ is defined as follows:

F�1ðqÞ ¼ inffx : F ðxÞXqg if 0oqo1,

¼ inffx : F ðxÞ40g if q ¼ 0,

¼ supfx : F ðxÞo1g if q ¼ 1; ð2:7Þ

see Reiss (1989, p. 13). In general, F�1ðqÞ takes its values in the extended real
numbers R̄ ¼ R [ f�1;þ1g and, for coherence, we set F ð�1Þ ¼ 0 and F ð1Þ ¼ 1.
Using (2.7), it is easy to see that

F�1½ðF ðcÞ � P½S ¼ c�Þþ� ¼ c,

when: 0oF ðcÞo1 and either PðS ¼ cÞ40 or F ðxÞ is continuous and strictly
monotonic in an open neighborhood containing c. However, formulation (2.5)
remains valid in all cases.

2.1. Monte Carlo tests based on statistics with continuous distributions

Consider now a situation where the distribution of S under H0 may not be easy to
compute analytically but can be simulated. Let S1; . . . ;SN be a sample of identically
distributed real random variables with the same distribution as S. Typically, it is
assumed that S1; . . . ;SN are also independent. However, we will observe that the
exchangeability of S1; . . . ;SN is sufficient for most of the results presented below.2
2The elements of a random vector ðS1;S2; . . . ;SN Þ
0 are exchangeable (or P-exchangeable) if

ðSr1 ;Sr2 ; . . . ;SrN
Þ
0
�ðS1;S2; . . . ;SN Þ

0 for any permutation ðr1; r2; . . . ; rN Þ of the integers ð1; 2; :::;NÞ under
the relevant probability measure P.
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This can accommodate a wide array of situations, where the simulated stati-
stics are not independent because they involve common (conditioning) variables,
such as: statistics obtained by permuting randomly a given set of obser-
vations (permutation tests), tests which are simulated conditionally on a common
set of initial values (e.g., in time series models), common regressors or a
common subsample [see the Anderson–Rubin-type split-sample test described in
Dufour and Jasiak (2001)], tests that depend on a common independent simulation
[e.g., tests based on a criterion evaluated by a preliminary simulation, such as
the simulated method of moments or indirect inference; see Gouriéroux and Monfort
(1996)], etc.

The technique of MC tests provides a simple method allowing one to replace the
theoretical distribution F ðxÞ by its sample analogue based on S1; . . . ;SN :

F̂N ðxÞ � F̂ N ½x;SðNÞ� ¼
1

N

XN

i¼1

1ðSipxÞ, (2.8)

where SðNÞ ¼ ðS1; . . . ;SN Þ
0 and 1ðCÞ is the indicator function associated with the

condition C:

1ðCÞ ¼ 1 if condition C holds,

¼ 0 otherwise. ð2:9Þ

In the latter notation, C may also be replaced by an event A 2AZ, in which case
1ðAÞ � 1ðo 2 AÞ where o is the element drawn from the sample space.

We also consider the corresponding sample tail area (or survival) function:

ĜN ½x;SðNÞ� ¼
1

N

XN

i¼1

1ðSiXxÞ. (2.10)

The sample distribution function is related to the ranks R1; . . . ;RN of the variables
S1; . . . ;SN (when put in ascending order) by the expression:

Rj ¼ NF̂N ½Sj;SðNÞ� ¼
XN

i¼1

1ðSipSjÞ; j ¼ 1; . . . ;N. (2.11)

The central property we shall exploit here is the following: to obtain critical values
or compute p-values, the ‘‘theoretical’’ null distribution F ðxÞ can be replaced by its
simulation-based ‘‘estimate’’ F̂ NðxÞ in a way that will preserve the level of the test in
finite samples, irrespective of the number N of replications used. For continuous
distributions, this property is expressed by Proposition 2.2 below, which is easily
proved by using the following simple lemma.

Lemma 2.1 (Distribution of ranks when ties have zero probability). Let ðy1; . . . ; yNÞ
0

be a N � 1 vector of P-exchangeable real random variables such that

Pðyi ¼ yjÞ ¼ 0 for iaj; i; j ¼ 1; . . . ;N, (2.12)
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and let Rj ¼
PN

i¼1 1ðyipyjÞ be the rank of yj when y1; . . . ; yN are ranked in

nondecreasing order ðj ¼ 1; . . . ;NÞ. Then, for j ¼ 1; . . . ;N,

PðRj=NpxÞ ¼ I ½xN�=N for 0pxp1, (2.13)

PðRj=NXxÞ ¼ 1 if xp0,

¼ ðI ½ð1� xÞN� þ 1Þ=N if 0oxp1,

¼ 0 if x41, ð2:14Þ

where I ½x� is the largest integer less than or equal to x.

Note that we use the symbol I ½x� rather than the common notation ½x� to represent
the integer part of a number x, because we heavily use brackets elsewhere in the
paper, so that the notation ½�� could lead to confusions. It is clear that condition
(2.12) is satisfied whenever the variables y1; . . . ; yN are independent with continuous
distribution functions (see Hájek, 1969, pp. 20–21), or when the vector ðy1; . . . ; yNÞ

0

has an absolutely continuous distribution (with respect to the Lebesgue measure
on RNÞ.

Proposition 2.2 (Validity of Monte Carlo tests when ties have zero probability). Let

ðS0;S1; . . . ;SN Þ
0 be a ðN þ 1Þ � 1 vector of exchangeable real random variables such

that

PðSi ¼ SjÞ ¼ 0 for iaj; i; j ¼ 0; 1; . . . ;N, (2.15)

let F̂ NðxÞ � F̂N ½x;SðNÞ�, ĜNðxÞ ¼ ĜN ½x;SðNÞ� and F̂
�1

N ðxÞ be defined as in

(2.7)–(2.10), and set

p̂NðxÞ ¼
NĜN ðxÞ þ 1

N þ 1
. (2.16)

Then,

P½ĜNðS0Þpa1� ¼ P½F̂ NðS0ÞX1� a1� ¼
I ½a1N� þ 1

N þ 1
for 0pa1p1, (2.17)

P½S0XF̂
�1

N ð1� a1Þ� ¼
I ½a1N� þ 1

N þ 1
for 0oa1o1, (2.18)

and

P½p̂NðS0Þpa� ¼
I ½aðN þ 1Þ�

N þ 1
for 0pap1. (2.19)

The latter proposition can be used as follows: choose a1 and N so that

a ¼
I ½a1N� þ 1

N þ 1
(2.20)

is the desired significance level. Provided N is reasonably large, a1 will be very close
to a; in particular, if aðN þ 1Þ is an integer, we can take a1 ¼ a� ðð1� aÞ=NÞ, in
which case we see easily that the critical region ĜNðS0Þpa1 is equivalent to ĜN ðS0Þ

oa. Further, for 0oao1, the randomized critical region S0XF̂
�1

N ð1� a1Þ has the
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same level ðaÞ as the nonrandomized critical region S0XF�1ð1� aÞ, or equivalently
the critical regions p̂N ðS0Þpa and ĜN ðS0Þpa1 have the same level as the critical
region GðS0Þ � 1� F ðS0Þpa.
2.2. Monte Carlo tests based on general statistics

Assumption (2.15), which states that ties have zero probability, plays an important
role in proving Proposition 2.2. However, it is possible to prove analogous results for
general sequences of exchangeable random variables (which may exhibit ties with
positive probability), provided we consider a properly randomized empirical
distribution function. For this purpose, we introduce randomized ranks which are
obtained like ordinary ranks except that ties are ‘‘broken’’ according to a uniform
distribution. More precisely, let us associate with each variable Sj ; j ¼ 1; . . . ;N, a
random variable Uj ; j ¼ 1; . . . ;N such that

U1; . . . ;UN �
i:i:d:

Uð0; 1Þ, (2.21)

UðNÞ ¼ ðU1; . . . ;UN Þ
0 is independent of SðNÞ ¼ ðS1; . . . ;SN Þ

0 where Uð0; 1Þ is the
uniform distribution on the interval ð0; 1Þ. Then, we consider the pairs

Zj ¼ ðSj ;UjÞ; j ¼ 1; . . . ;N, (2.22)

which are ordered according to the lexicographic order:

ðSi;UiÞpðSj ;UjÞ()fSioSj or ðSi ¼ Sj and UipUjÞg. (2.23)

Using the indicator

1½ðx1; u1Þpðx2; u2Þ� ¼ 1ðx1ox2Þ þ dðx1 � x2Þ1ðu1pu2Þ, (2.24)

S1; . . . ;SN are then ordered like the pairs Z1; . . . ;ZN according to (2.23), which yield
‘‘randomized ranks’’:

~Rj ½SðNÞ;UðNÞ� ¼
XN

i¼1

1½ðSi;UiÞpðSj ;UjÞ�, (2.25)

j ¼ 1; . . . ;N. By the continuity of the uniform distribution, the ranks ~Rj ¼
~Rj½SðNÞ;UðNÞ�; j ¼ 1; . . . ;N; are all distinct with probability 1, so that the
randomized rank vector ð ~R1; ~R2; . . . ; ~RNÞ

0 is a permutation of ð1; 2; . . . ;NÞ0 with
probability 1. Furthermore when SjaSi for all jai, we have ~Rj ¼ Rj : if (2.15) holds,
then ~Rj ¼ Rj ; j ¼ 1; . . . ;N; with probability 1 [where Rj is defined in (2.11)]. We can
now state the following extension of Lemma 2.1.

Lemma 2.3 (Distribution of randomized ranks). Let yðNÞ ¼ ðy1; . . . ; yNÞ
0 be a N � 1

vector of exchangeable real random variables and let ~Rj ¼ ~Rj½yðNÞ;UðNÞ�be defined as

in (2.25) where UðNÞ ¼ ðU1; . . . ;UN Þ
0 is a vector of i.i.d. Uð0; 1Þ variables independent

of yðNÞ. Then, for j ¼ 1; . . . ;N,

Pð ~Rj=NpxÞ ¼ I ½xN�=N for 0pxp1, (2.26)
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Pð ~Rj=NXxÞ ¼ 1 if xp0,

¼ ðI ½ð1� xÞN� þ 1Þ=N if 0oxp1,

¼ 0 if x41. ð2:27Þ

To the above randomized rankings, it is natural to associate the following
randomized empirical (pseudo-)distribution function:

~FN ½x;U0;SðNÞ;UðNÞ� ¼
1

N

XN

i¼1

1½ðSi;UiÞpðx;U0Þ�

¼ 1� ĜN ½x;SðNÞ� þ TN ½x;U0;SðNÞ;UðNÞ�, ð2:28Þ

where U0 is a Uð0; 1Þ random variable independent of SðNÞ and UðNÞ,

TN ½x;U0;SðNÞ;UðNÞ� ¼
1

N

XN

i¼1

dðSi � xÞ1ðUipU0Þ ¼
1

N

X
i2EN ðxÞ

1ðUipU0Þ

(2.29)

and EN ðxÞ ¼ fi : Si ¼ x; 1pipNg: The function ~FN ½x; �� retains all the properties of
a probability distribution function, except for the fact that it may not be right
continuous at some of its jump points (where it may take values between its right and
left limits). We can also define the corresponding tail-area function:

~GN ½x;U0;SðNÞ;UðNÞ� ¼
1

N

XN

i¼1

1½ðSi;UiÞXðx;U0Þ�

¼ 1� F̂ N ½x;SðNÞ� þ T̄N ½x;U0;SðNÞ;UðNÞ�, ð2:30Þ

T̄N ½x;U0;SðNÞ;UðNÞ� ¼
1

N

XN

i¼1

dðSi � xÞ1ðUiXU0Þ ¼
1

N

X
i2EN ðxÞ

1ðUiXU0Þ.

(2.31)

From (2.28)–(2.31), we see that the following inequalities must hold:

1� ĜN ½x;SðNÞ�p ~FN ½x;U0;SðNÞ;UðNÞ�pF̂ N ½x;SðNÞ�, (2.32)

1� F̂ N ½x;SðNÞ�p ~GN ½x;U0;SðNÞ;UðNÞ�pĜN ½x;SðNÞ�. (2.33)

When no element of SðNÞ is equal to x [i.e., when ENðxÞ is empty], we have:

~GN ½x;U0;SðNÞ;UðNÞ� ¼ ĜN ½x;SðNÞ� ¼ 1� F̂ N ½x;SðNÞ�

¼ 1� ~F N ½x;U0;SðNÞ;UðNÞ�. ð2:34Þ

Using the above observations, it is then easy to establish the following proposition.
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Proposition 2.4 (Validity of Monte Carlo tests for general statistics). Let

ðS0;S1; . . . ;SN Þ
0 be a ðN þ 1Þ � 1 vector of exchangeable real random variables, let

ðU0;U1; . . . ;UN Þ
0 be a ðN þ 1Þ � 1 vector of i.i.d. Uð0; 1Þ random variables

independent of ðS0;S1; . . . ;SNÞ
0, let F̂N ðxÞ � F̂ N ½x;SðNÞ�, ĜN ðxÞ � ĜN ½x;SðNÞ�,

~FN ðxÞ � ~FN ½x;U0;SðNÞ;UðNÞ� and ~GN ðxÞ � ~GN ½x;U0;SðNÞ;UðNÞ� be defined as in

(2.8)–(2.10) and (2.28)–(2.30), with SðNÞ ¼ ðS1; . . . ;SNÞ and UðNÞ ¼ ðU1; . . . ;UN Þ,
and let

~pNðxÞ ¼
N ~GN ðxÞ þ 1

N þ 1
. (2.35)

Then for 0pa1p1,

P½ĜNðS0Þpa1�pP½ ~GN ðS0Þpa1� ¼ P½ ~FN ðS0ÞX1� a1�

¼
I ½a1N� þ 1

N þ 1
pP½F̂ NðS0ÞX1� a1� ð2:36Þ

with P½F̂N ðS0ÞX1� a1� ¼ P½S0XF̂
�1

N ð1� a1Þ� for 0oa1o1, and defining p̂NðxÞ as in

(2.16),

P½p̂NðS0Þpa�pP½ ~pN ðS0Þpa� ¼
I ½aðN þ 1Þ�

N þ 1
for 0pap1. (2.37)

In view of the fact that ~GNðS0Þ ¼ ĜNðS0Þ with probability one when the zero
probability tie condition [i.e. (2.15)] holds, it is straightforward to see that
Proposition 2.2 is entailed by Proposition 2.4.
3. Power functions and concordance probabilities

The procedures described above are randomized in the sense that the result of the
tests depend on auxiliary simulations. This raises the issue of the sensitivity of the
results to these simulations. To study this more closely, let us suppose that

S0;S1; . . . ;SN are independent with

PðSipxÞ ¼ F ðxÞ; PðSiXxÞ ¼ GðxÞ; PðSi ¼ xÞ ¼ gðxÞ; i ¼ 1; . . . ;N,

PðS0pxÞ ¼ HðxÞ; PðS0XxÞ ¼ KðxÞ. ð3:1Þ

Then, it is easy to see that N ~GNðxÞ follows a binomial distribution BiðN ; pÞ with
number of trials N and probability of ‘‘success’’ p ¼ Ḡðx; uÞ, where

Ḡðx; uÞ ¼ Pð1½ðSi;UiÞXðx; uÞ� ¼ 1Þ ¼ PðSi4xÞ þ PðSi ¼ xÞPðUiXuÞ

¼ 1� F ðxÞ þ gðxÞð1� uÞ, ð3:2Þ
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and we can compute the conditional probability given ðS0;U0Þ of the critical region
~GNðS0Þpa1:

P½ ~GNðS0Þpa1 j ðS0;U0Þ� ¼ P
XN

i¼1

1½ðSi;UiÞXðS0;U0Þ�pI ½a1N� j ðS0;U0Þ

" #

¼
XI ½a1N�

k¼0

N

k

� �
ḠðS0;U0Þ

k
½1� ḠðS0;U0Þ�

N�k, ð3:3Þ

where ðN
k
Þ ¼ N!=½k!ðN � kÞ!�. Similarly, we can also write

P½ĜNðS0Þpa1 j S0� ¼
XI ½a1N�

k¼0

N

k

� �
GðS0Þ

k
ð1� GðS0ÞÞ

N�k. (3.4)

When F ðxÞ is continuous, so that gðxÞ ¼ 0, we have

P½ ~GNðS0Þpa1 j ðS0;U0Þ� ¼ P½ĜN ðS0Þpa1 j S0�

¼
XI ½a1N�

k¼0

N

k

� �
½1� F ðS0Þ�

kF ðS0Þ
N�k. ð3:5Þ

Using (3.3), we can find a closed-form expression for the power of the randomized
test ~GðS0Þpa1 for any null hypothesis which entails that S0 has the distribution F ð�Þ

against an alternative under which its distribution is Hð�Þ:

P½ ~GNðS0Þpa1� ¼ E
ðS0;U0Þ

fP½ ~GN ðS0Þpa1 j ðS0;U0Þ�g

¼
XI ½a1N�

k¼0

N

k

� �Z Z 1

0

Ḡðx; uÞk½1� Ḡðx; uÞ�N�k dudHðxÞ. ð3:6Þ

Furthermore, when F ðxÞ is continuous everywhere, the latter expression simplifies
and we can write:

P½ ~GNðS0Þpa1� ¼ P½ĜN ðS0Þpa1�

¼
XI ½a1N�

k¼0

N

k

� �Z
½1� F ðxÞ�kF ðxÞN�k dHðxÞ. ð3:7Þ

The above formulae will be useful in establishing the validity of simplified
asymptotic Monte Carlo tests in the presence of nuisance parameters. They also
allow one to compute the probability that the result of the randomized test
~GNðS0Þpa1 be different of the corresponding nonrandomized test GðS0Þpa;
where a � ð½Na1� þ 1Þ=ðN þ 1Þ. For example, let â0 ¼ GðS0Þ the ‘‘p-value’’ one
would obtain if the function GðxÞ were easy to compute (the p-value of the
‘‘fundamental test’’). The latter is generally different from the p-value ~pN ðS0Þ or
p̂N ðS0Þ obtained from a Monte Carlo test based on S1; . . . ;SN . An interesting
question here is the probability that the Monte Carlo test yields a conclusion
different from the one based on â0. To study this, we shall consider the test which
rejects the null hypothesis H0 when p̂N ðS0Þpa under assumptions (3.1).
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If â04a (in which case H0 is not rejected at level a by the fundamental test), the
probability that H0 be rejected at level a0 is

P½p̂NðS0Þpa0 jS0� ¼ P½NĜN ðS0ÞpðN þ 1Þa0 � 1 jS0�

¼ P½BiðN; â0ÞpðN þ 1Þa0 � 1 j S0�

pP½BiðN; aÞpðN þ 1Þa0 � 1�

¼ P
BiðN; aÞ �Na

ðNað1� aÞÞ1=2
p

Nða0 � aÞ � ð1� a0Þ

ðNað1� aÞÞ1=2

" #
, ð3:8Þ

where the inequality follows on observing that â04a and BiðN; pÞ denotes a binomial
random variable with number of trials N and probability of success p. From (3.8), we
can bound the probability that a Monte Carlo p-value as low as a0 be obtained when
the fundamental test is not significant at level a. In particular, for a0oa, this
probability decreases as the difference ja0 � aj and N get larger. It is also interesting
to observe that

lim
N!1

P½p̂NðS0Þpa0 j S0� ¼ lim
N!1

P
BiðN ; aÞ �Na

ðNað1� aÞÞ1=2
p

Nða0 � aÞ � ð1� a0Þ

ðNað1� aÞÞ1=2

" #
¼ 0

(3.9)

for a0oa, so that the probability of a discrepancy between the fundamental test and
the Monte Carlo test goes to zero as N increases.

Similarly, for â0oa (in which case H0 is rejected at level a by the fundamental
test), the probability that H0 not be rejected at level a0 is

P½p̂NðS0Þ4a0 j S0� ¼ P½BiðN; â0Þ4ðN þ 1Þa0 � 1 j S0�

pP
BiðN; aÞ �Na

ðNað1� aÞÞ1=2
p

Nða0 � aÞ � ð1� a0Þ

ðNað1� aÞÞ1=2

" #
ð3:10Þ

hence

lim
N!1

P½p̂NðS0ÞXa0 j S0� ¼ 0 for a04a. (3.11)

Eq. (3.10) gives an upper bound on the probability of observing a p-value as high as
a0 when the fundamental test is significant at a level lower than a. Again, the
probability of a discrepancy between the fundamental test and the Monte Carlo test
goes to zero as N increases. The only case where the probability of a discrepancy
between the two tests does not go to zero as N !1 is when â0 ¼ a (an event with
probability zero for statistics with continuous distributions).

The probabilities (3.8) and (3.10) may be computed a posteriori to assess the
probability of obtaining p-values as low (or as high) as p̂N ðS0Þ when the result of the
corresponding fundamental test is actually not significant (or significant) at level a.
Note also that similar (although somewhat different) calculations may be used to
determine the number N of simulations that will ensure a given probability of
concordance between the fundamental and the Monte Carlo test (see Marriott,
1979).
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4. Monte Carlo tests with nuisance parameters

We will now study the case where the distribution of the test statistic S depends on
nuisance parameters. We consider a family of probability spaces fðZ;AZ;PyÞ : y 2
Og and suppose that S is a real-valued AZ-measurable function whose distribution
is determined by Py0 (i.e., y0 is the ‘‘true’’ parameter vector). We wish to test the
hypothesis

H0 : y0 2 O0, (4.1)

where O0 is a nonempty subset of O. Again we take a critical region of the form SXc,
where c is a constant which does not depend on y: The critical region SXc has level a
if and only if

Py½SXc�pa; 8y 2 O0, (4.2)

or equivalently,

sup
y2O0

Py½SXc�pa. (4.3)

Furthermore, SXc has size a when

sup
y2O0

Py½SXc� ¼ a. (4.4)

If we define the distribution and p-value functions,

F ½x j y� ¼ Py½Spx�; x 2 R̄, (4.5)

G½x j y� ¼ Py½SXx�; x 2 R̄, (4.6)

where y 2 O, it is again easy to see that the critical regions

sup
y2O0

G½S j y�pa, (4.7)

where a � sup
y2O0

G½c j y�, and

SX sup
y2O0

F�1½ð1� G½c j y�Þþ j y� � c̄ (4.8)

are equivalent to SXc in the sense that cpc̄, with equality holding when F ½x j y� is
discontinuous at x ¼ c for all y 2 O0 or both F ½x j y� and F�1½q j y� are continuous at
x ¼ c and q ¼ F ðcÞ respectively for all y 2 O0, and

sup
y2O0

Py½SXc̄�p sup
y2O0

Py½SXc� ¼ sup
y2O0

Py½supfG½S j y0� : y0 2 O0gpa�. (4.9)

We shall now extend Proposition 2.2 in order to allow for the presence of nuisance
parameters. For that purpose, we consider a real random variable S0 and random
vectors of the form

SðN; yÞ ¼ ðS1ðyÞ; . . . ;SNðyÞÞ
0; y 2 O, (4.10)
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all defined on a common probability space ðZ;AZ;PÞ, such that

the variables S0;S1ðy0Þ; . . . ;SNðy0Þ are exchangeable for some y0 2 O,

each one with distribution function F ½x j y0�. ð4:11Þ

Typically, S0 will refer to a test statistic computed from observed data when the true
parameter vector is y0 (i.e., y ¼ y0Þ, while S1ðyÞ; . . . ;SN ðyÞ will refer to independent
and identically distributed (i.i.d.) replications of the test statistic obtained
independently (e.g., by simulation) under the assumption that the parameter vector
is y (i.e., P½SiðyÞpx� ¼ F ½x j y�Þ.

Note that the basic probability measure P can be interpreted as Py0 ; while the
dependence of the distribution of the simulated statistics upon other values of the
parameter y is expressed by making SiðyÞ a function of y (as well as o 2ZÞ. In
parametric models, the statistic S will usually be simulated by first generating an
‘‘observation’’ vector y according to an equation of the form

y ¼ gðy; uÞ, (4.12)

where u has a known distribution (which can be simulated) and then computing

SðyÞ � S½gðy; uÞ� � gSðy; uÞ. (4.13)

In such cases, the above assumptions can be interpreted as follows: S0 ¼ S½yðy0; u0Þ�

and SiðyÞ ¼ S½yðy; uiÞ�; i ¼ 1; . . . ;N, where the random vectors u0; u1; . . . ; uN are
i.i.d. (or exchangeable). Note y may include the parameters of a disturbance
distribution in a model, such as covariance coefficients (or even its complete
distribution function), so that the assumption that u has a known distribution is not
restrictive. Assumptions on the structure of the parameter space O (e.g., whether it is
finite-dimensional) will however entail real restrictions on the data-generating
process. More generally, it is always possible to consider that the variables
S0;S1ðyÞ; . . . ;SNðyÞ are P-measurable by considering their representation in terms of
uniform random variables (see Shorack and Wellner, 1986, Chapter 1, Theorem 1):
S0 ¼ F�1½V 0 j y0� and SiðyÞ ¼ F�1½V i j y�; i ¼ 1; . . . ;N; where V 0;V1; . . . ;V N are
P-exchangeable with uniform marginal distributions ½Vi�Uð0; 1Þ; i ¼ 0; 1; . . . ;N�.

A more general setup that allows for nonparametric models would consist in
assuming that the null distribution of the test statistic depends on y only through
some transformation TðyÞ of the observation vector y, which in turn only depends
upon y through some transformation y� ¼ hðyÞ, e.g. a subvector of y:

TðyÞ ¼ g½hðyÞ; u� ¼ g½y�; u�; y� 2 O�, (4.14)

where O� ¼ hðOÞ, hence

SðyÞ ¼ SðTðyÞÞ ¼ Sðg½hðyÞ; u�Þ � gS½hðyÞ; u� ¼ gSðy�; uÞ. (4.15)

The setup (4.14)–(4.15) allows for reductions of the nuisance parameter space (e.g.,
through invariance). In particular, nonparametric models may be considered by
taking appropriate distribution-free statistics (e.g., test statistics based on signs,
ranks, permutations, etc.). What matters for our purpose is the possibility of
simulating the test statistic, not necessarily the data themselves.
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Let also

F̂N ½x j y� � F̂N ½x;SðN; yÞ�; ĜN ½x j y� � ĜN ½x;SðN; yÞ�, (4.16)

p̂N ½x j y� ¼
NĜN ½x j y� þ 1

N þ 1
(4.17)

be defined as in (2.8)–(2.10), and suppose the variables

supfĜN ½S0 j y� : y 2 O0g and inffF̂ N ½S0 j y� : y 2 O0g are AZ-measurable

where O0 is nonempty subset of O. ð4:18Þ

For general discussions of measurability of conditions for extrema of random
functions, the reader may consult Debreu (1967), Brown and Purves (1973) and
Stinchcombe and White (1992).3 We then get the following proposition.
Proposition 4.1 (Validity of MMC tests when ties have zero probability). Under the

assumptions and notations (4.10), (4.11) and (4.16)–(4.18), set S0ðy0Þ ¼ S0 and suppose

that

P½Siðy0Þ ¼ Sjðy0Þ� ¼ 0 for iaj; i; j ¼ 0; 1; . . . ;N. (4.19)

If y0 2 O0, then for 0pa1p1,

P½supfĜN ½S0 j y� : y 2 O0gpa1�pP½inffF̂ N ½S0 j y� : y 2 O0gX1� a1�

p
I ½a1N� þ 1

N þ 1
, ð4:20Þ

where P½inffF̂ N ½S0 j y� : y 2 O0gX1� a1� ¼ P½S0X supfF̂
�1

N ½1� a1 j y� : y 2 O0g� for

0oa1o1, and

P½supfp̂N ½S0 j y� : y 2 O0gpa�p
I ½aðN þ 1Þ�

N þ 1
for 0pap1. (4.21)

Following the latter proposition, if we choose a1 and N so that (2.20) holds, the
critical region supfĜN ½S0 j y� : y 2 O0gpa1 has level a irrespective of the presence of
nuisance parameters in the distribution of the test statistic S under the null
hypothesis H0 : y0 2 O0. The same also holds if we use the (almost) equivalent
critical regions inffF̂ N ½S0 j y� : y 2 O0gX1� a1 or S0X supfF̂

�1

N ½1� a1 j y� : y 2 O0g.
We shall call such tests MMC tests.
3If measurability is an issue, notions of ‘‘near-measurability’’ can be substituted (see Stinchcombe

and White, 1992). From the viewpoint of getting upper bounds on probabilities, the probability operator

can also be replaced by the associated outer measure which is always well-defined (see Dufour, 1989,

Footnote 5).
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To be more explicit, if SðyÞ is generated according to expressions of the form
(4.14)–(4.15), we have

ĜN ½S0 j y� ¼
1

N

XN

i¼1

1½SiðyÞXS0� ¼
1

N

XN

i¼1

1½Sðg½hðyÞ; ui�ÞXS0�

¼
1

N

XN

i¼1

1½gSðyn; uiÞXS0�. ð4:22Þ

The function ĜN ½S0 j y� (or p̂N ½S0 j y�Þ, is then maximized with respect to y 2 O0 [or
equivalently, with respect to y� 2 O0� ¼ hðO0Þ� keeping the observed statistic S0 and
the simulated disturbance vectors u1; . . . ; uN fixed. The function ĜN ½S0 j y� is a step-
type function which typically has zero derivatives almost everywhere, except on
isolated points (or manifolds) where it is not differentiable. Further, the supremum
of ĜN ½S0 j y� is typically not unique, in the sense that several values of y will yield the
required supremum. So it cannot be maximized with usual derivative-based
algorithms. However, the required maximizations can be performed by using
appropriate optimization algorithms that do not require differentiability, such as
simulated annealing. For further discussion of such algorithms, the reader may
consult Goffe et al. (1994).

It is easy to extend Proposition 4.1 in order to relax the no-tie assumption (4.19).
For that purpose, we generate as in Proposition 2.4 a vector ðU0; U1; . . . ;UNÞ of
N þ 1 i.i.d. Uð0; 1Þ random variables independent of S0; S1ðy0Þ; . . . ;SNðy0Þ, and we
consider the corresponding randomized distribution, tail area and p-value functions:

~FN ½x j y� � ~FN ½x;U0;SðN ; yÞ;UðNÞ�, (4.23)

~GN ½x j y� � ~GN ½x;U0;SðN; yÞ;UðNÞ�; ~pN ½x j y� ¼
N ~GN ½x j y� þ 1

N þ 1
, (4.24)

where

UðNÞ ¼ ðU1; . . . ;UNÞ and U0;U1; . . . ;UN �
i:i:d:

Uð0; 1Þ. (4.25)

Under the corresponding measurability assumption

supf ~GN ½S0 j y� : y 2 O0g and inff ~F N ½S0 j y� : y 2 O0g are AZ-measurable

where O0 is nonempty subset of O, ð4:26Þ

we can then state the following generalization of Proposition 2.4.

Proposition 4.2 (Validity of MMC tests for general statistics). Under the assumptions

and notations (4.10), (4.11), (4.16)–(4.18) and (4.23)–(4.26), suppose U0, U1; . . . ;UN

are independent of S0;S1ðy0Þ; . . . ;SNðy0Þ. If y0 2 O0, then for 0pa1p1 and for

0pap1,

P½supfĜN ½S0 j y� : y 2 O0gpa1�pP½supf ~GN ½S0 j y� : y 2 O0gpa1�

p
I ½a1N� þ 1

N þ 1
,
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P½supfĜN ½S0 j y� : y 2 O0gpa1�pP½supf ~FN ½S0 j y� : y 2 O0gX1� a1�

p
I ½a1N� þ 1

N þ 1
,

P½supfp̂N ½S0 j y� : y 2 O0gpa�pP½supf ~pN ½S0 j y� : y 2 O0gpa�p
I ½aðN þ 1Þ�

N þ 1
.

One should note here that the validity results of Propositions 4.1 and 4.2
differ from those of the corresponding Propositions 2.2 and 2.4 in the sense that
equalities have been replaced by inequalities. This entails that the correspond-
ing maximized MC tests is exact in the sense that the probability of type I error
cannot be larger than the nominal level a of the test, but its size may be lower
that the level (leading to a conservative procedure).4 In view of the fact the
distribution of the test statistic involves nuisance parameters, this is not surpris-
ing: since the distribution of the test statistic varies as a function of nuisance
parameters, we can expect that the probability of type I error be lower than the level
a for some distribution compatible with the null hypothesis, even if we use the
tightest possible critical value that allows one to control the level of the test. Both
the fundamental (infeasible) test and its MC version are not similar. This is a feature
of the test statistic, not its MC implementation. Of course, it is preferable from
the power viewpoint that the discrepancy between the size of the test and its level
be as small as possible. This discrepancy would disappear if we could estimate and
maximize without error the theoretical p-value function G½x j y� or the appro-
priate critical value, but this is not typically feasible. In general, the discrepancy
between the size and the nominal level of the test depends on the form of the test
statistic, the null hypothesis, and the number N of replications of the MMC
procedure. Studying in any detail this sort of effect would go beyond the scope of
the present.5
5. Asymptotic Monte Carlo tests based on a consistent set estimator

In this section, we propose simplified approximate versions of the procedures
proposed in the previous section when a consistent point or set estimate of y is
available. To do this, we shall need to reformulate the setup used previously in order
to allow for an increasing sample size.

Consider

ST0;ST1ðyÞ; . . . ;STNðyÞ; TXI0; y 2 O, (5.1)
4We say that a test procedure is conservative at level a if its size is strictly smaller than a. Note that a non-

similar test is not conservative as long as its size is equal to the level a (even though the probability of type

I error is smaller than a for certain distributions compatible with the null hypothesis).
5A question of interest here consists in studying the conditions under which the discrepancy will

disappear as the number of MC replications goes to infinity ðN !1Þ. The reader will also find simulation

evidence on the size and power properties of MMC procedures in Dufour and Khalaf (2003a, b), Dufour

and Jouini (2005) and Dufour and Valéry (2005).
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real random variables all defined on a common probability space ðZ;AZ;PÞ, and set

ST ðN ; yÞ ¼ ðST1ðyÞ; . . . ;STNðyÞÞ; TXI0. (5.2)

We will be primarily interested by situations where

the variables ST0;ST1ðy0Þ; . . . ;STNðy0Þ are exchangeable for some y0 2 O,

each one with distribution function F T ½x j y0�. ð5:3Þ

Here ST0 will normally refer to a test statistic with distribution function F T ½� j y�
based on a sample of size T , while ST1ðyÞ; . . . ;STN ðyÞ are i.i.d. replications of the
same test statistic obtained independently under the assumption that the parameter
vector is y (i.e., P½STiðyÞpx� ¼ FT ½x j y�; i ¼ 1; . . . ;NÞ. Let also

F̂TN ½x j y� ¼ F̂N ½x;ST ðN ; yÞ�; ĜTN ½x j y� ¼ ĜN ½x;ST ðN ; yÞ�, (5.4)

p̂TN ½x j y� ¼
NĜTN ½x j y� þ 1

N þ 1
, (5.5)

and let F̂
�1

TN ½x j y� be defined as in (2.7)–(2.10).
We consider first the situation where p-values are maximized over a subset CT of O

(e.g., a confidence set for y) instead of O0. Consequently, we introduce the following
assumption:

CT ;TXI0 is a sequence of (possibly random) subsets of O such that

supfĜTN ½ST0 j y� : y 2 CT g and

inffF̂TN ½ST0 j y� : y 2 CT g are AZ-measurable,

for all TXI0; where O0 is nonempty subset of O. ð5:6Þ

Then we have the following proposition.

Proposition 5.1 (Asymptotic validity of confidence-set restricted MMC tests:

continuous distributions). Under the assumptions and notations (5.1) to (5.6), set

ST0ðy0Þ ¼ ST0, suppose

P½STiðy0Þ ¼ STjðy0Þ� ¼ 0 for iaj and i; j ¼ 0; 1; . . . ;N, (5.7)

for all TXI0, and let CT ;TXI0, be a sequence of (possibly random) subsets of O such

that

lim
T!1

P½y0 2 CT � ¼ 1. (5.8)

If y0 2 O0, then

lim
T!1

P½supfĜTN ½ST0 j y� : y 2 CT gpa1�

p lim
T!1

P½inffF̂TN ½ST0 j y� : y 2 CT gX1� a1�

¼ lim
T!1

P½ST0X supfF̂
�1

TN ½1� a1 j y� : y 2 CT g�p
I ½a1N� þ 1

N þ 1
ð5:9Þ
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and

lim
T!1

P½supfp̂TN ½ST0 j y� : y 2 CT gpa�p
I ½aðN þ 1Þ�

N þ 1
for 0pap1. (5.10)

It is quite easy to find a consistent set estimate of y0 whenever a consistent point
estimate ŷT of y0 is available. Suppose O � Rk and

lim
T!1

P½kŷT � y0ko�� ¼ 1; 8�40, (5.11)

where k � k is the Euclidean norm in Rk [i.e., kxk ¼ ðx0xÞ1=2; x 2 Rk�. Note that
condition (5.8) need only hold for the true value y0 of the parameter vector y. Then
any set of the form CT ¼ fy 2 O : kŷT � ykocg satisfies (5.8), whenever c is a fixed
positive constant that does not depend on T . More generally, if there is a sequence of
(possibly random) matrices AT and a non-negative exponent d such that

lim
T!1

P½TdkAT ðŷT � y0Þk2oc� ¼ 1; 8c40, (5.12)

then any set of the form

CT ¼ fy 2 O : ðŷT � yÞ0A0T AT ðŷT � yÞoc=Tdg

¼ fy 2 O : kAT ðŷT � yÞk2oc=Tdg; c40 ð5:13Þ

satisfies (5.8), since in this case,

P½y0 2 CT � ¼ P½ðŷT � y0Þ
0A0T AT ðŷT � y0Þoc=Td�

¼ P½TdðŷT � y0Þ
0A0T AT ðŷT � y0Þoc� �!

T!1
1.

In particular (5.12) will hold whenever we can find d̄40 (e.g., d̄ ¼ 1) such that
T d̄=2AT ðŷT � y0Þ has an asymptotic distribution (as T !1) and d is selected so that
0pdod̄. Whenever d40 and plimT!1ðA

0
T AT Þ ¼ C0 with detðC0Þa0, the diameter

of the set CT goes to zero, a fact which can greatly simplify the evaluation of the
variables supfĜTNg, inffF̂ TNg and supfp̂TNg in (5.9) and (5.10).

The above procedure may be especially useful when the distribution of the test
statistic is highly sensitive to nuisance parameters, in a way that would make its
asymptotic distribution discontinuous with respect to the nuisance parameters. In
such cases, a simulation-based procedure where the nuisance parameters are replaced
by a consistent point estimate—such as a parametric bootstrap procedure—may not
converge to the appropriate asymptotic distribution (because the point estimate does
not converge sufficiently fast to overcome the discontinuity). Here, possible
discontinuities in the asymptotic distribution are automatically taken into account
thorough a numerical maximization over a set that contains the correct value of the
nuisance parameter with a probability asymptotically equal to one: using a
consistent set estimator as opposed a point estimate (which does not converge fast
enough) can overcome such a high sensitivity to nuisance parameters. Of course, the
procedure can also be helpful in situations where the finite-sample distribution is
highly sensitive to nuisance parameters, even though it does not lead to asymptotic
failure of the bootstrap.
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Again, it is possible to extend Proposition 5.1 to statistics with general
(possibly discrete) distributions by considering properly randomized distribution,
tail-area and p-value functions:

~FTN ½x j y� ¼ ~FN ½x;U0;ST ðN; yÞ;UðNÞ�, (5.14)

~GTN ½x j y� ¼ ~GN ½x;U0;ST ðN; yÞ;UðNÞ�, (5.15)

~pTN ½x j y� ¼
N ~GTN ½x j y� þ 1

N þ 1
, (5.16)

where ~F N ½��, ~GN ½��, U0 and UðNÞ are defined as in (4.23)–(4.25).

Proposition 5.2 (Asymptotic validity of confidence-set restricted MMC tests: general

distributions). Under the assumptions and notations (5.1)–(5.6) and (5.14)–(5.16),
suppose the sets CT � O, TXI0, satisfy (5.8). If y0 2 O0, then for 0pa1p1 and

0pap1,

lim
T!1

P½supfĜTN ½ST0 j y� : y 2 CT gpa1�

p lim
T!1

P½supf ~GTN ½ST0 j y� : y 2 CT gpa1�p
I ½a1N� þ 1

N þ 1
, ð5:17Þ

lim
T!1

P½supfĜTN ½ST0 j y� : y 2 CT gpa1�

p lim
T!1

P½supf ~FTN ½ST0 j y� : y 2 CT gX1� a1�p
I ½a1N� þ 1

N þ 1
, ð5:18Þ

lim
T!1

P½supfp̂TN ½ST0 j y� : y 2 CT gpa�p lim
T!1

P½supf ~pTN ½S0 j y� : y 2 CT gpa�

p
I ½aðN þ 1Þ�

N þ 1
. ð5:19Þ

6. Asymptotic Monte Carlo tests based on consistent point estimate

Parametric bootstrap tests may be interpreted as a simplified form of the
procedures described in Propositions 5.1 and 5.2 where the consistent confidence set
CT has been replaced by a consistent point estimate ŷT . In other words, the
distribution of ST ðyÞ, y 2 O0, is simulated at a single point ŷT , leading to a local (or
pointwise) MC test. It is well known that such bootstrap tests are not generally valid,
unless stronger regularity conditions are imposed. In the following proposition, we
extend earlier proofs of the asymptotic validity of such bootstrap tests. In particular,
we allow for the presence of nuisance parameters in the asymptotic distribution of
the test statistic considered. Further, our proofs have the interesting feature of being
cast in the MC test setup where the number of replications N is kept fixed even
asymptotically.

Such pointwise procedures require stronger regularity assumptions (such as
uniform continuity and convergence over the nuisance parameter space)—so that
they may fail in irregular cases where the maximized procedures described in the



ARTICLE IN PRESS

J.-M. Dufour / Journal of Econometrics 133 (2006) 443–477 463
previous sections succeed in controlling the level of the test (at least asymptotically).
But they are simpler to implement and may be taken as a natural starting point for
implementing maximized procedures. In particular, if a pointwise MC p-value is
larger than the level a of the test (so that the pointwise MC test is not significant at
level aÞ, it is clear that the maximized p-value must be larger than a (so that the
maximized MC test is not significant at level aÞ.

In order to establish a clear asymptotic validity result, we will use four basic
assumptions on the distributions of the statistics ST ðyÞ as functions of the parameter
vector y:

ST1ðyÞ; . . . ;STN ðyÞ are i:i:d: according to the distribution

F T ½x j y� ¼ P½ST ðyÞpx�; 8y 2 O, ð6:1Þ

O is a nonempty subset of Rk, (6.2)

for everyTXI0; ST0 is a real random variable and ŷT an estimator of y,

both measurable with respect to the probability space ðZ;AZ;PÞ,

and FT ½ST0 j ŷT � is a random variable; ð6:3Þ

8�040; 8�140; 9d40 and a sequence of open subsets DT0ð�0Þ in R such that

lim inf
T!1

P½ST0 2 DT0ð�0Þ�X1� �0 and

ky� y0kpd) lim sup
T!1

sup
x2DT0ð�0Þ

jFT ½x j y� � FT ½x j y0�j

( )
p�1. ð6:4Þ

The first of these four conditions replaces the exchangeability assumption by an
assumption of i.i.d. variables. The two next ones simply make appropriate
measurability assumptions, while the last one may be interpreted as a local
equicontinuity condition (at y ¼ y0) on the sequence of distribution functions
FT ðx j yÞ, TXI0. Note that ST0 is not assumed to follow the same distribution as the
other variables ST1ðyÞ; . . . ;STNðyÞ. Furthermore, ST0 and FT ðx j yÞ do not
necessarily converge to limits as T !1. An alternative assumption of interest
would consist in assuming that ST0 converges in probability (�!

p
) to a random

variable S̄0 as T !1, in which case the ‘‘global’’ equicontinuity condition (6.4) can
be weakened to a ‘‘local’’ one:

ST0 �!
p

T!1
S̄0, (6.5)

D0 is a subset of R such that P½S̄0 2 D0 and ST0 2 D0 for all TXI0� ¼ 1,

(6.6)
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8x 2 D0; 8�40; 9d40 and an open neighborhood Bðx; �Þ of x such that

ky� y0kpd) lim sup
T!1

sup
y2Bðx;�Þ\D0

jFT ½y j y� � FT ½y j y0�j

( )
p�:

ð6:7Þ

We can now show that Monte Carlo tests obtained by simulating STiðyÞ,
i ¼ 1; . . . ;N, with y ¼ ŷT are equivalent for large T to those based on using the
true value y ¼ y0.

Proposition 6.1 (Asymptotic validity of bootstrap p-values). Under the assumptions

and notations (5.1), (5.2), (5.4), (5.5), (5.14)–(5.16) and (6.1)–(6.3), suppose the random

variable ST0 and the estimator ŷT are both independent of ST ðN; yÞ and U0. If

plimT!1ŷT ¼ y0 and condition (6.4) or (6.5)–(6.7) hold, then for 0pa1p1 and

0pap1,

lim
T!1
fP½ ~GTN ½ST0 j ŷT �pa1� � P½ ~GTN ½ST0 j y0�pa1�g

¼ lim
T!1
fP½ĜTN ½ST0 j ŷT �pa1� � P½ĜTN ½ST0 j y0�pa1�g ¼ 0 ð6:8Þ

and

lim
T!1
fP½ ~pTN ½ST0 j ŷT �pa� � P½ ~pTN ½ST0 j y0�pa�g

¼ lim
T!1
fP½p̂TN ½ST0 j ŷT �pa� � P½p̂TN ½ST0 j y0�pa�g ¼ 0. ð6:9Þ

It is worth noting that condition (6.7) holds whenever FT ½x j y� converges to a
distribution function F1½x j y� which is continuous with respect to ðx; y0Þ0, for
x 2 D0, as follows:

8x 2 D0; 8�40; 9d140 and an open neighborhood B1ðx; �Þ of x such that

ky� y0kpd) lim sup
T!1

sup
y2B1ðx;�Þ\D0

jFT ½y j y� � F1½y j y�j

 !
p�, ð6:10Þ

8x 2 D0; 8�40; 9d240 and an open neighborhood B2ðx; �Þ of x such that

ky� y0kpd2 ) sup
y2B2ðx;�Þ\D0

jF1½y j y� � F1½y j y0�jp�. ð6:11Þ

It is then easy to see that (6.10)–(6.11) entail (6.7) on noting that

jFT ½x j y� � FT ½x j y0�jpjFT ½x j y� � F1½x j y�j þ jFT ½x j y0� � F1½x j y0�j

þ jF1½x j y� � F1½x j y0�j; 8x.

Note also that (6.11) holds whenever F1½x j y� is continuous with respect to ðx; y0Þ0,
although the latter condition is not at all necessary (e.g., in models where D0 is a
discrete set of points). In particular, (6.10)–(6.11) will hold when F T ½x j y� admits an
expansion around a pivotal distribution:

FT ½x j y� ¼ F1ðxÞ þ T�ggðx; yÞ þ hT ðx; yÞ, (6.12)
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where F1ðxÞ is a distribution function that does not depend on y; g40, with the
following assumptions on gðx; yÞ and hT ðx; yÞ:

8x 2 D0; 9 an open neighborhood Bðx; y0Þ of ðx; y
0
0Þ
0 such that

jgðy; yÞjpCðx; yÞ; for all ðy; y0Þ0 2 Bðx; y0Þ \D0,

where Cðx; yÞ is a positive constant, and

T ghT ðy; yÞ �!
T!1

0 uniformly on Bðx; y0Þ \D0. ð6:13Þ

The latter is quite similar (although somewhat weaker) to the assumption considered
by Hall and Titterington (1989, Eq. (2.5)).

When ST0 is distributed like ST ðy0Þ, i.e., P½ST0px� ¼ F T ½x j y0�, we can apply
Proposition 2.4 and see that P½ ~GTN ½ST0 j y0�pa1� ¼ ðI ½a1N� þ 1Þ=ðN þ 1Þ, hence

lim
T!1

P½ ~GTN ½ST0 j ŷT �pa1� ¼
I ½a1N� þ 1

N þ 1
. (6.14)
7. Conclusion

In this paper, we have made four main contributions. First, for the case where we
have a test statistic whose distribution does not involve nuisance parameters under
the null hypothesis, we have proposed a general form of Monte Carlo testing which
allows for exchangeable (as opposed to i.i.d.) Monte Carlo replications of general
test statistics whose distribution can take an arbitrary form (continuous, discrete or
mixed). In particular, this form is not limited to permutation tests, which has
received considerable attention in the earlier literature on Monte Carlo tests (see
Dwass, 1957; Green, 1977; Vadiveloo, 1983; Keller-McNulty and Higgins, 1987;
Lock, 1991; Edgington, 1995; Manly, 1997; Noreen, 1989; Good, 1994]. Second, we
have shown how the method can be extended to models with nuisance parameters as
long as the null distribution of the test statistic can be simulated once the nuisance
parameters have been specified. This leads to what we called maximized Monte Carlo

tests which were shown to satisfy the level constraint. Thirdly, we proposed a
simplified version of the latter method which can lead to asymptotically valid tests,
even if the asymptotic distribution depends on nuisance parameters in a
discontinuous way. This method only requires one to use a consistent set esti-
mator of the nuisance parameters, which is always feasible as long as a consis-
tent point estimate of the nuisance parameters is available. Further, in the latter
case, no additional information is required on the asymptotic distribution of
the consistent estimator. Fourth, we showed that Monte Carlo tests obtained
upon replacing unknown nuisance parameters by consistent estimates also lead to
asymptotically valid tests. However, it is important to note that stronger condi-
tions are needed for this to occur and such conditions may be difficult to check
in practice.

The main shortcoming of the proposed MMC tests comes from the fact that such
tests may be computationally demanding. We cannot study here the appropriate
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numerical algorithms or detailed implementations of the theory described above. But
a number of such applications are presented in companion papers (which are based
on earlier versions of the present paper). For example, for an illustration of the
adjustment for discreteness proposed here, the reader may consult Dufour et al.
(1998) where it is used to correct the size of Kolmogorov–Smirnov tests (which
involve a discrete statistic) for the normality of errors in a linear regression. The
method of maximized Monte Carlo tests can of course be applied to a wide array of
models where nuisance parameters problems show up: for example, inference in
seemingly unrelated regressions (Dufour and Khalaf, 2003a), simultaneous
equations models (Dufour and Khalaf, 2003b), dynamic models (Dufour and
Jouini, 2005; Dufour and Valéry, 2005), and models with limited dependent variables
(Jouneau-Sion and Torrès, 2005). It is clear many more applications are possible.
The size and power properties of the proposed procedures are also studied by
simulation methods in this work.
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Appendix. Proofs
Proof of Lemma 2.1. By condition (2.12), the variables y1;y2; . . . ; yN are all distinct
with probability 1, and the rank vector ðR1;R2; . . . ;RN Þ

0 is with probability 1 a
permutation of the integers ð1; 2; . . . ;NÞ. Furthermore, since the variables
y1; y2; . . . ; yN are exchangeable, the N! distinct permutations of ðy1; y2; . . . ; yNÞ have
the same probability 1=N!. Consequently, we have:

PðRj ¼ iÞ ¼
1

N
; i ¼ 1; 2; . . . ;N,

PðRj=NpxÞ ¼ I ½xN�=N; 0pxp1,
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from which (2.13) follows and

PðRj=NoxÞ ¼ ðI ½xN� � 1Þ=N if xN 2 Zþ,

¼ I ½xN�=N otherwise,

where Zþ is the set of the positive integers. Since, for any real number z,

I ½N � z� ¼ N � z if z is an integer,

¼ N � I ½z� � 1 otherwise,

we then have, for 0pxp1,

PðRj=NXxÞ ¼ 1� PðRN=NoxÞ ¼ ðN � I ½xN� þ 1Þ=N if xN 2 Zþ,

¼ ðN � I ½xN�Þ=N otherwise,

hence

P½Rj=NXx� ¼ ðI ½ð1� xÞN� þ 1Þ=N if 0oxp1,

¼ 1 if x ¼ 0,

from which we get (2.14). &

Proof of Proposition 2.2. Assuming there are no ties among S0;S1; . . . ;SN (an event
with probability 1), we have

ĜNðS0Þ ¼
1

N

XN

i¼1

1ðSiXS0Þ ¼
1

N

XN

i¼1

½1� 1ðSipS0Þ� ¼ 1�
1

N

XN

i¼1

1ðSipS0Þ

¼ 1�
1

N
�1þ

XN

i¼0

1ðSipS0Þ

" #
¼ ðN þ 1� R0Þ=N,

where R0 ¼
PN

i¼0 1ðSipS0Þ is the rank of S0 when the N þ 1 variables S0;S1; . . . ;SN

are ranked in nondecreasing order. Using (2.15) and Lemma 2.1, it then follows that

P½ĜNðS0Þpa1� ¼ P
N þ 1� R0

N
pa1

� �
¼ P

R0

N þ 1
X
ð1� a1ÞN þ 1

N þ 1

� �

¼
I ½a1N� þ 1

N þ 1

for 0pa1p1. Furthermore, F̂ NðS0Þ ¼ 1� ĜN ðS0Þ with probability 1, and (2.17)
follows. We then get (2.18) on observing that: F̂N ðyÞXq()yXF̂

�1

N ðqÞ for y 2 R and
0oqo1 (see Reiss, 1989, Appendix 1). Finally, to obtain (2.19), we note that

p̂NðS0Þ �
NĜNðS0Þ þ 1

N þ 1
pa()ĜN ðS0Þp

aðN þ 1Þ � 1

N
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hence, since that 0pĜNðS0Þp1 and using (2.17),

P½p̂N ðS0Þpa� ¼ P ĜN ðS0Þp
aðN þ 1Þ � 1

N

� �

¼

0; if ao1=ðN þ 1Þ;

I ½aðN þ 1Þ � 1� þ 1

N þ 1
¼

I ½aðN þ 1Þ�

N þ 1
; if

1

N þ 1
pap1;

1; if a41;

8>>><
>>>:

from which (2.19) follows upon observing that I ½aðN þ 1Þ� ¼ 0 for 0pao1=
ðN þ 1Þ: &

Proof of Lemma 2.3. From (2.23) and the continuity of the Uð0; 1Þ distribution, we
see easily that P½ðyi;UiÞ ¼ ðyj ;UjÞ�pP½Ui ¼ Uj� ¼ 0, for iaj, from which it follows
that P½ ~Ri ¼ ~Rj� ¼ 0 for iaj and the rank vector ð ~R1; ~R2; . . . ; ~RNÞ is with probability 1
a random permutation of the integers ð1; 2; . . . ;NÞ. Set Vi ¼ ðyi;UiÞ; i ¼ 1; . . . ;N.
By considering all possible permutations ðV r1 ;V r2 ; . . . ;V rN

Þ of ðV 1;V2; . . . ;V NÞ, and
since ðVr1 ;Vr2 ; . . . ;VrN

Þ�ðV1;V 2; . . . ;VN Þ for all permutations ðr1; r2; . . . ; rNÞ of
ð1; 2; . . . ;NÞ [by the exchangeability assumption], the elements of ð ~R1; ~R2; . . . ;
~RNÞ are also exchangeable.The result then follows from Lemma 2.1. The reader may
note that an alternative proof could be obtained by modifying the proof of Theorem
29A of Hájek (1969) to relax the independence assumption for y1; . . . ; yN . &

Proof of Proposition 2.4. Since the pairs ðSi;UiÞ; i ¼ 0; 1; . . . ;N; are all distinct with
probability 1, we have almost surely:

~GNðS0Þ ¼
1

N

XN

i¼1

1½ðSi;UiÞXðS0;U0Þ� ¼ 1�
1

N

XN

i¼1

1½ðSi;UiÞpðS0;U0Þ�

¼ 1�
1

N
�1þ

XN

i¼0

1½ðSi;UiÞpðS0;U0Þ�

( )
¼ ðN þ 1� ~R0Þ=N,

where ~R0 ¼
PN

i¼0 1½ðSi;UiÞpðS0;U0Þ� is the randomized rank of S0 obtained when
ranking in ascending order [according to (2.23)] the N þ 1 pairs ðSi;UiÞ; i ¼ 0;
1; . . . ;N. Using Lemma 2.3, it follows that

P½ ~GNðS0Þpa1� ¼ P½ðN þ 1� ~R0Þ=Npa1� ¼ P
~R0

N þ 1
X
ð1� a1ÞN þ 1

N þ 1

� �

¼

0 if a1o0;

I ½a1N� þ 1

N þ 1
if 0pa1p1;

1 if a141:

8>>><
>>>:

Since the pairs ðSi;UiÞ; i ¼ 0; 1; . . . ;N, are all distinct with probability 1, we also
have ~FN ðS0Þ ¼ 1� ~GNðS0Þ with probability 1, hence using inequalities (2.33)–(2.36),

P½ĜNðS0Þpa1�pP½ ~GN ðS0Þpa1� ¼ P½ ~FN ðS0ÞX1� a1�pP½F̂ NðS0ÞX1� a1�
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and (2.36) is established. The identity P½F̂ NðS0ÞX1� a1� ¼ P½S0XF̂
�1

N ð1� a1Þ�
follows from the equivalence: F̂ NðyÞXq()yXF̂

�1

N ðqÞ; 8y 2 R; 0oqo1. Finally,
to obtain (2.37), we observe that

~pNðS0Þ ¼
N ~GNðS0Þ þ 1

N þ 1
pa() ~GN ðS0Þp

aðN þ 1Þ � 1

N

hence, using (2.36),

P½ ~pN ðS0Þpa� ¼ P ~GN ðS0Þp
aðN þ 1Þ � 1

N

� �

¼

0 if ao1=ðN þ 1Þ;

I ½aðN þ 1Þ � 1� þ 1

N þ 1
¼

I ½aðN þ 1Þ�

N þ 1
if

1

N þ 1
pap1;

8><
>:

from which (2.19) follows on observing that I ½aðN þ 1Þ� ¼ 0 for 0pap1=
ðN þ 1Þ: &
Proof of Proposition 4.1. Since

ĜN ½S0 j y�X1� F̂N ½S0 j y�, (A.1)

we have

P½supfĜN ½S0 j y� : y 2 O0gpa1�pP½inffF̂ N ½S0 j y� : y 2 O0gX1� a1�.

When y0 2 O0, it is also clear that: infy2O0
F̂ N ½S0 j y�X1� a1 ) F̂ N ½S0 j y0�X1� a1.

Thus, using Proposition 2.2,

P½inffF̂N ½S0 j y� : y 2 O0gX1� a1�pP½F̂ N ½S0 j y0�X1� a1� ¼
I ½a1N� þ 1

N þ 1
.

Furthermore,

inf
y2O0

F̂ N ½S0 j y�X1� a1()F̂N ½S0 j y�X1� a1; 8y 2 O0

()S0XF̂
�1

N ½1� a1 j y�; 8y 2 O0()S0X sup
y2O0

F̂
�1

N ½1� a1 j y� ðA:2Þ

so that, using Proposition 2.2,

P½S0X supfF̂
�1

N ½1� a1 j y0� : y 2 O0g� ¼ P½inffF̂ N ½S0 j y� : y 2 O0gX1� a1�

p
I ½a1N� þ 1

N þ 1
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and (4.20) is established. Eq. (4.21) follows in the same way on observing that
supy2O0

~pN ½S0 j y�psupy2O0
p̂N ½S0 j y� and

sup
y2O0

~pN ½S0 j y�pa) ~pN ½S0 j y0�pa; when y0 2 O0: &

Proof of Proposition 4.2. Using (2.32)–(2.33), we have:

1� F̂N ½S0 j y�p ~GN ½S0 j y�pĜN ½S0 j y�; 8y,

1� ĜN ½S0 j y�p ~FN ½S0 j y�pF̂N ½S0 j y�,

hence

sup
y2O0

~GN ½S0 j y�p sup
y2O0

ĜN ½S0 j y�,

1� sup
y2O0

ĜN ½S0 j y� ¼ inf
y2O0

f1� ĜN ½S0 j y�gp inf
y2O0

~FN ½S0 j y�,

sup
y2O0

~pN ½S0 j y�p sup
y2O0

p̂N ½S0 j y�.

Furthermore, when y0 2 O0,

sup
y2O0

~GN ½S0 j y�pa1 ) ~GN ½S0 j y0�pa1,

inf
y2O0

~FN ½S0 j y�X1� a1 ) ~F N ½S0 j y0�X1� a1,

sup
y2O0

~pN ½S0 j y�pa1 ) ~pN ½S0 j y0�pa1,

hence, using Proposition 2.4, for 0pa1p1 and for 0pap1,

P½supfĜN ½S0 j y� : y 2 O0gpa1�pP½supf ~GN ½S0 j y� : y 2 O0gpa1�

pP½ ~GN ½S0 j y0�pa1� ¼
I ½a1N� þ 1

N þ 1
,

P½supfĜN ½S0 j y� : y 2 O0gpa1�pP½inff ~F N ½S0 j y� : y 2 O0gX1� a1�

pP½ ~F N ½S0 j y0�X1� a1� ¼
I ½a1N� þ 1

N þ 1
,

P½supfp̂N ½S0 j y� : y 2 O0gpa�pP½supf ~pN ½S0 j y� : y 2 O0gpa�

pP½ ~pN ½S0 j y0�pa� ¼
I ½aðN þ 1Þ�

N þ 1
: &
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Proof of Proposition 5.1. Using arguments similar to the ones in the proof of
Proposition 4.2 [see (A.1)–A.2)], it is easy to see that

P½supfĜTN ½ST0 j y� : y 2 CT gpa1�pP½inffF̂TN ½ST0 j y� : y 2 CT gX1� a1�

¼ P½ST0X supfF̂
�1

TN ½1� a1 j y� : y 2 CT g�.

Further,

P½inffF̂ TN ½ST0 j y� : y 2 CT gX1� a1�

¼ P½inffF̂ TN ½ST0 j y� : y 2 CT gX1� a1 and y0 2 CT �

þ P½inffF̂ TN ½ST0 j y� : y 2 CT gX1� a1 and y0eCT �

pP½F̂ TN ½ST0 j y0�X1� a1� þ P½y0eCT � ¼
I ½a1N� þ 1

N þ 1
þ P½y0eCT �,

where the last identity follows from Proposition 2.2, hence, since limT!1 P½y0eCT �

¼ 0,

lim
T!1

P½inffF̂TN ½ST0 j y� : y 2 CT gX1� a1�p
I ½a1N� þ 1

N þ 1
þ lim

T!1
P½y0eCT �

¼
I ½a1N� þ 1

N þ 1
,

from which (5.9) and (5.10) follow. &

Proof of Proposition 5.2. The result follows from arguments similar to the ones used
in the proofs of Propositions 4.1 and 5.2 (with O0 replaced by CT Þ. &

In order to prove Proposition 6.1, it will be convenient to first demonstrate the
following two lemmas

Lemma A.1 (Continuity of p-value function). Under the assumptions and notations

(5.1), (5.2), (5.4), (5.5), (5.14)–(5.16) and (6.1), set

QTN ðy;x; u0; a1Þ ¼ P½ ~GTN ½x j y�pa1 j U0 ¼ u0�, (A.3)

Q̄TN ðy;x; a1Þ ¼ P½ĜTN ½x j y�pa1�; 0pa1p1, (A.4)

and suppose U0 is independent of ST ðN; yÞ. For any y, y0 2 O, x 2 R and u0, a1 2 ½0; 1�,
the inequality

jF T ½y j y� � F T ½y j y0�jp�; 8y 2 ðx� d; xþ dÞ,

where d40, entails the inequalities:

jQTN ðy; x; u0; a1Þ �QTN ðy0; x; u0; a1Þjp3CðN; a1Þ�, (A.5)

jQ̄TN ðy; x; a1Þ � Q̄TNðy0;x; u0Þjp3CðN; a1Þ�, (A.6)

where CðN; a1Þ ¼ N
PI ½a1N�

k¼0 ð
N
k
Þ.
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Proof. It is easy to see [as in (3.3)] that

QTNðy;x; u0; a1Þ ¼ P½ ~GTN ðx j yÞpa1 j U0 ¼ u0�

¼
XI ½a1N�

k¼0

N

k

� �
ḠT ðx; u0 j yÞ

k
½1� ḠT ðx; u0 j yÞ�N�k,

where

ḠT ðx; u0 j yÞ ¼ Pð1½ðSTiðyÞ;UiÞXðx; u0Þ� ¼ 1Þ

¼ P½STiðyÞ4x� þ P½STiðyÞ ¼ x�P½UiXu0�

¼ 1� F T ½x j y� þ gT ðx j yÞð1� u0Þ; 1pipT .

Note also that gT ðx j yÞ ¼ F T ½x j y� � lim
d0!0þ

F T ½y� d0 j y�. Then the inequality

jF T ½y j y� � F T ½y j y0�jp�; 8y 2 ðx� d; xþ dÞ,

entails the following inequalities:

j1� FT ½x j y� � 1þ FT ½x j y0�jp�,

jgT ðx j yÞ � gT ðx j y0Þj ¼ jf1� FT ½x j y�g � f1� FT ½x j y0�g

þ lim
d0!0þ

fFT ½y� d0 j y� � FT ½y� d0 j y0�gj

pjFT ½x j y� � F T ½x j y0�j þ lim
d0!0þ

jFT ½y� d0 j y�

� FT ½y� d0 j y0�jp2�,

hence, for all u0 2 ½0; 1�,

jḠT ðx; u0 j yÞ � ḠT ðx; u0 j y0ÞjpjF T ½x j y� � F T ½x j y0�j

þ j1� u0jjgT ðx j yÞ � gT ðx j y0Þjp3�,

8u0 2 ½0; 1�,

jQTN ðy; x; u0; a1Þ �QTN ðy0;x; u0; a1Þj

p
X½Na1�

k¼0

N

k

� �
ḠT ðx; u0jyÞ

k
½1� ḠT ðx; u0jyÞ�N�k

(�����
�ḠT ðx; u0jy0Þ

k
½1� ḠT ðx; u0jy0Þ�N�k

)�����
p
X½Na1�

k¼0

N

k

� �
jḠT ðx; u0 j yÞ

k
� ḠT ðx; u0 j y0Þ

k
j

þ j½1� ḠT ðx; u0 j yÞ�N�k � ½1� ḠT ðx; u0 j y0Þ�N�kj
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p
X½Na1�

k¼0

N

k

� �
kjḠT ðx; u0 j yÞ � ḠT ðx; u0 j y0Þj

�

þ ðN � kÞjḠT ðx; u0 j yÞ � ḠT ðx; u0 j y0Þj
�

¼ CðN; a1ÞjḠT ðx; u0 j yÞ � ḠT ðx; u0 j y0Þjp3CðN; a1Þ�,

where CðN; a1Þ ¼ N
PI ½a1N�

k¼0
N
k

� 	
, from which (A.5) follows. The inequality (A.6)

follows in a similar way on noting that Q̄TN ðy;x; a1Þ ¼
PI ½a1N�

k¼0
N
k

� 	
GT ðx j yÞ

k

½1� GT ðx j yÞ�N�k, where GT ðx j yÞ ¼ Py½STiðyÞXx�; 1pipN. &

Lemma A.2 (Convergence of Bootstrap p-values). Under the assumptions and

notations of Lemma A.1, suppose that (6.2) and (6.3) also hold. If ŷT �!
T!1

y0 in

probability and condition (6.4) or (6.5)–(6.7) holds, then

sup
0pu0p1

jQTN ðŷT ;ST0; u0; a1Þ �QTN ðy0;ST0; u0; a1Þj �!
p

T!1
0, (A.7)

Q̄TN ðŷT ;ST0; a1Þ � Q̄TN ðy0;ST0; a1Þ �!
p

T!1
0. (A.8)

We can now prove the following proposition.

Proof. Let a1 2 ½0; 1�, �40 and �040 and suppose first that (6.4) holds. Then, using
Lemma A.1, we can find d40 and T1 such that

x 2 DT0ð�0Þ; ky� y0kpd and T4T1

) jFT ½x j y� � FT ½x j y0�jp�1 � �=½3CðN; a1Þ�

) jQTNðy;x; u0; a1Þ �QTN ðy0;x; u0; a1Þjp�; 8u0 2 ½0; 1�.

Thus

ST0 2 DT0ð�0Þ and kŷT � y0kpd) DTNðŷT ; y0;ST0; a1Þp�,

where DTN ðŷT ; y0;ST0; a1Þ � sup0pu0p1 jQTN ðŷT ;ST0; u0; a1Þ �QTNðy0; x; u0; a1Þj,
hence

P½DTN ðŷT ; y0;ST0; a1Þp��XP½ST0 2 DT0ð�0Þ and kŷT � y0kpd�

X1� P½ST0eDT0ð�0Þ� � P½kŷT � y0k4d�

¼ P½ST0 2 DT0ð�0Þ� � P½kŷT � y0k4d�.

Since ŷT!
p

y0, it follows that

lim inf
T!1

P½DTN ðŷT ; y0;ST0; a1Þp��X lim inf
T!1

P½ST0 2 DT0ð�0Þ�X1� �0

for any �040; hence limT!1 P½DTNðŷT ; y0;ST0; a1Þp�� ¼ 1. Since the latter iden-
tity holds for any �40, (A.7) is established. (A.8) follows in a similar way upon
using (A.6).
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Suppose now (6.5)–(6.7) hold instead of (6.4). Then, ðST0; ŷT Þ �!
p

T!1
ðS0; y0Þ and

ðST̄k
; ŷT̄k
Þ �!

p

T!1
ðS0; y0Þ, (A.9)

for any subsequence fðST̄k
; ŷT̄k
Þ : k ¼ 1; 2; :::g of fðST ; ŷT Þ : TXI0g. Since ST0 and ŷT ,

TXI0, are random variables (or vectors) defined on Z, we can write ST0 ¼ ST0ðoÞ,
ŷT ¼ ŷT ðoÞ and S0 ¼ S0ðoÞ, o 2Z. By (6.6), the event

A0 ¼ fo : S0ðoÞ 2 D0 and ST0ðoÞ 2 D0; for TXI0g

has probability one. Furthermore, by (A.9), the subsequence ðST̄k
; ŷ
0

T̄k
Þ
0 contains a

further subsequence ðSTk0; ŷ
0

Tk
Þ
0; kX1 such that ðSTk0; ŷ

0

Tk
Þ
0
�!

T!1
ðS0; y

0
0Þ
0 a.s. (where

T1oT2o � � �Þ; see Bierens (1994, pp. 22–23). Consequently, the set

C0 ¼ fo 2Z : S0ðoÞ 2 D0; lim
k!1

STk0ðoÞ ¼ S0ðoÞ and lim
k!1

ŷTk
ðoÞ ¼ y0g

has probability one. Now, let �40: By (6.7), for any x 2 D0, we can find dðx; �Þ40,
Tðx; �Þ40 and an open neighborhood Bðx; �Þ of x such that

ky� y0kpdðx; �Þ and T4Tðx; �Þ ) jF T ½y j y� � F T ½y j y0�jp�,

8y 2 Bðx; �Þ \D0.

Furthermore, for o 2 C0; we can find k0 such that

kXk0 ) STk0ðoÞ 2 BðS0ðoÞ; �Þ \D0 and kŷTk
� y0kpdðS0ðoÞ; �Þ,

so that Tk4maxfTðS0ðoÞ; �Þ;Tk0g entails jF Tk
½STk0ðoÞ j yTk

ðoÞ� � FTk
½STk0ðoÞ j

y0�jp�. Thus limk!1 fFTk
½STk0ðoÞ j yTk

ðoÞ� � F Tk
½STk0ðoÞ j y0�g ¼ 0 for o 2 C0,

hence, using Lemma A.1, limk!1 DTkNðŷTk
ðoÞ; y0;STk0ðoÞ; a1Þ ¼ 0 and

DTkNðŷTk
; y0;STk0; a1Þ �!

k!0
0, a.s. This shows that any subsequence of the sequence

DTN ðŷT ; y0;ST0; a1Þ,TXI0, contains a further subsequence which converge a.s. to

zero. It follows that DTN ðŷT ; y0;ST0; a1Þ �!
p

T!1
0 and (A.7) is established. The proof of

(A.8)) under the condition (6.5)–(6.7) is similar. &

Proof of Proposition 6.1. Using the fact that ŷT , ST0 and U0 are independent of
ST ðN; yÞ, we can write

P½ ~GTN ½ST0 j ŷT �pa1� � P½ ~GTN ½ST0 j y0�pa1�

¼ EfP½ ~GTN ½ST0 j ŷT �pa1 j ðŷT ;ST0;U0Þ�

� P½ ~GTN ½ST0 j y0�pa1 j ðŷT ;ST0;U0Þ�g

¼ E½QTNðŷT ;ST0;U0; a1Þ �QTNðy0;ST0;U0; a1Þ�.
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From Lemma A.1 and using the Lebesgue dominated convergence theorem, we
then get

jP½ ~GTN ½ST0jŷT �pa1� � P½ ~GTN ½ST0jy0�pa1�j

¼ jE½QTN ðŷT ;ST0;U0; a1Þ �QTN ðy0;ST0;U0; a1Þ�j

pEfjQTN ðŷT ;ST0;U0; a1Þ �QTN ðy0;ST0;U0; a1Þjg

pE sup
0pu0p1

jQTN ðŷT ;ST0; u0; a1Þ �QTN ðy0;ST0; u0; a1Þj

" #
�!

T!1
0.

We can show in a similar way that

jP½Ĝ½ST0 j ŷT �pa1� � P½G½ST0 j y0�pa1�j �!
T!1

0,

from which we get (6.8). Eq. (6.9) then follows from the definitions of ~pTN ðx j yÞ and
p̂TN ðx j yÞ. &
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