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Abstract. We discuss statistical inference problems associated with identification and
testability in econometrics. We consider inference in non-parametric models and weakly
identified structural models (weak instruments). We point out that many ill-defined
statistical problems, such as non-testable hypotheses, occur in these areas and are
typically associated with asymptotic approximations. In non-parametric models, such
problems include testing moments and inference under heteroscedasticity or serial
dependence of unknown form. For weakly identified structural models, difficulties are
typically associated with improper pivots, and we review recent developments aimed at
proposing more reliable procedures, including alternative proposed statistics, bounds,
projection, split-sampling, conditioning, Monte Carlo tests. JEL classification: C1, C12,
C14, C15, C3, C5

Identification, instruments faibles, et inférence statistique en econométrie. Nous analysons
les problèmes d’inférence associés à l’identification et à la testabilité en économétrie.
Nous considérons l’inférence dans les modèles non-paramétriques et les modèles struc-
turels faiblement identifiés (instruments faibles). Nous remarquons que beaucoup de
problèmes mal posés, tels que des hypothèses non testables, apparaissent dans ces
domaines et que ceux-ci sont typiquement associés à l’emploi d’approximations asymp-
totiques. Dans les modèles non-paramétriques, de tels problèmes incluent les tests sur
les moments et l’inférence sous hétéroscédasticité ou dépendance sérielle de forme
non spécifiée. Dans les modèles structurels faiblement identifiés, ces difficultés sont
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habituellement associées à l’emploi de fonctions pivotales impropres et nous présentons
un survol des méthodes récentes ayant pour objectif d’obtenir des procédures plus fiables,
ce qui comprend les différentes statistiques proposées, l’emploi de bornes, la subdivision
d’échantillon, les techniques de projection, le conditionnement et les tests de Monte Carlo.

1. Introduction

The main objective of econometrics is to supply methods for analysing economic
data, building models, and assessing alternative theories. Over the last 25 years,
econometric research has led to important developments in many areas, such as:
(1) new fields of applications linked to the availability of new data, financial data,
micro-data, panels, qualitative variables; (2) new models: multivariate time series
models, GARCH-type processes; (3) a greater ability to estimate non-linear
models that require an important computational capacity; (4) methods based on
simulation: bootstrap, indirect inference, Markov chain Monte Carlo techniques;
(5) methods based on weak distributional assumptions: non-parametric methods,
asymptotic distributions based on ‘weak regularity conditions’; (6) discovery of
various non-regular problems that require non-standard distributional theories,
such as unit roots and unidentified (or weakly identified) models.

An important component of this work is the development of procedures for
testing hypotheses (or models). Indeed, a view widely held by both scientists and
philosophers is that testability or the formulation of testable hypotheses consti-
tutes a central feature of scientific activity – a view we share. With the exception
of mathematics, it is not clear that a discipline should be viewed as scientific if it
does not lead to empirically testable hypotheses. But this requirement leaves
open the question of formulating operational procedures for testing models and
theories. To date, the only coherent – or, at least, the only well developed – set of
methods are those supplied by statistical and econometric theory.

Last year, on the same occasion, MacKinnon (2002) discussed the use of
simulation-based inference methods in econometrics, specifically bootstrapping,
as a way of getting more reliable tests and confidence sets. In view of the
importance of the issue, we also consider questions associated with the develop-
ment of reliable inference procedures in econometrics. But our exposition will be,
in a way, more specialized and in another way more general – and critical.
Specifically, we shall focus on general statistical issues raised by identification in
econometric models and, more specifically, on weak instruments in the context of
structural models e.g., simultaneous equations models (SEM). We will find it
useful to bring together two separate streams of literature: namely, results (from
mathematical statistics and econometrics) on testability in non-parametric models
and the recent econometric research on weak instruments.1 In particular, we shall

1 By a non-parametric model (or hypothesis), we mean a set of possible data distributions such
that a distribution (e.g., the ‘true’ distribution) cannot be singled out by fixing a finite number
of parameter values.
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emphasize that identification problems arise in both literatures and have similar
consequences for econometric methodology. Further, the literature on non-
parametric testability sheds light on various econometric problems and their
solutions.

Simultaneous equations models (SEM) are related in a natural way to the
concept of equilibrium postulated by economic theory, both in microeco-
nomics and macroeconomics. So it is not surprising that SEM were introduced
and most often employed in the analysis of economic data. Methods for
estimating and testing such models constitute a hallmark of econometric
theory and represent one of its most remarkable achievements. The problems
involved are difficult, raising, among various issues, the possibility of observa-
tional equivalence between alternative parameter values (non-identification)
and the use of instrumental variables (IV). Further, the finite-sample distribu-
tional theory of estimators and test statistics is very complex, so inference is
typically based on large-sample approximations. (For reviews, see Phillips
1983; Taylor 1983.)

IV methods have become a routine part of econometric analysis and, despite
a lot of loose ends (often hidden by asymptotic distributional theory), the topic
of SEM was dormant until a few years ago. Roughly speaking, an instrument
should have two basic properties: first, it should be independent of (or, at least,
uncorrelated with) the disturbance term in the equation of interest (exogeneity);
second, it should be correlated with the included endogenous explanatory
variables for which it is supposed to serve as an instrument (relevance). The
exogeneity requirement has been well known from the very beginning of IV
methods. The second one was also known from the theory of identification,
but its practical importance was not well appreciated and was often hidden
from attention by lists of instruments relegated to footnotes (if not simply
absent) in research papers. It returned to centre stage with the discovery of
so-called weak instruments, which can be interpreted as instruments with little
relevance (i.e., weakly correlated with endogenous explanatory variables).
Weak instruments lead to poor performance of standard econometric proced-
ures and cases where they have pernicious effects may be difficult to detect.2

Interest in the problem also goes far beyond IV regressions and SEM, because
it underscores the pitfalls in using large-sample approximations, as well as the
importance of going back to basic statistical theory when developing econo-
metric methods.

A parameter (or a parameter vector) in a model is not identified when it is
not possible to distinguish between alternative values of the parameter. In
parametric models, this is typically interpreted by stating that the postulated
distribution of the data – as a function of the parameter vector (the likelihood

2 Early papers in which attention was called to the problem include Nelson and Startz (1990a,b),
Buse (1992), Choi and Phillips (1992), Maddala and Jeong (1992), and Bound, Jaeger, and
Baker (1993, 1995).
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function) – can be the same for different values of the parameter vector.3 An
important consequence of this sort of situation is a statistical impossibility: we
cannot design a data-based procedure for distinguishing between equivalent
parameter values (unless additional information is introduced). In particular,
no reasonable test can be produced.4 In non-parametric models, identification
is more difficult to characterize because a likelihood function (involving a finite
number of parameters) is not available, and parameters are often introduced
through more abstract techniques (e.g., functionals of distribution functions).
But the central problem is the same: can we distinguish between alternative
values of the parameter? So, quite generally, an identification problem can be
viewed as a special form of non-testability. Specifically,

. identification involves the possibility of distinguishing different parameter
values on the basis of the corresponding data distributions, while

. testability refers to the possibility of designing procedures that can discrim-
inate between subsets of parameter values.

Alternatively, a problem of non-testability can be viewed as a form of non-
identification (or underidentification). These problems are closely related.
Furthermore, it is well known that one can create a non-identified model by
introducing redundant parameters, and conversely identification problems can
be eliminated by transforming the parameter space (e.g., by reducing the
number of parameters). Problems of non-identification are associated with
bad parameterizations, inappropriate choices of parameter representations. We
will see below that the same remark applies quite generally to non-testability
problems, especially in non-parametric set-ups.

In this paper, we pursue two main objectives: first, we analyse the statistical
problems associated with non-identification within the broader context of
testability; second, we review the inferential issues linked to the possible pres-
ence of weak instruments in structural models. More precisely, regarding the
issue of testability, the following points will be emphasized:

1. many models and hypotheses are formulated in ways that make them
fundamentally non-testable; in particular, this tends to be the case in
non-parametric set-ups;

2. such difficulties arise in basic apparently well-defined problems, such as:
(a) testing a hypothesis about a mean when the observations are indepen-
dent and identically distributed (i.i.d.); (b) testing a hypothesis about a

3 For general expositions of the theory of identification in econometrics and statistics, the reader
may consult Rothenberg (1971), Fisher (1976), Hsiao (1983), Prakasa Rao (1992), Bekker,
Merckens, and Wansbeek (1994), and Manski (1995, 2003).

4 By a reasonable test, we mean here a test that both satisfies a level constraint and may have
power superior to the level when the tested hypothesis (the null hypothesis) does not hold. This
will be discussed in greater detail below.
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mean (or a median) with heteroscedasticity of unknown form; (c) testing
the unit root hypothesis on an autoregressive model whose order can be
arbitrarily large;

3. some parameters tend to be non-testable (badly identified) in non-
parametric models while others are not; in particular, non-testability easily
occurs for moments (e.g., means, variances) while it does not for quantiles
(e.g., medians); from this viewpoint, moments are not a good way of
representing the properties of distributions in non-parametric set-ups,
while quantiles are so;

4. these phenomena underscore parametric non-separability problems: state-
ments about a given parameter (often interpreted as the parameter of
interest) are not empirically meaningful without information about other
parameters (often called nuisance parameters); but hypotheses that set
both the parameter of interest and some nuisance parameters may well
be testable in such circumstances, so that the development of appropriate
inference procedures should start from a joint approach;

5. to the extent that asymptotic distributional theory is viewed as a way of
producing statistical methods that are valid under ‘weak’ distributional
assumptions, it is fundamentally misleading because, under non-parametric
assumptions, such approximations are arbitrarily bad in finite samples.

Concerning weak instruments, we will review the associated problems and
proposed solutions, with an emphasis on finite-sample properties and the
development of tests and confidence sets that are robust to the presence of
weak instruments. In particular, the following points will be stressed:

1. in accordance with basic statistical theory, one should always look for pivots
as the fundamental ingredient for building tests and confidence sets; this
principle appears to be especially important when identification problems
are present;

2. parametric non-separability arises in striking ways when some parameters
may not be identified, so that proper pivots may easily involve many more
parameters than the parameter of interest; this also indicates that the
common distinction between parameters of interest and nuisance par-
ameters can be quite arbitrary, if not misleading;

3. important additional criteria for evaluating procedures in such contexts
include various forms of invariance (or robustness), such as: (a) robustness
to weak instruments; (b) robustness to instrument exclusion; (c) robust-
ness to the specification of the model for the endogenous explanatory
variables in the equation(s) of interest;

4. weak instrument problems underscore in a striking way the limitations of
large-sample arguments for deriving and evaluating inference procedures;

5. very few informative pivotal functions have been proposed in the context
of simultaneous equations models;
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6. the early statistic proposed by Anderson and Rubin (1949, AR) constitu-
tes one of the (very rare) truly pivotal functions proposed for SEM;
furthermore, it satisfies all the invariance properties listed above, so that
it may reasonably viewed as a fundamental building block for developing
reliable inference procedures in the presence of weak instruments;

7. a fairly complete set of inference procedures that allow one to produce
tests and confidence sets for all model parameters can be obtained through
projection techniques;

8. various extensions and improvements over the AR method are possible,
especially in improving power; however, it is important to note that these
often come at the expense of using large-sample approximations or giving
up robustness.

The literature on weak instruments is growing rapidly, and we cannot provide
here a complete review. In particular, we will not discuss in any detail results
on estimation, the detection of weak instruments, or asymptotic theory in this
context. For that purpose, we refer the reader to the excellent survey recently
published by Stock, Wright, and Yogo (2002).

The paper is organized as follows. In the next two sections, we review
succinctly some basic notions concerning models (section 2) and statistical
theory (section 3), which are important for our discussion. In section 4, we
study testability problems in non-parametric models. In section 5, we review
the statistical difficulties associated with weak instruments. In section 6, we
examine a number of possible solutions in the context of linear SEM, while
extensions to non-linear or non-Gaussian models are considered in section 7.
We conclude in section 8.

2. Models

The purpose of econometric analysis is to develop mathematical representa-
tions of data, which we call models or hypotheses (models subject to restric-
tions). A hypothesis should have two basic features.

1. It must restrict the expected behaviour of observations, be informative. A
non-restrictive hypothesis says nothing and, consequently, does not teach us
anything: it is empirically empty, void of empirical content. The more restric-
tive a model is, the more informative it is, and the more interesting it is.

2. It must be compatible with available data; ideally, we would like it to be true.

However, these two criteria are not always compatible:

1. the information criterion suggests the use of parsimonious models that
usually take the form of parametric models based on strong assumptions;
note the information criterion is emphasized by an influential view in
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philosophy of science that stresses falsifiability as a criterion for the
scientific character of a theory (Popper 1968);

2. in contrast, compatibility with observed data is most easily satisfied by vague
models that impose few restrictions; vague models may take the form of
parametric models with a large number of free parameters or non-parametric
models that involve an infinite set of free parameters and thus allow for
weak assumptions.

Models can be classified as being either deterministic or stochastic. Determinis-
tic models, which claim to make arbitrarily precise predictions, are highly
falsifiable but always inconsistent with observed data. Accordingly, most
models used in econometrics are stochastic. Such models are unverifiable: as
with any theory that makes an indefinite number of predictions, we can never
be sure that the model will not be put in jeopardy by new data. Moreover, they
are logically unfalsifiable: in contrast with deterministic models, a probabilistic
model is usually logically compatible with all possible observation vectors.

Given these facts, it is clear that any criterion for assessing whether a hypoth-
esis is acceptable must involve a conventional aspect. The purpose of hypothesis
testing theory is to supply a coherent framework for accepting or rejecting
probabilistic hypotheses. It is a probabilistic adaptation of the falsification
principle. (For further discussion on the issues in this section, see Dufour
2000.)

3. Statistical notions

In this section, we review succinctly basic statistical notions which are essential
for understanding the rest of our discussion. The general outlook follows
modern statistical testing theory, derived from the Neyman-Pearson approach
and described in standard textbooks, such as Lehmann (1986).

3.1. Hypotheses
Consider an observational experiment whose result can be represented by a
vector of observations

XðnÞ ¼ ðX1; . . . ; XnÞ0; ð1Þ
where Xi takes real values, and let

�FFðxÞ ¼ �FFðx1; . . . ;xnÞ ¼ P½X1 � x1; . . . ;Xn � xn� ð2Þ

be its distribution, where x¼ (x1, . . . ,xn). We denote by F n the set of possible

distribution functions on Rn½ �FF 2 F n�.
For various reasons, we prefer to represent distributions in terms of par-

ameters. There are two ways of introducing parameters in a model. The first is to
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define a function from a space of probability distributions to a vector in some
Euclidean space:

� : F n�!Rp: ð3Þ

Examples of such parameters include the moments of a distribution (mean,
variance, kurtosis, etc.) and its quantiles (median, quartiles, etc.). Such func-
tions are also called functionals. The second approach is to define a family of
distribution functions that are indexed by a parameter vector �:

FðxÞ ¼ F0ðx j �Þ; ð4Þ

where F0 is a distribution function with a specific form. For example, if F0(xj�)
represents a Gaussian distribution with mean � and variance �2 (e.g., corres-
ponding to a Gaussian law), we have �¼ (�, �2).

A model is parametric if the distribution of the data is specified up to a finite
number of (scalar) parameters. Otherwise, it is non-parametric. A hypothesis
H0 on X(n) is an assertion of the type

H0: �FF 2 H0; ð5Þ

where H0 is a subset of F n, the set of all possible distributions F n. The set H0

may contain a single distribution (simple hypothesis) or several distributions
(composite hypothesis). In particular, if we can write �¼ (�1, �2), H0 often takes
the following form:

H0 � fFð�Þ: FðxÞ ¼ F0ðx j �1; �2Þ and �1 ¼ �01g: ð6Þ

We usually abbreviate this as

H0: �1 ¼ �01: ð7Þ

In such a case, we call �1 the parameter of interest and �2 a nuisance
parameter; the parameter of interest is set by H0 but the nuisance parameter
remains unknown. H0 may be interpreted as follows: there is at least one
distribution in H0 that can be viewed as a representation compatible with the
observed ‘behaviour’ of X(n). Then we can say that

H0 is acceptable()
�
ð9F 2 H0Þ F is acceptable

�
ð8Þ

or, equivalently,

H0 is unacceptable()
�
ð8F 2 H0Þ F is unacceptable

�
: ð9Þ
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Showing that H0 is unacceptable requires one to show that all distributions in
H0 are incompatible with the observed data.

3.2. Test level and size
A test for H0 is a rule by which one decides to reject or accept the hypothesis
(or to view it as incompatible with the data). It usually takes the form

reject H0 if SnðX1; . . . ;XnÞ> c

do not reject H0 if SnðX1; . . . ;XnÞ� c:
ð10Þ

The test has level � iff

PF ½Rejecting H0� � � for all F 2 H0 ð11Þ

or, equivalently,

sup
F2H0

PF ½Rejecting H0� � �; ð12Þ

where PF[�] is the function (probability measure) giving the probability of an
event when the data distribution function is F. The test has size � if

sup
F2H0

PF ½Rejecting H0� ¼ �: ð13Þ

H0 is testable if we can find a finite number c that satisfies the level restriction.
Probabilities of rejecting H0 for distributions outside H0 (i.e., for F =2H0Þ define
the power function of the test.5 Power describes the ability of a test to detect a
‘false’ hypothesis. Alternative tests are typically assessed by comparing their
powers: between two tests with the same level, the one with the highest power
against a given alternative distribution F =2H0 is deemed preferable (at least
under this particular alternative). Among tests with the same level, we typically
like to have a test with the highest possible power against ‘alternatives of interest.’

As the set H0 gets larger, the test procedure must satisfy a bigger set of
constraints: the larger is the set of distributions compatible with a null hypoth-
esis, the stronger are the restrictions on the test procedure. In other words, the
less restrictive a hypothesis is, the more restricted will be the corresponding test
procedure. It is easy to understand that imposing a large set of restrictions on a
test procedure may reduce its power against specific alternatives. There may be

5 More formally, the power function can be defined as the function: P(F)¼PF [Rejecting H0] for
F 2 H1nH0, where H1 is an appropriate subset of the set of all possible distributions F n.
Sometimes, it is also defined on the set H1 [H0, in which case it should satisfy the level
constraint for F 2 H0.
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a point where the restrictions are no longer implementable, in the
sense that no procedure that has some power can satisfy the level
constraint: H0 is non-testable. In such a case, we have an ill-defined test
problem.

In a framework such as the one in (6), where we distinguish between a
parameter of interest �1 and a nuisance parameter �2, this is typically due to
heavy dependence of the distribution of Sn on the nuisance parameter �2. If the
latter is specified, we may be able to find a (finite) critical value c¼ c(�, �2) that
satisfies the level constraint (11). But in ill-defined problems, c(�, �2) depends
heavily on �2, so that it is not possible to find a useful (finite) critical value for
testing H0, that is, sup�2 cð�; �2Þ ¼ 1. Besides, even if this is the case, it does

not imply that a hypothesis that would fix both �1 and �2 is not testable; that is,

the hypothesis H 0
0 : ð�1; �2Þ ¼ ð�01; �02Þ may be perfectly testable. But only a

complete specification of the vector (�1, �2) does allow one to interpret the
values taken by the test statistic Sn (non-separability).

3.3. Confidence sets and pivots
If we consider a hypothesis of the form

H0ð�01Þ: �1 ¼ �01; ð14Þ

and if we can build a different test Snð�01; X1; . . . ;XnÞ for each possible value

of �01, we can determine the set of values that can be viewed as compatible with

the data according to the tests considered:

C ¼ �01: Snð�01; X1; . . . ;XnÞ � cð�01Þ
� �

: ð15Þ

If

PF

�
Rejecting H0ð�01Þ

�
�� for all F 2 HðF0 ; �

0
1Þ; ð16Þ

we have

inf
�1;�2

PF ½�1 2C� � 1� �: ð17Þ

C is a confidence set with level 1�� for �1. The set C covers the ‘true’
parameter value �1 with probability at least 1��. The minimal probability
of covering the true value of �1, that is, inf�1�2 P½�1 2C�, is called the size of the
confidence set.

In practice, confidence regions (or confidence intervals) were made possible
by the discovery of pivotal functions (or pivots): a pivot for �1 is a function
Sn(�1; X1, . . . ,Xn) whose distribution does not depend on unknown parameters
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(nuisance parameters); in particular, the distribution does not depend on �2.
More generally, the function Sn(�1; X1, . . . ,Xn) is boundedly pivotal if its dis-
tribution function may depend on � but is bounded over the parameter space
(see Dufour 1997). When we have a pivotal function (or a boundedly pivotal
function), we can find a point c such that

PF ½Snð�1; X1; . . . ;XnÞ � c� � �; 8�1: ð18Þ

For example, if X1; . . . ;Xn �
i:i:d:

N½�; �2�; the t� statistic

tnð�Þ ¼
ffiffiffi
n

p
ð �XXn � �Þ=sX ; ð19Þ

where �XXn ¼ �n
i¼1Xi=n and sX ¼ �n

i¼1ðXi � �XXnÞ=ðn� 1Þ, follows a Student

t(n� 1) distribution, which does not depend on the unknown values of � and

�; hence, it is a pivot. By contrast,
ffiffiffi
n

p
ð �XXn � �Þ is not a pivot because its

distribution depends on �. More generally, in the classical linear model with
several regressors, the t statistics for individual coefficients (say, tð�iÞ ¼ffiffiffi
n

p
ð�̂�i � �iÞ=�̂��̂�i

) constitute pivots because their distributions do not depend

on unknown nuisance parameters; in particular, the values of the other regres-
sion coefficients disappear from the distribution.

3.4. Testability and identification
When formulating and trying to solve test problems, two types of basic
difficulties can arise. First, there is no valid test that satisfies reasonable
properties (such as depending upon the data): in such a case, we have a non-
testable hypothesis, an empirically empty hypothesis. Second, the proposed
statistic cannot be pivotal for the model considered: its distribution varies
too much under the null hypothesis to determine a finite critical point satisfy-
ing the level restriction (18).

If a hypothesis is non-testable, we are not able to design a reasonable
procedure for deciding whether it holds (without the introduction of additional
data or information). This difficulty is closely related to the concept of identi-
fication in econometrics. A parameter � is identifiable iff

�ðF1Þ 6¼ �ðF2Þ¼)F1 6¼ F2: ð20Þ

For �1 6¼ �2, we can, in principle, design a procedure for deciding whether �¼ �1
or �¼ �2. The values of � are testable. More generally, a parametric transform-
ation g(�) is identifiable iff

g½�ðF1Þ� 6¼ g½�ðF2Þ�¼)F1 6¼ F2: ð21Þ
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Intuitively, these definitions mean that different values of the parameter imply
different distributions of the data, so that we may expect to be able to ‘tell’ the
difference by looking at the data. This is certainly the case when a unique
distribution is associated with each parameter value (e.g., we may use the
Neyman-Pearson likelihood ratio test to make the decision), but this may not
be the case when a parameter covers several distributions. In the next section,
we examine several cases where this happens.

4. Testability, non-parametric models, and asymptotic methods

We will now discuss three examples of test problems that look perfectly well
defined and sensible at first sight, but turn out to be ill defined when we look at
them more carefully. These include (1) testing a hypothesis about a mean when
the observations are independent and identically distributed (i.i.d.); (2) testing
a hypothesis about a mean (or a median) with heteroscedasticity of unknown
form; (3) testing the unit root hypothesis on an autoregressive model whose
order can be arbitrarily large.6

4.1. Procedures robust to non-normality
One of the most basic problems in econometrics and statistics consists in
testing a hypothesis about a mean, for example, its equality to zero. For
instance, hypothesis tests on regression coefficients in linear regressions or,
more generally, on parameters of models that are estimated by the generalized
method of moments (GMM) can be viewed as extensions of this fundamental
problem. If the simplest versions of the problem have no reasonable solution,
the situation will not improve when we consider more complex versions (as is
done routinely in econometrics).

The problem of testing a hypothesis about a mean has a very well-known
and neat solution when the observations are independent and identically
(i.i.d.) distributed according to a normal distribution: we can use a t test.
The normality assumption, however, is often considered to be too ‘strong.’ So
it is tempting to consider a weaker (less restrictive) version of this null
hypothesis, such as

H0ð�0Þ:X1; . . . ;Xn are i:i:d: observations with EðX1Þ ¼ �0: ð22Þ

In other words, we would like to test the hypothesis that the observations have
mean �0, under the general assumption that X1, . . . , Xn are i.i.d. Here H0(�0) is
a non-parametric hypothesis because the distribution of the data cannot be

6 Further discussion on the issues discussed in this section is available in Dufour (2001). For
related discussions, see also Horowitz (2001), Maasoumi (1992), and Pötscher (2002).
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completely specified by fixing a finite number of parameters. The set of
possible data distributions (or data-generating processes) compatible with
this hypothesis, that is,

Hð�0Þ ¼fDistribution functions Fn 2F n

such thatH0ð�0Þ is satisfiedg; ð23Þ

is much larger here than in the Gaussian case and imposes very strong restrictions
on the test. Indeed, the setHð�0Þ is so large that the following propertymust hold.

THEOREM 1. MEAN NON-TESTABILITY IN NON-PARAMETRIC MODELS. If a test has level

� for H0(�0), that is,

PFn
½Rejecting H0ð�0Þ� � � for all Fn 2 Hð�0Þ; (24)

then, for any �1 6¼�0,

PFn
½Rejecting H0ð�0Þ� � � for all Fn 2 Hð�1Þ: (25)

Further, if there is at least one value �1 6¼�0 such that

PFn

�
Rejecting H0ð�0Þ

�
� � for at least one Fn 2 Hð�1Þ; (26)

then, for all �1 6¼�0,

PFn

�
Rejecting H0ð�0Þ

�
¼ � for all Fn 2 Hð�Þ: (27)

Proof. See Bahadur and Savage (1956). &

In other words (by (25)), if a test has level � for testing H0(�0) the probability
of rejecting H0(�0) should not exceed the level irrespective how far the ‘true’
mean is from �0. Further (by (27)), if ‘by luck’ the power of the test gets as high
as the level, then the probability of rejecting should be uniformly equal to the
level �. Here, the restrictions imposed by the level constraint are so strong that
the test cannot have power exceeding its level: it should be insensitive to cases
where the null hypothesis does not hold! An optimal test (say, at level 0.05) in
such a problem can be run as follows: (1) ignore the data; (2) using a random
number generator, produce a realization of a variable U according to a uniform
distribution on the interval (0, 1); that is, U � U(0, 1); (3) reject H0 if U� 0.05.
Clearly, this is not an interesting procedure. It is also easy to see that a similar
result will hold if we add various non-parametric restrictions on the distribution,
such as a finite variance assumption.
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The above theorem also implies that tests based on the ‘asymptotic distribu-
tion’ of the usual t statistic for �¼�0 (tn(�0) defined in (19)) has size one under
H0(�0):

sup
Fn2Hð�0Þ

PFn

�
jtnð�0Þj > c

�
¼ 1 ð28Þ

for any finite critical value c. In other words, procedures based on the asymp-
totic distribution of a test statistic have sizes that deviate arbitrarily from their
nominal size.

A way to interpret what happens here is through the distinction between
pointwise convergence and uniform convergence. Suppose, to simplify, that the
probability of rejecting H0(�0) when it is true depends on a single nuisance
parameter � in the following way:

Pnð�Þ � P�

�
jtnð�0Þj > c

�
¼ 0:05þ ð0:95Þe�j�jn; ð29Þ

where � 6¼ 0. Then, for each value of �, the test has level 0.05 asymptotically;
that is,

lim
n!1

Pnð�Þ ¼ 0:05; ð30Þ

but the size of the test is one for all sample sizes:

sup
�>0

Pnð�Þ ¼ 1; for all n: ð31Þ

Pn(�) converges to a level of 0.05 pointwise (for each �), but the convergence is
not uniform, so that the probability of rejection is arbitrarily close to one for �
sufficiently close to zero (for all sample sizes n).

Many other hypotheses lead to similar difficulties. Examples include

1. hypotheses about various moments of Xt:

H0ð�2Þ:X1; . . . ;Xn are i.i.d. observations such that Var ðXtÞ ¼ �2

H0ð�pÞ:X1; . . . ;Xn are i.i.d. observations such that EðXp
t Þ ¼ �p;

2. most hypotheses on the coefficients of a regression (linear or non-linear), a
structural equation (as in SEM), or a more general estimating function
(Godambe 1960):

H0ð�0Þ: gtðXt; �0Þ ¼ ut; t ¼ 1; . . . ;T ; where u1; . . . ; uT are i:i:d:
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In econometrics, models of the form H0(�0) are typically estimated and tested
through a variant of the generalized method of moments (GMM), usually with
weaker assumptions on the distribution of u1, . . . ,uT; see Hansen (1982),
Newey and West (1987a), Newey and McFadden (1994) and Hall (1999). To
the extent that GMM methods are viewed as a way to allow for ‘weak
assumptions,’ it follows from the above discussion that they constitute
pseudo-solutions of ill-defined problems.

It is important to observe that the above discussion does not imply that all
non-parametric hypotheses are non-testable. In the present case, the problem
of non-testability could be eliminated by choosing another measure of central
tendency, such as a median:

H0:5
0 ðm0Þ: X1; . . . ;Xn are i.i.d. continuous r.v.s such that

Med ðXtÞ¼m0; t ¼ 1; . . . ;T :

H0:5
0 ðm0Þ can be easily tested with a sign test (see Pratt and Gibbons 1981,

chap. 2). More generally, hypotheses on the quantiles of the distribution of
observations in random sample remain testable non-parametrically:

H
p
0ðQp0Þ: X1; . . . ;Xn are i.i.d. observations such that

P
�
Xt � Qp0

�
¼ p; t ¼ 1; . . . ;T :

Moments are not empirically meaningful functionals in non-parametric
models (unless strong distributional assumptions are added), though quan-
tiles are so.

4.2. Procedures robust to heteroscedasticity of unknown form
Another common problem in econometrics consists in developing methods
which remain valid in making inference on regression coefficients when the
variances of the observations are not identical (heteroscedasticity). In particu-
lar, this may go as far as looking for tests that are ‘robust to heteroskedasticity
of unknown form.’ But it is not widely appreciated that this involves very
strong restrictions on the procedures that can satisfy this requirement. To see
this, consider the problem that consists in testing whether n observations are
independent with common zero median, namely:

H0: X1; . . . ;Xn are independent random variables each

with a distribution symmetric about zero: ð32Þ

Equivalently, H0 states that the joint distribution Fn of the observations
belongs to the (huge) set H0 ¼ fFn 2 F n: Fn satisfies H0g. H0 allows hetero-
scedasticity of unknown form.
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THEOREM 2. CHARACTERIZATION OF HETEROSCEDASTICITY ROBUST TESTS. If a test has
level � for H0, where 0<�< 1, then it must satisfy the condition

P½Rejecting H0 j jX1j; . . . ; jXnj � � � under H0: (33)

Proof. See Pratt and Gibbons (1981, sec. 5.10) and Lehmann and Stein
(1949). &

In other words, a valid test with level � must be a sign test – or,
more precisely, its level must be equal to � conditional on the absolute
values of the observations (which amounts to considering a test based on the
signs of the observations). From this, the following remarkable property
follows.

COROLLARY 3. If, for all 0<�< 1, the condition (33) is not satisfied, then the size
of the test is equal to one; that is,

sup
Fn2H0

PFn
½Rejecting H0� ¼ 1: (34)

In other words, if a test procedure does not satisfy (33) for all levels
0<�< 1, then its true size is one irrespective of its nominal size. Most so-called
heteroscedasticity robust procedures based on ‘‘corrected’’ standard errors (see
White 1980; Newey and West 1987b; Davidson and MacKinnon 1993, chap.
16; Cushing and McGarvey 1999) do not satisfy condition (33) and conse-
quently have size one. (For examples of size distortion, see Dufour 1981;
Campbell and Dufour 1995, 1997.)

4.3. Procedures robust to autocorrelation of arbitrary form
As a third illustration, let us now examine the problem of testing the unit root
hypothesis in the context of an autoregressive model whose order is infinite or
is not bounded by a prespecified maximal order:

Xt ¼ �0 þ
Xp
k¼1

�kXt�k þ ut; ut �i:i:d:N½0 ; �2� ; t ¼ 1 ; . . . ; n; ð35Þ

where p is not bounded a priori. This type of problem has attracted a lot of
attention in recent years. (For Reviews of this huge literature, see Banerjee
et al. 1993; Stock 1994; Tanaka 1996; Maddala and Kim 1998.) We wish to test

~HH0:
Xp
k¼1

�k ¼ 1 ð36Þ
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or, more precisely,

~HH0: Xt ¼ �0þ
Xp
k¼1

�kXt�k þ ut; t ¼ 1 ; . . . ; n; for some p � 0;

Xp
k¼1

�k ¼ 1 and ut �i:i:d:N½0 ; �2�: ð37Þ

About this problem, we can show the following theorem and corollary.

THEOREM 4. UNIT ROOT NON-TESTABILITY IN NON-PARAMETRIC MODELS. If a test has
level � for ~HH0, that is,

PFn
½Rejecting ~HH0� � � for all Fn satisfying ~HH0; (38)

then

PFn
½Rejecting ~HH0� � � for all Fn: (39)

Proof. See Cochrane (1991) and Blough (1992).

COROLLARY 5. If, for all 0<�< 1, the condition (39) is not satisfied, then the size
of the test is equal to one; that is,

sup
Fn2H0

PFn
½Rejecting ~HH0� ¼ 1;

where H0 is the set of all data distributions Fn that satisfy ~HH0.

As in the mean problem, the null hypothesis is simply too ‘large’ (unrestricted)
to allow testing from a finite data set. Consequently, all procedures that claim to
offer corrections for very general forms of serial dependence (e.g., Phillips 1987;
Phillips and Perron 1988) are affected by these problems: irrespective of the
nominal level of the test, the true size under the hypothesis ~HH0 is equal to one.

To get a testable hypothesis, it is essential to fix jointly the order of the AR
process (i.e., a numerical upper bound on the order) and the sum of the
coefficients: for example, we could consider the following null hypothesis
where the order of the autoregressive process is equal to 12:

H0ð12Þ: Xt ¼ �0 þ
X12
k¼1

�kXt�k þ ut; t ¼ 1; . . . ; n;

X12
k¼1

�k ¼ 1 and ut �i:i:d:N½0 ; �2�: ð40Þ
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The order of the autoregressive process is an essential part of the hypothesis: it
is not possible to separate inference on the unit root hypothesis from inference
on the order of the process. Similar difficulties will also occur for most other
hypotheses on the coefficients of (37). For further discussion of this topic, the
reader may consult Sims (1971a,b), Blough (1992), Faust (1996, 1999), and
Pötscher (2002).

5. Structural models and weak instruments

Several authors in the past have noted that usual asymptotic approximations
are not valid or lead to very inaccurate results when parameters of interest are
close to regions where these parameters are no longer identifiable. The litera-
ture on this topic is now considerable.7 In this section, we shall examine these
issues in the context of SEM.

5.1. Standard simultaneous equations model
Let us consider the standard simultaneous equations model:

y ¼ Y� þ X1� þ u ð41Þ

Y ¼ X1�1 þ X2�2 þ V ; ð42Þ

where y and Y are T� 1 and T�G matrices of endogenous variables, X1 and
X2 are T� k1 and T� k2 matrices of exogenous variables, � and � are G� 1
and k1� 1 vectors of unknown coefficients, �1 and �2 are k1�G and k2�G
matrices of unknown coefficients, u¼ (u1, . . . ,uT)

0 is a T� 1 vector of structural
disturbances, and V¼ [V1, . . . ,VT]

0 is a T�G matrix of reduced-form disturb-
ances. Further,

X ¼ ½X1;X2� is a full-column rank T � k matrix; ð43Þ

7 See Sargan (1983), Phillips (1984, 1985, 1989), Gleser and Hwang (1987), Koschat (1987),
Hillier (1990), Nelson and Startz (1990a,b), Buse (1992), Choi and Phillips (1992), Maddala and
Jeong (1992), Bound, Jaeger, and Baker (1993, 1995), Dufour and Jasiak (1993, 2001),
McManus, Nankervis, and Savin (1994), Angrist and Krueger (1995), Hall, Rudebusch, and
Wilcox (1996), Dufour (1997), Shea (1997), Staiger and Stock (1997), Wang and Zivot (1998),
Hall and Peixe (2000), Stock and Wright (2000), Hahn and Hausman (2002a,b,c), Hahn,
Hausman, and Kuersteiner (2001), Dufour and Taamouti (2000, 2001a, b), Startz, Nelson, and
Zivot (2001), Kleibergen (2001a,b, 2002a,b, 2003), Bekker (2002), Bekker and Kleibergen
(2001), Chao and Swanson (2001, 2003), Moreira (2001, 2003a,b), Moreira and Poi (2001),
Stock and Yogo (2002, 2003), Stock, Wright, and Yogo (2002), Imbens and Manski (2003),
Kleibergen and Zivot (2003), Perron (2003), Wright (2003) and Zivot, Startz, and Nelson (1998,
2003).
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where k¼ k1þ k2. Finally, to get a finite-sample distributional theory for
the test statistics, we shall use the following assumptions on the distribution
of u:

u and X are independent; ð44Þ

u � N
�
0; �2

uIT
�
: ð45Þ

(44) may be interpreted as the strict exogeneity of X with respect to u.
Note that the distribution of V is not otherwise restricted; in particular, the

vectors V1, . . . ,VT need not follow a Gaussian distribution and may be hetero-
scedastic. Below, we shall also consider the situation where the reduced-form
equation for Y includes a third set of instruments X3, which are not used in the
estimation:

Y ¼ X1�1 þ X2�2 þ X3�3 þ V ; ð46Þ

where X3 is a T� k3 matrix of explanatory variables (not necessarily strictly
exogenous); in particular, X3 may be unobservable. We view this situation as
important because, in practice, it is quite rare that one can consider all the
relevant instruments that could be used. Even more generally, we could also
assume that Y obeys a general non-linear model of the form:

Y ¼ gðX1; X2; X3;V ; �Þ; ð47Þ

where g(�) is a possibly unspecified non-linear function and � is an unknown
parameter matrix.

The model presented in (41)–(42) can be rewritten in reduced form as

y ¼ X1�1 þ X2�2 þ v ð48Þ

Y ¼ X1�1 þ X2�2 þ V ; ð49Þ

where �1¼�1�þ �, v¼ uþV� and

�2 ¼ �2�: ð50Þ

Suppose, now, that we are interested in making inference about �.
Equation (50) is the crucial equation governing identification in this system:

we need to be able to recover � from the values of the regression coefficients �2
and �2. The necessary and sufficient condition for identification is the well-
known rank condition for the identification of �:
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� is identifiable iff rankð�2Þ ¼ G: ð51Þ

We have a weak instrument problem when either rank(�2)< k2 (non-identifica-
tion), or �2 is close to having deficient rank (i.e., rank (�2)¼ k2 with strong
linear dependence between the rows (or columns) of �2). There is no compel-
ling definition of the notion near-non-identification, but reasonable character-
izations include the condition that detð�0

2�2Þ is ‘close to zero,’ or that �0
2�2

has one or several eigenvalues ‘close to zero’.
Weak instruments are notorious for causing serious statistical difficulties

on several fronts: (1) parameter estimation; (2) confidence interval cons-
truction; (3) hypothesis testing. We now consider these problems in greater
detail.

5.2. Statistical problems associated with weak instruments
The problems associated with weak instruments were originally discovered
through their consequences for estimation. Work in this area includes

1. theoretical work on the exact distribution of two-stage least squares
(2SLS) and other ‘consistent’ structural estimators and test statistics
(Phillips 1983, 1984, 1985, 1989; Rothenberg 1984, Hillier 1990; Nelson
and Startz 1990a, b; Buse 1992; Maddala and Jeong 1992; Choi and
Phillips 1992; Dufour 1997);

2. weak-instrument (local to non-identification) asymptotics (Staiger and
Stock 1997; Stock and Wright 2000);

3. empirical examples (Bound, Jaeger, and Baker 1995).

The main conclusions of this research can be summarized as follows.

1. Theoretical results show that the distributions of various estimators
depend in a complicated way on unknown nuisance parameters. Thus,
they are difficult to interpret.

2. When identification conditions are not satisfied, standard asymptotic
theory for estimators and test statistics typically collapses.

3. With weak instruments,

a) the 2SLS estimator becomes heavily biased (in the same direction as
ordinary least squares (OLS);

b) the distribution of the 2SLS estimator is quite far from the normal
distribution (e.g., bimodal).

4. A striking illustration of these problems appears in the reconsideration by
Bound, Jaeger, and Baker (1995) of a study on returns to education by
Angrist and Krueger (1991). Using 329,000 observations, these authors
found that replacing the instruments used by Angrist and Krueger (1991)
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with randomly generated (totally irrelevant) instruments produced very
similar point estimates and standard errors. This result indicates that the
original instruments were weak.

For a more complete discussion of estimation with weak instruments, the
reader may consult Stock, Wright, and Yogo (2002).

5.3. Characterization of valid tests and confidence sets
Weak instruments also lead to very serious problems when one tries to perform
tests or build confidence intervals on the parameters of the model. Consider a
situation where we have two parameters �1 and �2 (i.e., �¼ (�1, �2)) such that �2
is no longer identified when �1 takes a certain value, say, �1 ¼ �01:

Lðy j �1; �2Þ � Lðy j �01Þ: ð52Þ

THEOREM 6. If �2 is a parameter whose value is not bounded, then the confidence
region C with level 1�� for �2 must have the following property:

P�½C is unbounded� > 0; (53)

and, if �1 ¼ �01,

P�½C is unbounded� � 1� �: (54)

Proof. See Dufour (1997).

COROLLARY 7. If C does not satisfy the property given in the previous theorem, its
size must be zero.

This will be the case, in particular, for any Wald-type confidence interval,
obtained by assuming that

t�̂�2 ¼
b��2 � �2b���2

�approx
Nð0; 1Þ; ð55Þ

which yields confidence intervals of the form b��2 � cb���2 � �2 � b��2 þ cb���2 , where
P[jN(0, 1)j> c]��. By the above corollary, this type of interval has level zero,
irrespective of the critical value c used:

inf
�

P�
b��2 � cb���2 � �2 � b��2 þ cb���2

h i
¼ 0: ð56Þ

In such situations, the notion of standard error loses its usual meaning and
does not constitute a valid basis for building confidence intervals. In SEM, for
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example, this applies to standard confidence intervals based on 2SLS estima-
tors and their asymptotic ‘standard errors.’

Correspondingly, if we wish to test a hypothesis of form H0: �2 ¼ �02, the
size of any test of the form

t�̂�2ð�
0
2Þ

��� ��� ¼ b��2 � �02b���2

�����
����� > cð�Þ ð57Þ

will deviate arbitrarily from its nominal size. No unique large-sample distribu-
tion for t�̂�2 can provide valid tests and confidence intervals based on the
asymptotic distribution of t�̂�2 . From a statistical viewpoint, this means that t�̂�2
is not a pivotal function for the model considered. More generally, this type
of problem affects the validity of all Wald-type methods, which are based on
comparing parameter estimates with their estimated covariance matrix.

By contrast, in models of the form (41)–(45), the distribution of the LR
statistics for most hypotheses on model parameters can be bounded and
cannot move arbitrarily: likelihood ratios are boundedly pivotal functions
and provide a valid basis for testing and confidence set construction (see
Dufour 1997).

The central conclusion here is tests and confidence sets on the parameters of a
structural model should be based on proper pivots.

6. Approaches to weak instrument problems

What should the features of a satisfactory solution to the problem of making
inference in structural models? We shall emphasize here four properties: (1) the
method should be based on proper pivotal functions (ideally, a finite-sample pivot);
(2) robustness to the presence of weak instruments; (3) robustness to excluded
instruments; (4) robustness to the formulation of the model for the explanatory
endogenous variables Y (which is desirable in many practical situations).

In the light of these criteria, we shall discuss first, the Anderson-Rubin
procedure, which in our view is the reference method for dealing with weak
instruments in the context of standard SEM; second, the projection technique
that provides a general way of making a wide spectrum of tests and confidence
sets; and third, several recent proposals aimed at getting improvements over
the AR procedure.

6.1. Anderson-Rubin statistic
A solution to testing in the presence of weak instruments has been available for
more than 50 years (Anderson and Rubin 1949) and is now centre stage again
(Dufour 1997; Staiger and Stock 1997). It is interesting that the AR method
can be viewed as an alternative way of exploiting ‘instruments’ for inference on
a structural model, although it predates the introduction of 2SLS methods in
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SEM (Theil 1953; Basmann 1957), which later became the most widely used
method for estimating linear structural equations models.8 The basic problem
considered consists in testing the hypothesis

H0ð�0Þ: � ¼ �0 ð58Þ

in model (41)–(44). In order to do that, we consider an auxiliary regression
obtained by subtracting Y�0 from both sides of (41) and expanding the right-
hand side in terms of the instruments. This yields the regression

y� Y�0 ¼ X1�1 þ X2�2 þ "; ð59Þ

where �1¼ �þ�1(�� �0), �2¼�2(�� �0) and "¼ uþV(�� �0). Under the
null hypothesis H0(�0), this equation reduces to

y� Y�0 ¼ X1�1 þ "; ð60Þ

so we can test H0(�0) by testing H 0
0ð�0Þ: �2 ¼ 0, in the auxiliary regression (59).

This yields the following F-statistic – the Anderson-Rubin statistic – which
follows a Fisher distribution under the null hypothesis:

ARð�0Þ ¼
½SS0ð�0Þ � SS1ð�0Þ�=k2

SS1ð�0Þ=ðT � kÞ � Fðk2; T � kÞ ð61Þ

where SS0(�0)¼ (y�Y�0)
0M(X1)(y�Y�0) and SS1(�0)¼ (y�Y�0)

0M(X)
(y�Y�0); for any full-rank matrix A, we denote P(A)¼A(A0A)�1 A0 and
M(A)¼ I�P(A). What plays the crucial role here is the fact that we have
instruments (X2) that can be related to Y but are excluded from the structural
equation. To draw inference on the structural parameter �, we ‘hang’ on the
variables in X2: if we add X2 to the constrained structural equation (60), its
coefficient should be zero. For these reasons, we shall call the variables in X2

auxiliary instruments.
Since the latter statistic is a proper pivot, it can be used to build confidence

sets for �:

C�ð�Þ ¼ f�0: ARð�0Þ � F�ðk2; T � kÞg; ð62Þ

where F� (k2, T�k) is the critical value for a test with a level � based on the
F (k2, T�k) distribution. When there is only one endogenous explanatory

8 The basic ideas for using instrumental variables for inference on structural relationships appear
to go back to Working (1927) and Wright (1928). For an interesting discussion of the origin of
IV methods in econometrics, see Stock and Trebbi (2003).
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variable (G¼ 1), this set has an explicit solution involving a quadratic inequa-
tion; that is,

C�ð�Þ ¼ f�0: a�
2
0 þ b�0 þ c � 0g; ð63Þ

where a¼Y0HY, H � M(X1)�M(X) [1þ k2F�(k2, T� k)/(T� k)], b¼� 2Y0Hy,
and c¼ y0Hy. The set C�(�) may easily be determined by finding the roots of the
quadratic polynomial in equation (63); see Dufour and Jasiak (2001) and Zivot,
Startz, and Nelson (1998) for details.

When G> 1, the set C�(�) is not in general an ellipsoid, but it remains fairly
manageable by using the theory of quadrics (Dufour and Taamouti 2000).
When the model is correct and its parameters are well identified by the instru-
ments used, C�(�) is a closed bounded set close to an ellipsoid. In other cases,
it can be unbounded or empty. Unbounded sets are highly likely when the
model is not identified, so they point to lack of identification. Empty confidence
sets can occur (with a non-zero probability) when we have more instruments
than parameters in the structural equation (41), that is, the model is over-
identified. An empty confidence set means that no value of the parameter
vector � is judged to be compatible with the available data, which indicates
that the model is misspecified. So the procedure provides as an interesting
byproduct a specification test. (For further discussion of this point, see
Kleibergen 2002b.)

It is also easy to see that the above procedure remains valid even if the
extended reduced form (46) is the correct model for Y. In other words, we can
leave out a subset of the instruments (X3) and use only X2; the level of the
procedure will not be affected. Indeed, this will also hold if Y is determined by
the general – possibly non-linear – model (47). The procedure is robust to
excluded instruments as well as to the specification of the model for Y. The
power of the test may be affected by the choice of X2, but its level is not. Since
it is quite rare that an investigator can be sure relevant instruments have not
been left out, this is an important practical consideration.

The AR procedure can be extended easily to deal with linear hypotheses
that involve � as well. For example, to test a hypothesis of the form

H0ð�0; �0Þ : � ¼ �0 and � ¼ �0; ð64Þ

we can consider the transformed model

y� Y�0 � X1�0 ¼ X1�1 þ X2�2 þ ": ð65Þ

Since, under H0(�0, �0),

y� Y�0 � X1�0 ¼ "; ð66Þ
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we can test H0(�0, �0) by testing H 0
0ð�0; �0Þ : �1 ¼ 0 and �2¼ 0 in the auxiliary

regression (65); see Maddala (1974). Tests for more general restrictions of the
form

H0ð�0; 	0Þ : � ¼ �0 and R� ¼ 	0; ð67Þ

where R is an r�K fixed full-rank matrix, are discussed in Dufour and Jasiak
(2001).

The AR procedure thus enjoys several remarkable features. Namely, it is (1)
pivotal in finite samples; (2) robust to weak instruments; (3) robust to excluded
instruments; (4) robust to the specification of the model for Y (which can be
non-linear with an unknown form); further, (5) the AR method provides
asymptotically ‘valid’ tests and confidence sets under quite weak distributional
assumptions (basically, the assumptions that cover the usual asymptotic prop-
erties of linear regression); and (6) it can be extended easily to test restrictions
and build confidence sets that also involve the coefficients of the exogenous
variables, such as H0(�0, 	0) in (67).

But the method also has its drawbacks. The main ones are (1) the tests and
confidence sets obtained in this way apply only to the full vector � [or (�0, �0)0];
what can we do, if � has more than one element? (2) power may be low if too
many instruments are added (X2 has too many variables) to perform the test,
especially if the instruments are irrelevant; (3) the error normality assumption
is restrictive and we may wish to consider other distributional assumptions;
(4) the structural equations are assumed to be linear. We will now discuss
a number of methods that have been proposed to circumvent these draw-
backs.

6.2. Projections and inference on parameter subsets
Suppose, now, that � [or (�0, �0)0] has more than one component. The fact that
a procedure with a finite-sample theory has been obtained for ‘joint hypoth-
eses’ of the form H0(�0) (or H0(�0, �0)) is not due to chance: since the
distribution of the data is determined by the full parameter vector, there is
no reason in general why one should be able to decide on the value of a
component of � independently of the others. Such a separation is feasible
only in special situations, for example, in the classical linear model (without
exact multicollinearity). Lack of identification is precisely a situation where
the value of a parameter may be determined only after various restrictions
(e.g., the values of other parameters) have been imposed. So parametric non-
separability arises here, and inference should start from a simultaneous
approach. If the data-generating process corresponds to a model where para-
meters are well identified, precise inferences on individual coefficients may be
feasible. This raises the question of how one can move from a joint inference
on � to its components.
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A general approach to this problem consists in using a projection technique. If

P½� 2 C�ð�Þ� � 1� �; ð68Þ

then, for any function g(�),

P
�
gð�Þ 2 g C�ð�Þ

� ��
� 1� �: ð69Þ

If g(�) is a component of � or (more generally) a linear transformation
g(�)¼w0�, the confidence set for a linear combination of the parameters, say
w0� takes the usual form ½w0 ~�� � �̂�z�; w

0 ~�� þ �̂�z��, with ~�� a k-class type estima-
tor of �; see Dufour and Taamouti (2000).9

Another interesting feature comes from the fact that the confidence sets
obtained in this way are simultaneous in the sense of Scheffé. More precisely, if
{ga(�): a 2 A} is a set of functions of �, then

P
�
gað�Þ 2 g C�ð�Þ

� �
for all a 2 A

�
� 1� �: ð70Þ

If these confidence intervals are used to test different hypotheses, an unlimited
number of hypotheses can be tested without losing control of the overall
level.

6.3. Alternatives to the AR procedure
With a view to improving the power of AR procedures, a number of alternative
methods have been recently suggested. We will now discuss several of them.

6.3.1. Generalized auxiliary regression
A general approach to the problem of testingH0 (�0) consists in replacing X2 in
the auxiliary regression

y� Y�0 ¼ X1�1 þ X2�2 þ " ð71Þ

with an alternative set of auxiliary instruments, say, Z of dimension T� k2. In
other words, we consider the generalized auxiliary regression,

y� Y�0 ¼ X1�1 þ Z���2 þ "; ð72Þ

where ���2 ¼ 0 under H0(�0). So we can test H0(�0) by testing ���2 ¼ 0 in (72).
Then the problem consists in selecting Z so that the level can be controlled and
power may be improved with respect to the AR auxiliary regression (71). For

9 g[C�(�)] takes the form of a bounded confidence interval as soon as the confidence set g[C�(�)]
is unbounded. For further discussion of projection methods, the reader may consult Dufour
(1990, 1997), Campbell and Dufour (1997), Abdelkhalek and Dufour (1998), Dufour, Hallin,
and Mizera (1998), Dufour and Kiviet (1998), and Dufour and Jasiak (2001).
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example, it is easy to see that the power of the AR test could be become low if a
large set of auxiliary instruments is used, especially if the latter are weak. So
several alternative procedures can be generated by reducing the number of
auxiliary instruments (the number of columns in Z).

At the outset, we should note that, if (42) were the correct model and
�¼ [�1, �2] were known, then an optimal choice from the viewpoint of
power consists in choosing Z¼X2�2; see Dufour and Taamouti (2001b). The
practical problem, of course, is that �2 is unknown. This suggests that we
replace X2�2 with an estimate, such as

Z ¼ X2
~��2; ð73Þ

where ~��2 is an estimate of the reduced-form coefficient �2 in (42). The problem
then consists in choosing ~��. For that purpose, it is tempting to use the least
squares estimator �̂� ¼ ðX 0XÞ�1X 0Y . However, �̂� and " are not independent,
and we continue to face a simultaneity problem with messy distributional
consequences. Ideally, we would like to select an estimate ~��2 which is inde-
pendent of ".

6.3.2. Split-sample optimal auxiliary instruments
If we can assume that the error vectors ðut;V 0

t Þ
0; t ¼ 1; . . . ;T , are independ-

ent, this approach to estimating � may be feasible if a split-sample technique is
used: a fraction of the sample is used to obtain ~�� and the rest to estimate the
auxiliary regression (72) with Z ¼ X2

~��2. Under such circumstances, by
conditioning on ~��, we can easily see that the standard F test for ���2 ¼ 0 is
valid. Further, this procedure is robust to weak instruments, excluded
instruments as well as the specification of the model for Y (that is, under the
general assumptions (46) and (47)], as long as the independence between
~�� and " can be maintained. Of course, using a split-sample may involve a
loss of the effective number of observations, and there will be a trade-off
between the efficiency gain from using a smaller number of auxiliary instru-
ments and the observations that are ‘sacrificed’ to get ~��. Better results tend to
be obtained by using a relatively small fraction of the sample to obtain ~�� –
10% for example – and the rest for the main equation. For further details
on this procedure, the reader may consult Dufour and Jasiak (2001) and
Kleibergen (2002a).10

A number of alternative procedures can be cast in the framework of
equation (72).

10 Split-sample techniques often lead to important distributional simplifications; for further
discussion of this type of method, see Angrist and Krueger (1995) and Dufour and Torrès
(1998, 2000).
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6.3.3. LM-type GMM-based statistic
If we take Z¼ZWZ with

ZWZ ¼ P½MðX1ÞX2�Y ¼ P½MðX1ÞX2�MðX1ÞY ¼ ½MðX1ÞX2��̂�2 ð74Þ

�̂�2 ¼ ½X 0
2MðX1ÞX2��1X 0

2MðX1ÞY ; ð75Þ

the F-statistic (say, FGMM(�0)) for ���2 ¼ 0 is a monotonic transformation of
the LM-type statistic LMGMM(�0) proposed by Wang and Zivot (1998).
Namely,

FGMMð�0Þ ¼
T � k1 � G

GT

	 

LMGMMð�0Þ

1� ð1=TÞLMGMMð�0Þ
; ð76Þ

where

LMGMMð�0Þ ¼
ðy� Y�0Þ0P½ZWZ�ðy� Y�0Þ

ðy� Y�0Þ0MðX1Þðy� Y�0Þ=T
: ð77Þ

Note that �̂�2 above is the ordinary least squares (OLS) estimator of �2 from
the multivariate regression (42), so that FGMM(�0) can be obtained by comput-
ing the F-statistic for �*2 ¼ 0 in the regression

y� Y�0 ¼ X1�
*
1 þ ðX2�̂�2Þ�*2 þ u: ð78Þ

When k2�G, the statistic FGMM(�0) can also be obtained by testing �**2 ¼ 0 in
the auxiliary regression

y� Y�0 ¼ X1�
**
1 þ ŶY�**2 þ u; ð79Þ

where ŶY ¼ X�̂�. It is also interesting to note that the OLS estimates of �**1 and
�**2 , obtained by fitting the latter equation, are identical to the 2SLS estimates
of �**1 and �**2 in the equation

y� Y�0 ¼ X1�
**
1 þ Y�**2 þ u: ð80Þ

The LMGMM test may thus be interpreted as an approximation to the optimal
test based on replacing the optimal auxiliary instrument X2�2 by X2�̂�2. The
statistic LMGMM(�0) is also numerically identical to the corresponding
LR-type and Wald-type tests, based on the same GMM estimator (in this
case, the 2SLS estimator of �).
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As mentioned above, the distribution of this statistic will be affected by the
fact that X2�̂�2 and u are not independent. In particular, it is influenced by the
presence of weak instruments. But Wang and Zivot (1998) showed that the
distribution of LMGMM(�0) is bounded by the 
2(k2) asymptotically. When
k2¼G (usually deemed the ‘just-identified’ case, although the model may be
under-identified in that case), we see easily (from (78)) that FGMM(�0) is
(almost surely) identical with the AR statistic, that is,

FGMMð�0Þ ¼ ARð�0Þ if k2 ¼ G; ð81Þ

so that FGMM(�0) follows an exact F(G, T� k) distribution, while for k2>G,

GFGMMð�0Þ �
T � k1 � G

T � k1 � k2

	 

k2 ARð�0Þ; ð82Þ

so that the distribution of LMGMM(�0) can be bounded in finite samples by the
distribution of a monotonic transformation of a F(k2, T� k) variable (which,
for T large, is very close to the 
2(k2) distribution). But, for T reasonably large,
AR(�0) will always reject when FGMM(�0) rejects (at a given level), so the power
of the AR test is uniformly superior to that of the LMGMM bound test.11

6.3.4. Kleibergen’s K test
If we take Z¼ZK with

ZK ¼ PðXÞ Y � ðy� Y�0Þ
s"Vð�0Þ
s""ð�0Þ

� �
¼ X ~��ð�0Þ � ~YYð�0Þ ð83Þ

~��ð�0Þ ¼ �̂�� �̂�ð�0Þ
s"Vð�0Þ
s""ð�0Þ

; �̂� ¼ ðX 0XÞ�1X 0Y ð84Þ

�̂�ð�0Þ ¼ ðX 0XÞ�1X 0ðy� Y�0Þ ; ss"Vð�0Þ ¼
1

T � k
ðy� Y�0Þ0MðXÞY ð85Þ

s""ð�0Þ ¼
ðy� Y�0Þ0MðXÞðy� Y�0Þ

T � k
; ð86Þ

11 The 
2(k2) bound also follows in a straightforward way from (82). Note that Wang and Zivot
(1998) do not provide the auxiliary regression interpretation (78)–(79) of their statistics. For
details, see Dufour and Taamouti (2001b).
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we obtain a statistic, which reduces to the one proposed by Kleibergen (2002a)
for k1¼ 0. More precisely, with k1¼ 0, the F-statistic FK(�0) for ���2 ¼ 0 is equal
to Kleibergen’s statistic K(�0) divided by G:

FKð�0Þ ¼ Kð�0Þ=G: ð87Þ

This procedure tries to correct the simultaneity problem associated with the use
of ŶY in the LMGMM statistic by ‘‘purging’’ it from its correlation with u (by
subtracting the term �̂�ð�0Þs"Vð�0Þ=s""ð�0Þ in ZK). In other words, FK(�0) and
K(�0)�G FK(�0) can be obtained by testing ���2 ¼ 0 in the regression

y� Y�0 ¼ X1�1 þ ~YYð�0Þ���2 þ u; ð88Þ

where the fitted values ŶY , which appear in the auxiliary regression (79) for the
LMGMM test, have been replaced by ~YYð�0Þ ¼ ŶY � X�̂�ð�0Þs"Vð�0Þ=s""ð�0Þ,
which are closer to being orthogonal with u.

If k2¼G, we have FK(�0)¼AR(�0)�F(G, T� k), while in the other cases
(k2�G), we can see easily that the bound for FGMM(�0) in (82) also applies to
FK(�0):

GFKð�0Þ �
T � k1 � G

T � k1 � k2

	 

k2 ARð�0Þ: ð89Þ

Kleibergen (2002a) did not supply a finite-sample distributional theory but
showed (assuming k1¼ 0) that K(�0) follows a 
2(G) distribution asymptot-
ically under H0(�0), irrespective of the presence of weak instruments. This
entails that the K(�0) test will have power higher than the one of LMGMM

test (based on the 
2(k2) bound), at least in the neighbourhood of the null
hypothesis, although not necessarily far away from the null hypothesis.

It is also interesting to note that the inequality (89) indicates that the
distribution of K(�0)�G FK(�0) can be bounded in finite samples by a
[k2(T� k1�G)/(T� k)]F(k2, T� k) distribution. However, because of the
stochastic dominance of AR(�0), there would be no advantage in using the
bound to get critical values for K(�0), since the AR test would then have
better power.

In view of the fact that the above procedure is based on estimating the mean
of X� (using X�̂�) and the covariances between the errors in the reduced form
for Y and u (using s�V(�0)), it can become quite unreliable in the presence of
excluded instruments.
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6.3.5. Likelihood ratio test
The likelihood ratio (LR) statistic for �¼ �0 was also studied by Wang and
Zivot (1998). The LR test statistic in this case takes the form:

LRLIML ¼ T
�
ln

�ð�0Þ

�
� ln


�ð�̂�LIMLÞ

��
; ð90Þ

where �̂�LIML is the limited information maximum likelihood estimator (LIML)
of � and

�ð�Þ ¼ ðy� Y�Þ
0
MðX1Þðy� Y�Þ

ðy� Y�Þ0MðXÞðy� Y�Þ
: ð91Þ

Like LMGMM, the distribution of LRLIML depends on unknown nuisance
parameters under H0(�0), but its asymptotic distribution is 
2(k2) when
k2¼G and is bounded by the 
2(k2) distribution in the other cases (a result
in accordance with the general LR distributional bound given in Dufour 1997).
This bound can also be easily derived from the following inequality:

LRLIML �
T

T � k

	 

k2 ARð�0Þ; ð92Þ

so that the distribution of LRLIML is bounded in finite samples by the distribu-
tion of a [Tk2/(T� k)]F(k2, T� k) variable; for details, see Dufour and Khalaf
(2000). For T reasonably large, this entails that the AR(�0) test will have power
higher than the one of LRLIML test [based on the 
2(k2) bound], at least in the
neighbourhood of the null hypothesis. so the power the AR test is uniformly
superior to the one of the LRLIML bound test. Because the LR test depends
heavily on the specification of the model for Y, it is not robust to excluded
instruments.

6.3.6. Conditional tests
A promising approach was recently proposed by Moreira (2003a). His sugges-
tion consists in conditioning upon an appropriately selected portion of the
sufficient statistics for a gaussian SEM. Assuming that the covariance matrix
of the errors is known, the corresponding conditional distribution of various
test statistics for H0(�0) does not involve nuisance parameters. The conditional
distribution is typically not standard but may be established by simulation.
Such an approach may lead to power gains. On the other hand, the assumption
that error covariances are known is rather implausible, and the extension of the
method to the case where the error covariance matrix is unknown is obtained
at the expense of using a large-sample approximation. Like Kleibergen’s
procedure, this method yields an asymptotically similar test. For further dis-
cussion, see Moreira and Poi (2001) and Moreira (2003b).
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6.3.7. Instrument selection procedures
Systematic search methods for identifying relevant instruments and excluding
unimportant instruments have been discussed by several authors (Hall, Rudebusch,
and Wilcox 1996; Hall and Peixe 2000; Dufour and Taamouti 2001a; Donald and
Newey 2001). In this set-up, the power of AR-type tests depends on a function of
model parameters called the concentration coefficient. One way to approach instru-
ment selection is tomaximize the concentration coefficient towardsmaximizing test
power. Robustness to instrument exclusion is very handy in this context. For
further discussion, the reader may consult Dufour and Taamouti (2001a).

To summarize, in special situations, alternatives to the AR procedure may
allow some power gains with respect to the AR test with an unreduced set of
instruments. They themselves may have some important drawbacks. In particu-
lar, (1) only an asymptotic distributional theory is supplied; (2) the statistics used
are not pivotal in finite samples, although Kleibergen’s and Moreira’s statistics
are asymptotically pivotal; (3) they are not robust to instrument exclusion or to
the formulation of the model for the explanatory endogenous variables. It is also
of interest to note that finite-sample versions of several of these asymptotic tests
may be obtained by using split-sample methods.

All the problems and techniques discussed above relate to sampling-based
statistical methods. SEM can also be analysed through a Bayesian approach,
which may alleviate the indeterminacies associated with identification via the
introduction of a prior distribution on the parameter space. Bayesian infer-
ences always depend on the choice of prior distribution (a property viewed as
undesirable in the sampling approach), but this dependence becomes especially
strong when identification problems are present (see Gleser and Hwang 1987).
In this paper we aim only at discussing problems and solutions that arise within
the sampling framework, and it is beyond its scope to debate the advantages and
disadvantages of Bayesian methods under weak identification. For additional
discussion on this issue, see Kleibergen and Zivot (2003) and Sims (2001).

7. Extensions

We will discuss succinctly some extensions of the above results to multivariate
set-ups (where several structural equations may be involved), models with non-
Gaussian errors, and non-linear models.

7.1. Multivariate regression, simulation-based inference, and non-normal errors
Another approach to inference on a linear structural equation model is based
on observing that the structural model (41)–(44) can be put in the form of a
multivariate linear regression (MLR):

�YY ¼ XBþU; ð93Þ
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where �YY ¼ [y, Y], B¼ [�, �], U¼ [u, V]¼ [Ũ1, . . . ,ŨT]
0, �¼ [�0

1, �
0
2]
0, �¼ [�0

1,
�0

2]
0, �1¼�1�þ � and �2¼�2�. (Most of this section is based on Dufour and

Khalaf 2001 and Dufour 2002) This model is linear except for the nonlinear
restriction �2¼�2�. Let us now make the assumption that the errors in the
different equations for each observation, Ũt, satisfy the property:

~UUt ¼ JWt ; t ¼ 1; . . . ; T ; ð94Þ

where the vector w¼ vec(W1, . . . , Wn) has a known distribution and J is an
unknown nonsingular matrix (which enters into the covariance matrix � of the
error vectors Ũt). This distributional assumption is, in a way, more restrictive
than the one made in section 5.1 – because of the assumption on V – and in
another way, less restrictive, because the distribution of u is not taken to be
necessarily N

�
0; �2

u IT
�
.

Consider, now, a hypothesis of the form

H0: RBC ¼ D; ð95Þ

where R, C, and D are fixed matrices. This is called a uniform linear (UL)
hypothesis; for example, the hypothesis �¼ �0 tested by the AR test can be
written in this form (see Dufour and Khalaf 2000). The corresponding gaussian
LR statistic is

LRðH0Þ ¼ T lnðj�̂�0j=j�̂�jÞ; ð96Þ

where �̂� ¼ ÛU 0ÛU=T and �̂�0 ¼ ÛU 0
0ÛU0=T are, respectively, the unrestricted and

restricted estimates of the error covariance matrix. The AR test can also be
obtained as a monotonic transformation of a statistic of the form LR(H0). An
important feature of LR(H0) in this case is that its distribution under H0 does
not involve nuisance parameters and may be easily simulated (it is a pivot); see
Dufour and Khalaf (2002). In particular, its distribution is completely invari-
ant to the unknown J matrix (or the error covariance matrix). In such a case,
even though this distribution may be complicated, we can use Monte Carlo test
techniques – a form of parametric bootstrap – to obtain exact test procedures.
(For further discussion see Dufour and Khalaf 2001; Dufour 2002.) Multi-
variate extensions of AR tests, which impose restrictions on several structural
equations, can be obtained in this way. Further, this approach allows one to
consider any (possibly non-gaussian) distribution on w.

More generally, it is of interest to note that the LR statistic for about any
hypothesis on B can be bounded by a LR statistic for an appropriately selected
UL hypothesis: setting b¼ vec(B) and

H0: Rb 2 �0; ð97Þ

Identification, weak instruments, statistical inference 799



where R an arbitrary q� k (Gþ 1) matrix and �0 is an arbitrary subset of Rq,
the distribution of the corresponding LR statistic can be bounded by the LR
statistic for a UL hypothesis (which is pivotal). This covers as special cases all
restrictions on the coefficients of SEM (as long as they are written in the MLR
form). To avoid the use of such bounds (which may be quite conservative), it is
also possible to use maximized Monte Carlo tests (Dufour 2002).

All the above procedures are valid for parametric models that specify the
error distribution up to an unknown linear transformation (the J matrix),
which allows an unknown covariance matrix. It is easy to see that these
(including the exact procedures discussed in section 6) yield ‘asymptotically
valid’ procedures under much weaker assumptions than those used to obtain
finite-sample results. However, in view of the discussion in section 4, the
pitfalls and limitations of such arguments should be remembered: there is no
substitute for a provably exact procedure.

If we aim at getting tests and confidence sets for non-parametric versions of
the SEM (where the error distribution involves an infinite set of nuisance
parameters), this may be achievable by looking at distribution-free procedures
based on permutations, ranks or signs. There is very little work on this topic in
the SEM. For an interesting first look, however, the reader should look at a
recent paper by Bekker (2002).

7.2. Non-linear models
It is relatively difficult to characterize identification and study its consequences
in non-linear structural models. But problems similar to those noted for linear
SEM do arise. Non-linear structural models typically take the form:

ftðyt; xt; �Þ ¼ ut ; E�½ut jZt� ¼ 0 ; t; . . . ; T ; ð98Þ

where ft(�) is a vector of possibly non-linear relationships, yt is a vector
endogenous variables, xt is a vector of exogenous variables, � is vector of
unknown parameters, Zt is a vector of conditioning variables (or instruments)
– usually with a number of additional distributional assumptions – and E�[�]
refers to the expected value under a distribution with parameter value �. In
such models, � can be viewed as identifiable if there is only one value of � (say,
� ¼ ���) that satisfies (98), and we have weak identification (or weak instruments)
when the expected values E���½ftðyt; xt; �Þ jZt� ¼ 0, t, . . . , T, are ‘weakly sensitive’
to the value of �.

Work on weak identification in non-linear models remains scarce. Non-
linearity makes it difficult to construct finite-sample procedures even in models
where identification difficulties do not occur. So it is not surprising that results
in this area have been based mostly on large-sample approximations. Stock
and Wright (2000) studied the asymptotic distributions of GMM-based esti-
mators and test statistics under conditions of weak identification (and weak
‘high level’ asymptotic distributional assumptions). While GMM estimators of
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� have non-standard asymptotic distributions, the objective function mini-
mized by the GMM procedure follows an asymptotic distribution that is
unaffected by the presence of weak instruments: it is asymptotically pivotal.
So tests and confidence sets based on the objective function can be asympto-
tically valid irrespective of the presence of weak instruments. These results are
achieved for the full parameter vector �, that is, for hypotheses of the form
�¼ �0 and the corresponding joint confidence sets. This is not surprising:
parametric non-separability arises here for two reasons: model non-linearity
and the possibility of non-identification. Of course, once a joint confidence set
for � has been built, inference on individual parameters can be drawn via
projection methods. Other contributions in this area include papers by Klei-
bergen (2001a, 2003), who proposed an extension of the K(�0) test, and Wright
(2003), who proposed tests of underidentification and identification.

In view of the discussion in section 4, the fact that all these methods are
based on large-sample approximations without a finite-sample theory remains
a concern. However, a first attempt at deriving finite-sample procedures is
available in Dufour and Taamouti (2001b). Under parametric assumptions on
the errors, the hypothesis �¼ �0 is tested by testing �¼ 0 in an auxiliary
regression of the form:

ftðyt; xt; �0Þ ¼ ztð�0; �1Þ� þ "t ; t; . . . ; T ; ð99Þ

where the zt(�0, �1) are instruments in a way that maximizes power against a
reference alternative (point-optimal instruments). In this way one gets point-opti-
mal tests (see King 1988; Dufour and King 1991). Inferences on non-
linear regressions are also covered by this set-up. As in the case of linear SEM,
sample-split techniques may be exploited to approximate optimal instruments,
and projection methods can be used to draw inferences on subvectors of �.

8. Conclusion

By way of conclusion, we will summarize the main points made in this paper.

1. There are basic pitfalls and limitations faced in developing inference
procedures in econometrics. If we are not careful, we can easily be led
into ill-defined problems and find ourselves

a) trying to test to test a non-testable hypothesis, such as a hypothesis on a
moment in the context of an insufficiently restrictive non-parametric
model, or a hypothesis (e.g., a unit root hypothesis) on a dynamic
model while allowing a dynamic structure with an unlimited (not
necessarily infinite) number of parameters;
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b) trying to solve an inference problem using a technique that cannot
deliver a solution because of the very structure of the technique, as in (i)
testing a hypothesis on a mean (or median) under heteroscedasticity of
unknown form, via standard least-square-based ‘heteroscedasticity-
robust’ standard errors, or (ii) building a confidence interval for a
parameter that is not identifiable in a structural model, via the usual
technique based on standard errors. In particular, this type of difficulty
arises for Wald-type statistics in the presence of weak instruments (or
weakly identified models)

2. In many econometric problems (e.g., inference on structural models),
several of the intuitions derived from the linear regression model and
standard asymptotic theory can easily be misleading.

a) Standard errors do not constitute a valid way of assessing parameter
uncertainty and building confidence intervals.

b) In many models, such as structural models where parameters may be
underidentified, individual parameters in statistical models generally are
not meaningful, but parameter vectors can be so (at least in parametric
models). We called this phenomenon parametric nonseparability. As a
result, restrictions on individual coefficients may not be testable, while
restrictions on the whole parameter vector are so. This feature should play
a central role in designing for dealing with weakly identified models.

3. The above difficulties underscore the pitfalls of large-sample approxi-
mations, which typically are based on pointwise (rather than uniform)
convergence results and may be arbitrarily inaccurate in finite samples.

4. Concerning solutions to such problems, and more specifically in the context
of weakly identified models, we have emphasized the following points.

a) In accordance with basic statistical theory, one should always look for
pivots as the fundamental ingredient for building tests and confidence sets.

b) Pivots generally are not available for individual parameters, but they
can be obtained in a much a wider set of cases for appropriately
selected vectors of parameters.

c) Given a pivot for a parameter vector, we can construct valid tests and
confidence sets for the parameter vector.

d) Inference on individual coefficients may then be derived through pro-
jection methods.

5. In the specific example of SEM, the following general remarks are, in our
view, important.

a) Besides being pivotal, the AR statistic enjoys several remarkable
robustness properties, such as robustness to the presence of weak
instruments, to excluded instruments, or to the specification of a
model for the endogenous explanatory variables.
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b) It is possible to improve the power of AR-type procedures (especially
by reducing the number of instruments), but power improvements may
come at the expense of using a possibly unreliable large-sample
approximation or losing robustness (such as robustness to excluded
instruments). As usual, there is a trade-off between power (which
typically is increased by considering more restrictive models) and
robustness (which involves considering a wider hypothesis).

c) Trying to adapt and improve AR-type procedures (without ever for-
getting basic statistical principles) constitutes the most promising ave-
nue for dealing with weak instruments.

References

Abdelkhalek, Touhami, and Jean-Marie Dufour (1998) ‘Statistical inference for com-
putable general equilibrium models, with application to a model of the Moroccan
economy,’ Review of Economics and Statistics 80, 520–34

Anderson, T.W., and H. Rubin (1949) ‘Estimation of the parameters of a single
equation in a complete system of stochastic equations,’ Annals of Mathematical
Statistics 20, 46–63

Angrist, J.D., and A.B. Krueger (1991) ‘Does compulsory school attendance affect
schooling and earning?’ Quarterly Journal of Economics 106, 979–1014

–– (1995) ‘Split-sample instrumental variables estimates of the return to schooling,’
Journal of Business and Economic Statistics 13, 225–35

Bahadur, R.R., and Leonard J. Savage (1956) ‘The nonexistence of certain
statistical procedures in nonparametric problems,’ Annals of Mathematical Statistics
27, 1115–22

Banerjee, A., J. Dolado, J.W. Galbraith, and D.F. Hendry (1993) Co-Integration, Error
Correction, and the Econometric Analysis of Non-Stationary Data (New York:
Oxford University Press)

Basmann, Robert L. (1957) ‘A general classical method of linear estimation of coeffi-
cients in a structural equation,’ Econometrica 25, 77–83

Bekker, Paul A. (2002) ‘Symmetry-based inference in an instrumental variable setting,’
Technical Report, Department of Economics, University of Groningen

Bekker, Paul A., and Frank Kleibergen (2001) ‘Finite-sample instrumental variables
inference using an asymptotically pivotal statistic,’ Technical Report TI 2001-055/4,
Tinbergen Institute, University of Amsterdam

Bekker, Paul A., Arjen Merckens, and Tom J. Wansbeek (1994) Identification, Equiva-
lent Models, and Computer Algebra (Boston: Academic Press)

Blough, S.R. (1992) ‘The relationship between power and level for generic unit root tests
in finite samples,’ Journal of Applied Econometrics 7, 295–308

Bound, J., D.A. Jaeger, and R. Baker (1993) ‘The cure can be worse than the disease: a
cautionary tale regarding instrumental variables,’ Technical Working Paper 137,
National Bureau of Economic Research, Cambridge, MA

–– (1995) ‘Problems with instrumental variables estimation when the correlation
between the instruments and the endogenous explanatory variable is weak,’ Journal
of the American Statistical Association 90, 443–50

Buse, Adolf (1992) ‘The bias of instrumental variables estimators,’ Econometrica 60,
173–80

Identification, weak instruments, statistical inference 803



Campbell, Bryan, and Jean-Marie Dufour (1995) ‘Exact nonparametric orthogonality
and random walk tests,’ Review of Economics and Statistics 77, 1–16

–– (1997) ‘Exact nonparametric tests of orthogonality and random walk in the presence
of a drift parameter,’ International Economic Review 38, 151–73

Chao, John, and Norman R. Swanson (2001) ‘Bias and MSE analysis of the IV
estimator under weak identification with application to bias correction,’ Technical
Report, Department of Economics, Rutgers University, New Brunswick, NJ

–– (2003) ‘Alternative approximations of the bias and MSE of the IV estimator under
weak identification with an application to bias correction,’ Technical Report,
Department of Economics, Rutgers University, New Brunswick, NJ

Choi, In, and Peter C.B. Phillips (1992) ‘Asymptotic and finite sample distribution
theory for IV estimators and tests in partially identified structural equations,’
Journal of Econometrics 51, 113–50

Cochrane, John H. (1991) ‘A critique of the application of unit root tests,’ Journal of
Economic Dynamics and Control 15, 275–84

Cushing, Matthew J., and Mary G. McGarvey (1999) ‘Covariance matrix estimation,’
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