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ABSTRACT

General characterizations of valid confidence sets and tests in problems which involve locally
almost unidentified (LAU) parameters are provided and applied to several econometric models. Two
types of inference problems are studied: (1) inference about parameters which are not identifiable
on certain subsets of the parameter space, and (2) inference about parameter transformations with
discontinuities. When a LAU parameter or parametric function has an unbounded range, it is shown
under general regularity conditions that any valid confidence set with level 1− α for this parameter
must be unbounded with probability close to 1−α in the neighborhood of nonidentification subsets
and will have a non-zero probability of being unbounded under any distribution compatible with
the model: no valid confidence set which is almost surely bounded does exist. These properties
hold even if “identifying restrictions” are imposed. Similar results also obtain for parameters with
bounded ranges. Consequently, a confidence set which does not satisfy this characterization has
zero coverage probability (level). This will the case in particular for Wald-type confidence intervals
based on asymptotic standard errors. Furthermore, Wald-type statistics for testing given values of
a LAU parameter cannot be pivotal functions (i.e., they have distributions which depend on un-
known nuisance parameters) and even cannot be usefully bounded over the space of the nuisance
parameters. These results are applied to several econometric problems: inference in simultaneous
equations [instrumental variables (IV) regressions], linear regressions with autoregressive errors,
inference about long-run multipliers and cointegrating vectors. For example, it is shown that stan-
dard “asymptotically justified” confidence intervals based on IV estimators (such as two-stage least
squares) and the associated “standard errors” have zero coverage probability, and the corresponding
t-statistics have distributions which cannot be bounded by any finite set of distribution functions, a
result of interest for interpreting IV regressions with “weak instruments”. Furthermore, expansion
methods (e.g., Edgeworth expansions) and bootstrap techniques cannot solve these difficulties. Fi-
nally, in a number of cases where Wald-type methods are fundamentally flawed (e.g., IV regressions
with poor instruments), it is observed that likelihood-based methods (e.g., likelihood-ratio tests and
confidence sets) combined with projection techniques can easily yield valid tests and confidence
sets.
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1. Introduction

A common problem in statistics and econometrics consists in building confidence sets for the pa-
rameters of a statistical model. Since they report all parameter values acceptable at a given level
[see Lehmann (1986)], confidence sets give considerably more information than significance tests
for particular parameter values. For a scalar parameter θ, a confidence set often takes the form of an
interval, such as [θ̂ − c1σ̂θ̂ , θ̂ + c2σ̂θ̂] where θ̂ is an estimate of θ, σ̂θ̂ a “standard error” and c1, c2
are constants obtained from the distribution of (θ̂ − θ)/σ̂θ̂ to yield the desired level. This approach
is justified when the latter distribution does not depend on unknown nuisance parameters or can be
approximated by such a distribution [e.g., theN(0, 1)]. When θ is a vector, one would typically find
a “covariance matrix” for θ̂ and build a confidence ellipsoid. Below we call such confidence sets
Wald-type confidence sets. More generally, confidence set construction depends on the availability
of pivotal functions [i.e., functions φ(Y, θ) of both the data Y and the parameter vector θ whose
distribution do not depend on unknown parameters], or at least of boundedly pivotal functions [i.e.,
functions φ(Y, θ) whose distribution can be bounded over the parameter space by probabilities in
the open interval (0, 1)]. The notion of pivotal quantity was introduced by Fisher (1934) and lies at
the heart of “classical” hypothesis testing and confidence set methods.

Many models in econometrics are not identified over the full parameter space, i.e., they con-
tain subsets of observationally equivalent parameter values. Prominent examples include structural
models, such as simultaneous equation models and errors-in-variables models, various nonlinear re-
gression models, ARMA models (univariate or multivariate), and models of cointegrating relations.
For general discussions of identification, see Rothenberg (1971), Bowden (1973), Fisher (1976),
Deistler and Seifert (1978), Hsiao (1983), Breusch (1986), Heckman and Robb (1986) and Prakasa
Rao (1992). Problems similar to nonidentication also occur when a discontinuous transformation of
a parameter vector (e.g., a parameter ratio) is considered.

The typical approach to identification problems is to assume them away by imposing “identifi-
cation restrictions” and then derive the asymptotic theory for the fully identified case. Although this
leads to distributional simplifications, it also hides many important complications. “Identifiability
restrictions” can be very real and rule out plausible data distributions: in no way can they be taken
as granted [see Sims (1980)]. Furthermore, both finite sample and asymptotic distributions for es-
timators and tests can be strongly affected if identifiability conditions are not satisfied [see Sargan
(1983), Phillips (1984, 1985, 1989), Hillier (1990), Choi and Phillips (1992), Staiger and Stock
(1994), McManus, Nankervis and Savin (1994)], which suggests that asymptotic approximations
can be very unreliable under conditions close to non-identification. In particular, when appropriate
identification conditions do not hold, certain parameters of interest (although not necessarily all of
them) may not be “estimable” [see Bowden (1973), Bunke and Bunke (1974), Deistler and Seifert
(1978), Phillips (1989) and Hillier (1990)], and hypotheses about possibly non-identifiable parame-
ters (although not necessarily all hypotheses of interest) may not be “testable” in the sense that they
are not “refutable” [see the discussion of Breusch (1986)]. For equations estimated by instrumental
variables (IV) methods, the distributional complications associated with (near) non-identification
are especially relevant because of the serious possibility of “weak instruments”, a problem which
has received renewed attention recently; see, e.g., Nelson and Startz (1990a, 1990b), Buse (1992),
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Maddala and Jeong (1992), Angrist and Krueger (1994), Staiger and Stock (1994), Bound, Jaeger
and Baker (1995), and Hall, Rudebusch and Wilcox (1996).

Although the available analytical results indicate that distributions of IV-based estimators and
test statistics can be strongly affected in non-identified models, they do not throw much light on the
properties of confidence procedures, in particular on whether we can bound the distributions of test
statistics to obtain valid tests and confidence sets, even if identifying restrictions are imposed. The
main purpose of this paper is to throw more light on these issues by extending finite-sample results
and methods due to Gleser and Hwang (1987, henceforth GH) and Koschat (1987) in a number of
special problems. For inference on errors-in-variables models, principal components and ratios of
regression parameters, GH showed that no valid confidence interval for a parameter can have finite
expected length if this parameter is not identifiable on a subset of the parameter space. Koschat
(1987) independently gave a similar result for confidence intervals on the ratio of the means of two
normal distributions [the Fieller (1954) problem].

Here we extend the results of GH, e.g., by allowing for less restricted models (including pos-
sibly discrete distributions, parameters in general metric spaces, and less restricted “troublesome”
parameter subsets), and we apply them to some important econometric models. We consider first a
general setup with a parameter vector θ and a parametric function of interest ψ(θ). The parameter
space contains a subset Θ0 near which the function ψ(θ) can take any value in a (typically large)
set Ψ0. This setup covers both cases where ψ(θ) has discontinuities at Θ0 and where the points in
Θ0 correspond to the same data distribution (in which case Θ0 is a nonidentification subset). When
such conditions obtain, we say ψ(θ) is locally almost unidentified (LAU) near Θ0. The main facts
demonstrated here under general conditions include: (1) when ψ(θ) is LAU near Θ0 and θ ∈Θ0, a
level 1−α confidence set Cψ(Y ) for ψ(θ) must cover with probability 1−α (at least) any value in
the set Ψ0 of all the values of ψ(θ) that can be met “near” Θ0; (2) Cψ(Y ) must have a diameter as
large as the diameter of Ψ0 with probability 1 − α (or greater); in particular, if Ψ0 is unbounded,
Cψ(Y ) must be unbounded with probability 1− α (or greater); (3) by continuity, similar properties
must also hold outside Θ0, at least in the neighborhood of Θ0; (4) when the model has a density
with the same support for all θ, Cψ(Y ) must have diameter as large as the one of Ψ0 with positive
probability for all θ. If these properties do not hold for a proposed confidence set, its true level
is zero: it is impossible to build a valid confidence set which is bounded with probability one. In
particular, most Wald-type confidence sets in such models have zero confidence level, irrespective
of their stated nominal levels, because they are almost surely bounded.

As a result, any approximation for the null distribution of a Wald-type statistic (e.g., an asymp-
totic approximation) for testing an hypothesis of the form ψ(θ) = ψ0 must be arbitrarily bad for
some ψ0 (unless it depends on θ). In other words, Wald statistics do not constitute valid pivotal
functions in such models and it is even impossible to bound their distribution over the parameter
space (except by the trivial bounds 0 and 1). Furthermore, there is no way of producing “corrected
standard errors” that would avoid this problem. Expansion methods (e.g., Edgeworth expansions)
and “bootstrap” techniques will also fail in such contexts, as long as they lead to almost surely
bounded confidence sets. This of course supports earlier work on the unreliability of Wald tests
because of non-invariance problems [see Breusch and Schmidt (1988), Dagenais and Dufour (1991)
and Nelson and Savin (1990)].
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These results are then applied to discuss inference in the context of more specific econometric
models and problems, including: (1) ratios of regression coefficients; (2) simultaneous equations
models and IV regressions; (3) linear regressions with autoregressive errors; (4) inference about
long-run multipliers; (6) cointegrating vectors. For example, in simultaneous equations and similar
models, it is shown that usual “asymptotically justified” confidence intervals for structural coeffi-
cients based on IV estimators, such as two-stage least squares (2SLS), and their asymptotic standard
errors have zero coverage probability, and the corresponding t-statistics have distributions which
cannot be bounded by a finite set of distributions. By contrast, for the same model, we show that
LR statistics have null distributions which can be bounded by a nuisance-parameter-free distribution
(derived from the Wilks Λ distribution), and so the inference methods based on such statistics do not
have these problems. Furthermore we show that projection techniques can be used in such contexts
to obtain valid tests for a large variety of hypotheses.

The basic notations, definitions and assumptions used in the paper are presented in Section 2.
The main results on confidence sets for LAU parameters are presented in Section 3. Section 4 dis-
cusses implications for testing and the validity of Wald-type confidence sets, while the applications
to specific econometric models and problems are presented in Section 5. We conclude in Section 6.

2. Framework

Consider a family of probability spaces {(Z, A�, P θ) : θ ∈ Ω}, where Z is a sample space, A�

is a σ-algebra of subsets of Z, and P̄θ is a probability measure on the measurable space (Z, A�)
indexed by a parameter θ in Ω. The sets Z, A� and Ω are all nonempty. Further, we are interested
by a transformation ψ : Ω1 → Ψ, defined on a nonempty subset Ω1 of Ω, on which we wish to
test hypotheses and build confidence sets. We assume also the sets Ω and Ψ possess metric space
structures. Inferences about θ will be based on an A�-measurable observation (vector) Y in a space
Y. For future reference, we summarize these assumptions as follows, where R

+
0 refers to the set of

the non-negative real numbers.

(A) Basic assumptions. (A.1) {P θ : θ ∈ Ω} is a family of probability measures on a measurable
space (Z, A�), and (Ω, ρ) is a metric space with the metric ρ : Ω×Ω → R

+
0 . (A.2) ψ : Ω1 → Ψ is

a function on Ω such that (Ψ, ρ) is a metric space with the metric ρ : Ψ × Ψ → R
+
0 , where Ω1 is a

nonempty subset of Ω. (A.3) Y : Z → Y is an A�-measurable function. The complete measurable
space (Y, A�) induced by Y on Y is the same for all θ ∈ Ω, and the probability measure determined
by P θ on (Y, A�) is denoted by Pθ = Pθ(y), for any θ ∈ Ω. Furthermore, there is a metric
ρy : Y × Y → R

+
0 such that all the corresponding open sets of (Y, ρy) are A�-measurable.

Let Γ0 be a nonempty subset of Ψ, Ω0 = {θ ∈ Ω1 : ψ(θ) ∈ Γ0} and 0 ≤ α ≤ 1. Following
the classical terminology of hypothesis testing [Lehmann (1986, sections 3.1, 3.5)], we say that a
subset R of Y is a critical region with level α for testing the hypothesis H0 : θ ∈ Ω0 if and only if
Pθ[Y ∈ R] ≤ α , ∀θ ∈ Ω0 [or equivalently, sup

θ∈Ω0

Pθ[Y ∈ R] ≤ α]; if sup
θ∈Ω0

Pθ [Y ∈ R] = α, R has

size α. Correspondingly, a random subset Cψ(Y ) of Ψ is a confidence set with level 1−α for ψ(θ)
if and only if inf

θ∈Ω1

Pθ[ψ(θ) ∈ Cψ(Y )] ≥ 1 − α ; Cψ(Y ) has size (or coverage probability) 1 − α
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when inf
θ∈Ω1

Pθ[ψ(θ) ∈ Cψ(Y )] = 1 − α . We study here situations where the following conditions

hold. Below lim
n→∞θn = θ means ρ(θn, θ) −→

n→∞ 0.

(B) Indeterminacy of ψ(θ) in a neighborhood. For some nonempty subset Ψ0 of Ψ, there is a
subset Θ0 of Ω such that, for each ψ0 ∈Ψ0, we can find a sequence (θn)∞n=1 with the following
properties: (a) θn ∈ Ω1\Θ0,∀n ; (b) ψ(θn) = ψ0, ∀n ; (c) lim

n→∞θn = θ for some θ ∈ Θ0 . The set

of sequences which satisfy the conditions (a), (b) and (c) above will be denoted S(Θ0,Ω1).
(C) Observational equivalence on Θ0. If the set Θ0 contains more than one point, the measures Pθ
are identical for all θ ∈ Θ0. In this case, the set Θ0 will be called an observational equivalence
(or nonidentification) subset of Ω.

Assumption B states that any value ψ0 ∈Ψ0 can be met near Θ0. Ψ0 will typically be a large set
(e.g., Ψ0 = Ψ the set of all possible values). By Assumption C, if Θ0 has more than one element,
the parameter vectors in Θ0 are observationally equivalent. When B and C hold with Ψ0 containing
more than one distinct value, we say the parametric function ψ(θ) is locally almost unidentified
(LAU) near Θ0. In addition (Assumption D below), we shall assume that the probability measures
Pθ enjoy a continuity property, in the sense of weak convergence [see Billingsley (1968, chapter
1)] with respect to the sequences in S(Θ0,Ω1). This condition holds in particular if Y has a density
which is continuous in θ (Assumption E).

(D) Weak convergence with respect to S(Θ0,Ω1). For any ψ1 ∈ Ψ0, there is a sequence (θn)∞n=1

in S(Θ0,Ω1) such that ψ(θn) = ψ1, for all n, and Pθn converges weakly to Pθ , where θ = lim
n→∞θn.

(E) Existence and continuity of densities for the measures Pθ.
(E.1) The probability measures Pθ(y), θ ∈ Ω, are absolutely continuous with respect to a σ-finite
measure dμ(y) on (Y, A�), with densities f(y|θ), θ ∈ Ω, where y ∈ Y. (E.2) For any ψ1 ∈ Ψ0,
there is a sequence (θn)∞n=1 in S(Θ0,Ω1) such that lim

n→∞f(y|θn) = f(y|θ) , a.e. μ ,where θ =
lim
n→∞θn.

3. Confidence Sets for Almost Unidentified Parameters

Consider a confidence set Cψ(Y ) for ψ(θ) whose level (or coverage probability) is 1 − α, at least
on the set Ω1\Θ0, according to the following assumptions.

(F) Confidence set with level 1 − α. (F.1) Cψ(Y ) is a confidence set for ψ(θ) such that the event
ψ1 ∈ Cψ(Y ) is A�-measurable, ∀ψ1 ∈ Ψ. (F.2) Pθ[∂(A(ψ1))] = 0,∀ψ1 ∈ Ψ0,∀θ ∈ Θ0, where
A(ψ1) = {y ∈ Y : y ∈ Y (Z) and ψ1 ∈ Cψ(y)} and ∂(A(ψ1)) is the boundary of the set A(ψ1) in
Y. (F.3) Pθ[ψ(θ) ∈ Cψ(Y )] ≥ 1 − α , ∀θ ∈ Ω1\Θ0 , where 0 ≤ α ≤ 1.

Assumption F.2 means there is no probability mass on the boundary of A(ψ1), where A(ψ1) is
the acceptance region for the hypothesis ψ(θ) = ψ1 [in the definition of A(ψ1), y ∈ Y (Z) simply
means y belongs to the set Y (Z) containing all possible values of the observable random vector
Y (Z), while ψ1 ∈ Cψ(y) means ψ1 is deemed to be acceptable by the confidence set Cψ(y)].
In the sequel, the symbol ∂(.) will refer to the boundary of a set. F.2 will typically be met when
the distributions Pθ are absolutely continuous (Assumption E). Then, we can show the following
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proposition, where N(θ) = {θ ∈ Ω : ρ(θ, θ) < δ}, with δ > 0, refers to an open neighborhood of
θ ∈ Ω.

Proposition 3.1 Let the assumptions A, B, C, D and F hold. Then, for every ψ1 ∈ Ψ0 and every
sequence (θn)∞n=1 in S(Θ0,Ω1), we have

Pθ[ψ1 ∈ Cψ(Y )] = lim
n→∞Pθn [ψ1 ∈ Cψ(Y )] ≥ 1 − α , ∀θ ∈ Θ0 , (3.1)

and sup
θ∈ �N(θ)

Pθ[ψ1 ∈ Cψ(Y )] ≥ 1 − α, for every neighborhood N(θ) of θ = lim
n→∞ θn , where

Ñ(θ) = N(θ) ∩ (Ω1\Θ0). Furthermore, the above conclusions hold a fortiori if Assumption D is
replaced by the stronger Assumption E.

The proofs of the propositions and theorems are given in the Appendix. When Y follows the
distribution associated with Θ0 (which is unique by definition), the latter proposition entails that
any point ψ1 ∈ Ψ0 must be covered by Cψ(Y ) with probability at least 1 − α. Furthermore, the
probability of the event ψ1 ∈ Cψ(Y ) must get arbitrarily close to 1 − α (or larger) at points in
N(θ) ∩ (Ω1\Θ0), even if Pθ is identified everywhere in the domain Ω1\Θ0.

Now, for any ψ1 ∈ Ψ and any subset A ⊆ Ψ, define

ρU [A,ψ1] = sup{ρ(ψ1, ψ2) : ψ2 ∈ A},D[A] = sup{ρ(ψ1, ψ2) : ψ1, ψ2 ∈ A}. (3.2)

ρU [A,ψ1] is the maximal “distance” between any point of A and ψ1, while D[A] is the “diameter”
of A (the maximal distance between two points of A). After making appropriate measurability
assumptions, we will now establish some general properties of the variables ρU [Cψ(Y ), ψ1] and
D[Cψ(Y )]. Note ρU [·] and D[·] take their values in R

+
0 ∪ {+∞}, so D[Cψ(Y )] = ∞ is a well-

defined event.

(G.1) ρU measurability. The event ρU [Cψ(Y ), ψ1] ≥ x is A�-measurable, for any x ∈ [0,∞]
and ψ1 ∈ Ψ.
(G.2) Diameter measurability. The event D[Cψ(Y )] ≥ x is A�-measurable, for any x ∈ [0,∞].

We first show that the distance ρU [Cψ(Y ), ψ1] will not be inferior to ρU [Ψ0, ψ1] with probabil-
ity at least 1 − α when θ is close to Θ0, for any ψ1 ∈ Ψ.

Proposition 3.2 Under the assumptions of Proposition 3.1 (A, B, C, D, F) and G.1, let (θn)∞n=1 be
any sequence in S(Θ0,Ω1), ψ1 ∈ Ψ, and R0 ≡ ρU [Ψ0, ψ1]. Then

Pθ[ρU [Cψ(Y ), ψ1] ≥ R0] ≥ 1 − α ,∀ θ ∈ Θ0 , (3.3)

lim inf
n→∞ Pθn [ρU [Cψ(Y ), ψ1] ≥ R0 − ε] ≥ 1 − α ,∀ε ∈ (0 ,∞), if R0 <∞,

lim inf
n→∞ Pθn [ρU [Cψ(Y ), ψ1] ≥ Δ] ≥ 1 − α ,∀Δ ∈ (0 ,∞), if R0 = ∞.

(3.4)
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If furthermore Pθ [∂(ρU [Cψ(Y ), ψ1] ≥ R0)] = 0 , ∀θ ∈ Θ0 , then

lim
n→∞Pθn [ρU [Cψ(Y ), ψ1] ≥ R0] = Pθ[ρU [Cψ(Y ), ψ1] ≥ R0] ≥ 1 − α ,∀θ ∈ Θ0. (3.5)

We can now study how the diameter of Cψ(Y ) behaves under similar conditions.

Theorem 3.3 Under the assumptions of Proposition 3.1 and G.2, let (θn)∞n=1 be any sequence in
S(Θ0,Ω1). Then

Pθ [D[Cψ(Y )] ≥ D[Ψ0]] ≥ 1 − 2α ,∀θ ∈ Θ0 , if D[Ψ0] <∞ ,
Pθ [D[Cψ(Y )] = ∞] ≥ 1 − α , ∀θ ∈ Θ0 , if D[Ψ0] = ∞ ,

(3.6)

lim inf
n→∞ Pθn [D[Cψ(Y )] ≥ D[Ψ0] − ε] ≥ 1 − 2α ,∀ε ∈ (0 ,∞), if D[Ψ0] <∞,

lim inf
n→∞ Pθn [D[Cψ(Y )] ≥ Δ] ≥ 1 − 2α ,∀Δ ∈ (0 ,∞), if D[Ψ0] = ∞.

(3.7)

If furthermore Pθ [∂(D[Cψ(Y )] ≥ D[Ψ0])] = 0, ∀θ ∈ Θ0 , then

lim
n→∞Pθn [D[Cψ(Y )] ≥ D[Ψ0]] = Pθ [D[Cψ(Y )] ≥ D[Ψ0]] ,∀θ ∈ Θ0 . (3.8)

The latter theorem shows the confidence set Cψ(Y ) must be as “large” as the entire domain
Ψ0 with probability near (or greater than) 1 − 2α, at least when the distribution of Y is close
to Θ0. Further, on combining (3.6) and (3.8), if Ψ0 is unbounded and the “continuity” condition
Pθ [∂(D[Cψ(Y )] ≥ D[Ψ0])] = 0 holds for θ ∈ Θ0, Cψ(Y ) must also be unbounded with probability
near 1−α in the neighborhood of Θ0. Contrariwise, if this property does not hold, we can conclude
(keeping the other assumptions of Theorem 3.3) that the confidence set Cψ(Y ) cannot have level
1−α (Corollary 3.4). In particular, ifD[Cψ(Y )] = ∞ and Cψ(Y ) is almost surely bounded, Cψ(Y )
has zero coverage probability.

Corollary 3.4 Under the assumptions of Theorem 3.3 with the exception of F.3
(i.e., A, B, C, D, F.1, F.2 and G.2), suppose Pθ [D[Cψ(Y )] ≥ D[Ψ0]] < 1 − 2α , ∀θ ∈ Θ0 , for
some α ∈ [0, 0.5). Then, inf

θ∈Ω1\Θ0

Pθ [ψ(θ) ∈ Cψ(Y )] < 1 − α. Furthermore, when D[Ψ0] = ∞ ,

the property

Pθ [D[Cψ(Y )] = ∞] = 0 , for θ ∈ Θ0 , (3.9)

entails inf
θ∈Ω1\Θ0

Pθ [ψ(θ) ∈ Cψ(Y )] = 0 .

We will now show that Cψ(Y ) must be unbounded with non-zero probability everywhere (i.e.,
under all the distributions Pθ, θ ∈ Ω), provided the support of Pθ(y) for θ ∈ Θ0 is included in
the support of Pθ(y) for all θ ∈ Ω (e.g., when all the distributions Pθ(y), θ ∈ Ω, have common
support). This result is obtained by using the following lemma (implicit in GH).
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Lemma 3.5 Under the assumptions A and E.1, suppose that the probability measures Pθ(y), θ ∈ Ω,
have densities f(y|θ) with support S(θ), which may depend on θ, and let θ0 ∈ Ω. If S(θ0) ⊆ S(θ)
for all θ ∈ Ω, then, for any event A in A�, Pθ0(A) > 0 ⇒ Pθ(A) > 0 , ∀θ ∈ Ω .

This suggests considering the following assumption.

(H) Minimal support on Θ0. For any θ0 ∈ Θ0, we have S(θ0) ⊆ S(θ), for all θ ∈ Ω\Θ0, where
S(θ) is the support of the density f(y|θ) defined in E.1.

This condition obviously holds when the densities f(y|θ) have common support. It is then
straightforward to see that the following extensions of Theorem 3.3 and Corollary 3.4 must hold for
models with density functions.

Theorem 3.6 Under the assumptions of Theorem 3.3, suppose that E and H also hold. Then,
provided 0 ≤ α < 0.5 ,

Pθ [D[Cψ(Y )] ≥ D[Ψ0]] > 0 , ∀θ ∈ Ω . (3.10)

If furthermore D[Ψ0] = ∞ and 0 ≤ α < 1, then Pθ [D[Cψ(Y )] = ∞] > 0 , ∀θ ∈ Ω .

Corollary 3.7 Under the assumptions of Theorem 3.3 with the exception of F.3 (A, B, C, D, F.1,
F.2, G.2), let E and H also hold, D[Ψ0] = ∞ and suppose

Pθ [D[Cψ(Y )] = ∞] = 0 , for some θ ∈ Ω . (3.11)

Then inf
θ∈Ω1\Θ0

Pθ [ψ(θ) ∈ Cψ(Y )] = 0 .

Theorem 3.6 and Corollary 3.7 include as a special case the Theorem of Gleser and Hwang
(1987). By Corollary 3.7, it is sufficient to show that (3.11) holds at a single point θ in Ω (possibly
not in Θ0) to conclude that the confidence set Cψ(Y ) has zero coverage probability. This will be
the case in particular when Ψ0 is unbounded (D[Ψ0] = ∞) but Cψ(Y ) is almost surely bounded.

4. Testing and Wald Confidence Sets

The results of the previous section have important implications for the properties of tests associated
with a given confidence procedure. Any confidence set for a parameter can be interpreted as the
result of a collection of tests for each possible value of the parameter: the confidence set simply
reports all the values of the parameter which cannot be rejected at a given level [see Lehmann
(1986, Chapter 3)]. In particular, the confidence set Cψ(Y ) can be interpreted as resulting from
tests for null hypothesis of the formH0(ψ0) : ψ(θ) = ψ0, where ψ0 ∈ Ψ. The tests themselves can
be defined as follows: ϕ(Y ;ψ0) = 1, if ψ0 /∈ Cψ(Y ), and ϕ(Y ;ψ0) = 0, if ψ0 ∈ Cψ(Y ), where
ϕ(Y ;ψ0) = 1 means H0(ψ0) is “rejected” and ϕ(Y ;ψ0) = 0 means it is “accepted”.

Let Θ = Ω1\Θ0. From the identity

inf
θ∈Θ

Pθ [ψ(θ) ∈ Cψ(Y )] = 1 − sup
θ∈Θ

Pθ [ψ(θ) /∈ Cψ(Y )] ,
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we see that inf
θ∈Θ

Pθ [ψ(θ) ∈ Cψ(Y )] = 0 ⇔ sup
θ∈Θ

Pθ [ψ(θ) /∈ Cψ(Y )] = 1, and for 0 ≤ α < 1,

inf
θ∈Θ

Pθ [ψ(θ) ∈ Cψ(Y )] < 1 − α ⇔ sup
θ∈Θ

Pθ [ψ(θ) /∈ Cψ(Y )] > α . Consequently, when (3.9) or

(3.11) holds, we can infer that, for any 0 ≤ α0 < 1, there exists a parameter vector θ0 ∈ Ω1\Θ0 and
an hypothetical value ψ0 = ψ(θ0) such that Eθ0 [ϕ(Y ;ψ0)] = Pθ0 [ψ0 /∈ Cψ(Y )] > α0. In other
words, in the family of tests ϕ(Y ;ψ0), ψ0 ∈ ψ(Θ), we can always find an hypothesisH(ψ0) whose
level will exceed any nominal level. As a result, the statistics ϕ(Y ;ψ(θ)) cannot be pivotal functions
for the family of distributions {Pθ : θ ∈ Ω}, i.e., the distribution of ϕ(Y ;ψ(θ)) depends on θ. More
importantly, for any significance level 0 ≤ α < 1, there is no way of bounding the probability of
the event ϕ(Y ;ψ(θ)) = 1 uniformly over θ ∈ Θ (except trivially, by 0 and 1). Note also Ω1 may
be a fairly restricted subset of Ω. Furthermore, from (3.9), the presence of such problems can be
assessed by looking at the properties of Cψ(Y ) when θ ∈ Θ0.

It is straightforward to see that the above results apply quite generally to Wald-type confidence
sets. For example, suppose ψ(θ) is a scalar function of θ such that Ψ0 is unbounded, let θ̂ be an
estimate of θ and σ̂ψ an estimate of the “standard error” of ψ(θ̂) which is positive with probability
one. Then any confidence interval of the form [ψ(θ̂) − c1σ̂ψ , ψ(θ̂) + c2σ̂ψ], where c1 and c2 are
constants which depend on the “nominal level” of the interval, has true level zero. Similarly, when

ψ(θ) is a vector in R
k, any confidence ellipsoid [ψ(θ̂) − ψ]′

∑̂−1

ψ [ψ(θ̂) − ψ] ≤ cwhere c is a finite

constant, will have true level zero whenever
∑̂

ψ is almost surely nonsingular. Correspondingly, the

Wald statisticW (ψ(θ)) = [ψ(θ̂)−ψ(θ)]′
∑̂−1

ψ [ψ(θ̂)−ψ(θ)] cannot be a pivotal function. No distri-
bution independent of the unknown parameter vector θ, e.g. an asymptotic distribution, can provide
tests whose true levels would not deviate arbitrarily from their nominal levels. Or equivalently, there
is no way to find a finite critical value c(α) [e.g., one derived from an approximating distribution,
like an asymptotic distribution] such that all the hypothesis H(ψ0), ψ0 ∈ ψ(Θ), would be testable
at level α using a critical region of the form W (ψ0) > c(α). Furthermore, no useful maximum
value over a set of possible (approximating) distributions can be found. For example, if the supports
of the distributions of the W (ψ0) statistics are the positive real line, the only critical value that can
ensure a valid test of level α for all ψ0 ∈ ψ(Θ) is c(α) = ∞. Approximations based on expansion
methods, such as Edgeworth expansions where unknown parameters have been replaced by esti-
mates, will also face a similar problem because they would lead to confidence sets that are almost
surely bounded. For similar reasons, “bootstrapping” the distribution of W (ψ0) cannot solve the
problem either.

5. Econometric Applications

In this section, we apply the above results to a number of problems and models relevant to econo-
metric practice and discuss possible solutions, including inference about parameters of simultaneous
equations and dynamic models. Before studying those, however, we shall look at the problem of
building a confidence set for the ratio of two regression coefficients in a linear regression. Even
though this problem has been studied by GH, it will be illuminating to see how the more general
results of Sections 3 and 4 apply to this relatively simple problem.
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5.1. Ratios of parameters in linear regressions

Consider the linear regression

y = Xβ + u , u ∼ N [0, σ2IT ] (5.1)

where X is a T × k full-column rank fixed matrix (2 ≤ k < T ), σ and β = (β1, ... , βk)′ are
unknown coefficients (σ > 0). We wish to build a confidence set for the ratio ψ(θ) = β2/β1

where θ = (β1, ...., βk, σ)′ ∈ Ω = R
k × R

+. By definition, ψ(θ) is the solution of the equation
β2 = ψ(θ)β1, unique except when β1 = 0.

Here ψ(θ) has a discontinuity at every point of the set {θ ∈ Ω : β1 = 0}. Consider the following
(restricted) domain for ψ(θ) : Ω1 = {θ ∈ Ω : β1 �= 0, σ = σ̄, βj = β̄j , j = 3, ... , k}, where
σ̄, β̄j, j = 3, ... , k are fixed constants. Let also Θ0 = {θ ∈ Ω : β1 = β2 = 0, σ = σ̄,
βj = β̄j , j = 3, ... , k}. Since Θ0 contains only one vector, condition C is trivially satisfied. For

any ψ0 ∈ R, we can define θn = (β(n)
1 , ψ0β

(n)
1 , β̄3, ... , β̄k, σ̄)′ , n = 1 , 2 , ..., where β(n)

1 is

chosen so that β(n)
1 −→

n→∞ 0 and β(n)
1 �= 0, for all n. We see immediately that: a) θn ∈ Ω1\Θ0 ,∀n;

b) ψ(θn) = ψ0 ,∀n; c) lim
n→∞ θn = θ , where θ = (0 , 0 , β̄3 , ..., β̄k, σ̄)′ ∈ Θ0. Conditions A,

B, C and E are clearly satisfied here with Ψ0 = R.For 0 < α < 1, Theorems 3.3 and 3.6 entail
that any level 1 − α confidence set for β2/β1 must have non-zero probability of being unbounded
irrespective of the true value of θ, a probability that must get as high as 1 − α when θ = θ̄. By
varying ( β̄3 , ..., β̄k, σ̄)′, we see also this property must hold whenever β1 = β2 = 0.

As a result any confidence interval of the form
[
(β̂2/β̂1) ± c(α/2)σ̂ψ

]
, where (say) σ̂ψ =

G(β̂)Σ̂β̂G(β̂)′, G(β) = ∂ψ(θ)/∂β′, Σ̂β̂ = s2(X ′X)−1 = [σ̂ij ]i,j=1,...,k and s2 = (y −Xβ̂)′(y −
Xβ̂)/(T − k), has zero coverage probability. Furthermore, as shown in Section 4, we can always
find a value ψ0 such that the distribution of the Wald statistic W (ψ0) = [ψ(θ̂) − ψ0]2/σ̂

2
ψ deviates

arbitrarily from any “approximating distribution” [such as the χ2(1) distribution].
By contrast, a valid confidence set for β2/β1 follows on “inverting” LR tests for the hypothesis

H0(ψ0) : β2/β1 = ψ0. Since H0(ψ0) is equivalent to H0(ψ0)′ : β2 − ψ0β1 = 0, the LR test of
H0(ψ0) is equivalent to the Fisher test of H0(ψ0)′ based on F (ψ0) = (β̂2 − ψ0β̂1)2/(σ̂11ψ

2
0 −

2σ̂12ψ0 + σ̂22). Since F (ψ0) ∼ F (1, T − k) under H0(ψ0), Cψ(α; y) = {ψ0 : F (ψ0) ≤
Fα(1, T − k)} is a level 1 − α confidence set for β2/β1. This set can be put in explicit form by
solving the quadratic inequation

Aψ2
0 +Bψ0 + C ≤ 0 , (5.2)

where A = β̂
2

1−Fασ̂11 , B = −2(β̂1β̂2−Fασ̂12) , C = β̂
2

2−Fασ̂22 , and Fα = Fα(1, T −k). This

confidence set is unbounded when A < 0, an event with probability Pθ[A < 0] = Pθ[β̂
2
1/σ̂11 <

Fα] = 1 − α when β1 = 0. Cψ(α; y) is a generalization of the well-known Fieller’s (1954)
confidence set for the ratio of two means [see Rao (1973, Section 4b)]. The basic reason for the
“smooth” behavior of tests and confidence sets based on this method is that the statistic F (ψ) is a
proper pivotal function for this problem, in contrast with Wald-type statistics.
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5.2. Simultaneous equations and instrumental variables regressions

Let us now consider the following structural model:

a) y = Y β +X1γ1 + u , b) Y = XΠ + V = X1Π1 +X2Π2 + V , (5.3)

where y is a T × 1 random vector, Y a T ×G matrix of endogenous variables, X1 and X2 are T ×
k1 and T × k2 matrices of fixed (or strictly exogenous) variables, X = [X1,X2] with rank(X) =
k1 + k2 = k, β and γ1 are G× 1 and k1 × 1 vectors of unknown coefficients, Π1 and Π2 are k1 ×G
and k2 × G matrices of unknown coefficients, u and V are T × 1 and T × G matrices of random
disturbances; furthermore, we assume that the rows of the matrix [u, V ] are i.i.d. NG+1[0, Σ]
where det(Σ) �= 0 and Σ does not depend on β, γ1 and Π. (5.3a) can be viewed as a typical
relationship that would be estimated by IV methods.

Substituting (5.3b) into (5.3a), we obtain the reduced form equation for y :

y = X1π1 +X2π2 + v , (5.4)

where v = u+ V β and π1 = Π1β + γ1 , π2 = Π2β. If no restriction is imposed on γ1 (which is
typically the case), β is identifiable if and only if rank(Π2) = G. In other words, if the equation
π2 = Π2β has a solution, it is unique if and only if rank(Π2) = G holds. The set of all possible
solutions of π2 = Π2β is B(π2,Π2) = {β ∈ R

G : β = β∗ + δ, δ ∈ Ker(Π2)}, where Ker(Π2) is
the set of all vectors δ ∈ R

G such that Π2δ = 0 [rank(Π2) = G if and only if Ker(Π2) = {0}].
Instruments may be described as “weak” when the rank condition rank(Π2) = G fails to hold or
almost does not hold, a problem recently emphasized by several authors [e.g., Angrist and Krueger
(1994), Bound, Jaeger and Baker (1995), Hall, Rudebusch and Wilcox (1996), Maddala and Jeong
(1992), Nelson and Startz (1990a, 1990b), Staiger and Stock (1994)].

For any k2 × G matrix Π2 whose rank is less than G, we can find a sequence (Π(n)
2 )∞n=1 of

k2 ×G matrices such that rank(Π(n)
2 ) = G,∀n, and Π(n)

2 −→
n→∞ Π2. If Ker(Π2) contains a vector

whose j-th component is unbounded (1 ≤ j ≤ G), this j-th component is also unbounded in
B(π2,Π2). In particular, if Π2 = 0, we have B(π2,Π2) = R

G, i.e., β is completely unrestricted.
Further, in such a case, the same will hold for γ1 provided the corresponding row of Π1 is non-zero
(for π1 = Π1β + γ1).

Here the complete parameter vector is θ = vec(β, γ1,Π1,Π2,Σ).We denote by p the dimension
of θ and by Ω the subset of R

p whose elements θ satisfy the restrictions entailed by model (5.3).
Taking β = ψ(θ) as the parametric function of interest, we have a case where ψ(θ) is a continuous
function of θ but the parameter space contains subsets inside which the different parameters are
observationally equivalent. Many different such subsets do exist. Define the (G + 1) × (G + 1)

matrix A(β) =
[

1 β′

0 IG

]
, which is easily seen to be nonsingular for all values of β. Then,

for any given vector θ = vec(β̄, γ̄1, Π̄1, Π̄2, Σ̄) such that rank(Π̄2) < G, we have the following
observational equivalence subset: Θ0 = {θ ∈ R

p : Π1 = Π̄1, Π2 = Π̄2 , Π̄2β = π̄2, Π̄1β +
γ1 = π̄1, A(β)ΣA(β)′ = A(β̄)Σ̄A(β̄)′}, where π̄2 = Π̄2β̄ and π̄1 = Π̄1β̄ + γ̄1. The condition
A(β)ΣA(β)′ = A(β̄)Σ̄A(β̄)′ ensures that the disturbances of the reduced form model associated
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with (5.3) have identical covariance matrices: β, γ1 and Σ move together (in Θ0) to ensure that the
conditional distribution of [y, Y ] given X remains the same. Thus the set Θ0 is a subset of R

p

defined by imposing nonlinear constraints on θ, a case clearly not covered by the results of GH.
From Theorem 3.3, any confidence set for the vector β must be unbounded with probability

1−α (at least) when rank(Π2) < G. For components of β, the same will hold when θ belongs to a
subset Θ0 over which this component is unbounded. Again unbounded confidence sets must occur
with probabilities close to 1− α (or greater) in the neighborhood of these sets, and since the model
has a density function, the probability of getting an unbounded confidence set is different from zero
for any θ. Consequently, confidence sets which are bounded with probability one have zero cover-
age probability. In particular, this will be the case for any Wald-type confidence interval based on
the 2SLS estimator of β, the usual 2SLS standard errors and a normal asymptotic distribution. De-
spite considerable theoretical work on the finite sample properties of 2SLS and other simultaneous
equations estimators, as well as the associated inference procedures, this important property has not
apparently been pointed out before [e.g., see the survey of Phillips (1983)].

It of interest to note here that a valid confidence set for β in model (5.3) can be obtained by
a method suggested long ago by Anderson and Rubin (1950, henceforth AR). Consider first the
problem of testing H0(β0) : β = β0. On observing

y − Y β0 = X1π
∗
1 +X2π

∗
2 + u∗ (5.5)

where π∗1 = γ1 + Π1(β − β0), π∗2 = Π2(β − β0) and u∗ = u + V (β − β0), we see that H0(β0)
can be tested by testing π∗2 = 0 in the linear regression (5.5). This test can be interpreted as the
LR test of π∗2 = 0 in the regression (5.5) against the same regression with π∗1 and π∗2 unrestricted.
An exact confidence set of level 1 − α for β is then provided by Cβ(α; y, Y ) = {β0 : F (β0) ≤
Fα(k2, T − k1 − k2)} where

F (β0) =
(y − Y β0)′[M(X1) −M(X)](y − Y β0)/k2

(y − Y β0)′M(X)(y − Y β0)/(T − k1 − k2)
, (5.6)

where, for any non-singular matrix A, we define M(A) = IT − A(A′A)−1A′. The confidence set
Cβ(α; y, Y ) is similar at level 1 − α irrespective of the true value of Π (it is not conservative) and
so does not require an identifiability assumption, a remarkable feature. Cβ(α; y, Y ) is not generally
an ellipsoid and, by the results of Section 3, we can conclude it is unbounded with positive prob-
ability (a property not apparently pointed out before). In particular, an unbounded confidence set
will occur with probability at least 1 − α when the rank of Π is deficient (so β is not identifiable),
a natural outcome in this case. Note also Cβ(α; y, Y ) could be empty: specifically, this will occur
when the smallest root of the usual LIML determinantal equation exceeds some constant. Since
the probability that β ∈ Cβ(α; y, Y ) is 1 − α, the probability this occurs cannot be greater than
α under the model. Thus the occurrence of an empty confidence set can be interpreted as a rejec-
tion of the model itself, e.g., because of overidentifying restrictions [i.e., a test of the restriction
rank([π2,Π2]) = rank(Π2), or equivalently a test of the fact that π2 = Π2β for some vector β].
We thus have a specification test.

Cβ(α; y, Y ) is a valid confidence set for β because F (β) is a proper pivotal function for the
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model considered. More generally, any LR-type statistic for testing an hypothesis about some trans-
formation δ = g(β, γ1,Π1, Π2) ∈ R

v of β, γ1 and Π is boundedly pivotal. This can be shown by
using an argument similar to the one in Dufour (1989) for bounding the distributions of LR statistics
for nonlinear hypothesis in linear regressions. More precisely, consider the hypothesis

H0 : g(β, γ1,Π1, Π2) ∈ Δ0 , (5.7)

where Δ0 is a nonempty subset of R
v, let LR(H0) be the LR statistic for testing H0 against (5.3),

and consider the multivariate linear regression model:

Z = XB + W (5.8)

where Z = [y , Y ], W = [u , V ], and the rows of W are i.i.d. N [0, Σ∗] with det(Σ∗) �= 0.
Model (5.3) is equivalent to a restricted version of (5.8) where B belongs to the set Γ1 = {B ∈
M(k,G+1) :B = B(β, γ1,Π1,Π2), β ∈ R

G, γ1 ∈ R
k1,Π1 ∈ M(k1, G), Π2 ∈ M(k2, G)},

B(β, γ1, Π1, Π2) =
[
π1 Π1

π2 Π2

]
, π1 = Π1β + γ1 , π2 = Π2β , (5.9)

and the symbol M(m, n) denotes the set of the m× n real matrices. Γ1 represents the restrictions
imposed by the structural model (5.3) on the corresponding reduced form (5.8). Then the problem
of testing H0 against (5.3) is equivalent to testing

H ′
0 : B ∈ Γ0 against H ′

1 : B ∈ Γ1 (5.10)

where Γ0 = {B ∈ M(k,G + 1) : B = B(β, γ1,Π1,Π2), g(β, γ1,Π1,Π2) ∈ Δ0}. If we denote
by L(Z | B, Σ) the likelihood function of the regression (5.8) and

L(Γ) = sup{L(Z | B, Σ∗) : B ∈ Γ , Σ∗ ∈ SG+1} , ∅ �= Γ ⊆M(k, G+ 1) , (5.11)

where SG+1 is the set of the (G + 1) × (G + 1) positive definite matrices, we can establish the
following theorem on the distribution of LR(H0).

Theorem 5.1 Under the assumptions and notations (5.3) and (5.7) − (5.11), suppose
B(β, γ1, Π1, Π2) = B. Then the likelihood ratio statistic LR(H0) for testing H0 against (5.3)
satisfies the inequality

LR(H0) = L(Γ1)/L(Γ0) ≤ L (M(k,G + 1)) /L({B}) ≡ LR (5.12)

where LR ∼ [V1V2 · · ·VG+1]−T/2 and V1, V2, . . . , VG+1 are independent random variables such
that Vi follows a beta distribution with parameters

(
T−k−G−1+i

2 , k2
)
,

1 ≤ i ≤ G+ 1.

The bound LR has a distribution which does not depend on B nor any nuisance parameter, and
no identification condition is required. LR is a monotonic transformation of a Wilks Λ statistic,
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whose distribution has been extensively studied [see Anderson (1984, Chapter 8)]. It can also
be determined easily by simulation [see Dufour and Khalaf (1996a,b)]. For any hypothesis H0,
e.g., an hypothesis of the form H0(δ0) : g(β, γ1,Π1, Π2) = δ0, we have P [LR(H0) ≥ x] ≤
P [LR ≥ x] , ∀x, so that the critical values of LR(H0) can be bounded from above by the quantiles
of LR. We do not claim this bound is very tight, but it shows clearly that LR-type statistics in
simultaneous equations are boundedly pivotal, a property not shared by Wald-type statistics.

The AR procedure may be interpreted as an IV method in which the exogenous variables ex-
cluded from a structural equation of interest are added directly to the equation instead of being used
to replace the endogenous explanatory variables by fitted values. The above discussion suggests this
is a much sounder way of making inferences on structural coefficients than the more usual methods
based on IV estimators and standard errors. Note also the AR statistic can yield “asymptotically
valid” tests and confidence sets under much weaker assumptions onX and [u, V ]; see, for example,
Staiger and Stock (1994) and Dufour and Jasiak (1994). An important feature here is that finite and
large sample validity results for the AR procedure are unaffected by the presence of identification
problems. Further, the evidence available on the power of AR tests indicates their performance is
excellent; see Maddala (1974) and Dufour and Jasiak (1994).

An apparent shortcoming of AR tests and confidence sets comes from the fact that they are
designed to consider the complete vector β.When G ≥ 2 (non-scalar β), we may still wish to build
confidence sets for individual components of β or for some transformation g(β) ∈ R

m. This can
be done by using a projection approach similar to the one used in Dufour (1990) for a different
problem. For any confidence set Cβ(α) such that Pθ [β ∈ Cβ(α)] ≥ 1− α ,∀θ ∈ Ω, e.g. Cβ(α) =
Cβ(α; y, Y ), take the image set g[Cβ(α)] = {g(β) ∈ R

m : β ∈ Cβ(α)}. Since β ∈ Cβ(α) entails
g(β) ∈ g[Cβ(α)], we have

Pθ [g(β) ∈ g[Cβ(α)]] ≥ Pθ [β ∈ Cβ(α)] ≥ 1 − α ,∀θ ∈ Ω. (5.13)

so that the confidence set g[Cβ(α)] has level 1−α. Note there is no restriction on the dimension of
g(β). When g(β) = βi, an individual element of β, g[Cβ(α)] can be interpreted as the projection
of Cβ(α) on the βi−axis. For a scalar function g(β), this confidence set does not necessarily take
the form of an interval, although this could easily be the case [e.g., if g(.) is continuous and the set
Cβ(α) is bounded and connected]. If one wishes to have a confidence interval for any scalar function
g(β), this can be done by considering the variables gL(α) = inf{g(β0) : β0 ∈ Cβ(α)} and
gU (α) = sup{g(β0) : β0 ∈ Cβ(α)} which are obtained by minimizing g(β0) subject to the
restriction F (β0) ≤ Fα(k2, T − k1 − k2). Since β ∈ Cβ(α) ⇒ gL(α) ≤ g(β) ≤ gU (α), we
see again that

Pθ [gL(α) ≤ g(β) ≤ gU (α)] ≥ 1 − α ,∀θ ∈ Ω. (5.14)

The confidence sets g[Cβ(α)] and [gL(α) , gU (α)] are obtained by first finding a joint confidence
set for β and then deducing the corresponding set of g(β) values. We call such sets projection-based
confidence sets. These will typically be non-similar and conservative (at least at certain points of
the parameter space), but no other valid procedure appears to exist in finite samples.
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5.3. Dynamic models

We will now examine a few dynamic models. As a first example, consider a linear regression with
AR(1) disturbances:

yt = β0 + x′tβ + ut , ut = ρut−1 + εt , |ρ| ≤ 1 , t = 1, ... , T, (5.15)

where x1, ... , xT are fixed k × 1 vectors of explanatory variables, β0, β, ρ and σ are unknown
coefficients, ε1, ... , εT are i.i.d. with a continuous distribution (say) which does not depend on
the regression coefficients, and y0 is taken as fixed (i.e., we consider the conditional distribution
of y1, ... , yT given y0). For such a model, there is ample Monte Carlo evidence showing that
usual asymptotic t and F-tests based on generalized least squares (to correct serial correlation) can
be quite unreliable in finite samples, especially when ρ is close to one and for inference about the
intercept coefficient; see, for example, Park and Mitchell (1980) and Miyazaki and Griffiths (1984).
Indeed, if we rewrite the model in the form

yt = β0(1 − ρ) + (xt − ρxt−1)′β + ρyt−1 + εt , t = 1, ... , T, (5.16)

we see that β0 is not identified when ρ = 1. So by the results of Sections 3 and 4, any valid con-
fidence set for β0 must be unbounded with positive probability, and Wald-type tests for hypothesis
on β0 have distributions that will deviate arbitrarily from any uniform approximation. The same
problems will occur even if we impose the restriction |ρ| < 1. For an example of a valid confidence
set for the regression coefficients of the model just discussed (with normal disturbances), see Dufour
(1990).

As a second example, consider inference on a long-run multiplier, which measures the long-run
effect of a permanent unit change of an exogenous variable on some dependent variable. Take the
simple first-order dynamic model:

yt = λyt−1 + x′tβ + εt , |λ| ≤ 1, t = 1, ... , T, (5.17)

where x1, ... , xT , ε = (ε1, ... , εT )′ and y0 are defined as in (5.15). Then the LR multiplier for the
j-the component of xt = (x1t, ... , xkt)′ is βLj = βj/(1 − λ) . Since βLj is a parameter ratio that
becomes undefined (nonidentified) when λ = 1, the problem is similar to the one studied in Section
5.1 and the results of Sections 3 and 4 apply again. For an example of a valid confidence procedure
for βLk, see Dufour and Kiviet (1994).

Thirdly, consider inference on the coefficients of a cointegrating relationship [for reviews, see
Engle and Granger (1991) and Banerjee, Dolado, Galbraith and Hendry (1993)]. It is well known
that such relationships can be uniquely determined only through identification restrictions [see Jo-
hansen and Juselius (1994)]. Difficulties here are quite similar to those met in static simultaneous
equations, but it will be useful to spell them out for a special case.

Take a bivariate time series Xt = (X1t,X2t)′ which follows an autoregressive model of order p
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(p ≥ 1), written in error-correction form:

ΔXt = μ+
p−1∑
j=1

ΓjΔXt−j + ΠXt−p + ut , t = 1, ... , T, (5.18)

where μ is a constant vector, u1, ... , uT are i.i.d. N [0,Σ] with det(Σ) �= 0, and the initial values
X0, ... ,X−p+1 are fixed. By the Engle-Granger representation theorem, X1t and X2t are cointe-
grated if and only if Π can be written Π= δβ′,where δ and β are non-zero vectors of dimension
two. The first step for identifying β is to impose a normalization constraint on β, e.g., by setting its
first component equal to 1 : β = (1 , β1). Then model (5.18) can be rewritten as

ΔXt = μ+
p−1∑
j=1

ΓjΔXt−j + δ(X1,t−p + β1X2,t−p) + ut , t = 1, ... , T , (5.19)

and we see that β1 cannot be identified when δ = 0. The results of Sections 3 and 4 thus apply to
inference about β1. Note δ = 0 corresponds to the usually quite plausible case where X1t and X2t

are not cointegrated and a regression of X1t on X2t would be a “spurious regression”.
Recent simulation experiments (Gonzalo, 1994) have shown that maximum likelihood in a fully

specified error correction model [as suggested by Johansen (1988)] appears to be the best method
for estimating cointegrating vectors. Correspondingly, in the same context, our results suggest that
more reliable tests and confidence sets for cointegrating vectors will be obtained by using LR-type
tests and by building confidence sets through the inversion of such tests.

6. Conclusion

The results presented in this paper have important implications for econometric theory and practice.
First, it is essential to remember that confidence sets should be based on proper pivotal functions,
or at least on boundedly pivotal functions.

Second, the most commonly used method for building confidence sets, which is based on “in-
verting” Wald-type tests, does not rely on proper pivotal functions in situations involving LAU
parameters: standard errors and covariance matrices largely lose their usual interpretation.

Thirdly, asymptotic arguments can be especially misleading in the models studied here. Even
though a Wald-type statistic may be asymptotically pivotal at every point outside the nonidentifica-
tion subset, convergence to the asymptotic distribution has to be arbitrarily slow at points outside
the nonidentification subset (nonuniform convergence). Monte Carlo evidence strongly supporting
this view is available in Dufour and Jasiak (1994), Hall, Rudebusch and Wilcox (1996), and Nelson,
Startz and Zivot (1996).

Fourth, it appears that LR statistics behave relatively smoothly in the presence of identification
problems, so that they have better chances of being boundedly pivotal [for other illustrations of this
phenomenon, see Dufour (1989)]. Indeed, this is not surprising in view of the fact that the likelihood
function is flat on a nonidentification subset. In the context of a standard simultaneous equations
model, we showed explicitly that LR statistics for testing hypothesis about structural coefficients
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are boundedly pivotal, while Wald-type statistics are not. For Monte Carlo evidence showing that
LR-type tests are indeed more reliable in such contexts, see Dufour and Jasiak (1994) and Nelson,
Startz and Zivot (1996).

Fifth, given a valid confidence set for a parameter vector, it is always possible to derive valid
confidence sets for individual elements of the vector, or for any function of this vector, by using
projection methods.

The examples analyzed in Section 5 by no way constitute an exhaustive list of the cases to which
our general results apply. Other cases include: various nonlinear regressions, ARMA models both
univariate and multivariate (e.g., because of common factors problems), inference in “structural”
models derived from dynamic optimization models which are often estimated by the generalized
method of moments, inference about structural change break dates, etc. To keep our exposition
within limits, we emphasized here parametric models, i.e., models for which a finite-dimensional
vector θ completely determines the data generating process. The results of Sections 2-4 however
are sufficiently general to cover nonparametric models. Such models raise even stronger indeter-
minacies and “impossibilities”. For example, on testing unit root hypothesis in time series models
which allow for general forms of serial dependence, Blough (1992) and Cochrane (1991) showed
that any test with level α should have power that does not exceed its level against any stationary
alternative. Our results thus strongly concur with theirs by stressing the importance of finite-sample
considerations for model formulation and inference.

Finally, it is important to remember not all Wald-type tests are problematic: when a Wald-
type statistic is a pivotal function, as occurs for example when testing linear restrictions on the
coefficients of linear regressions, there is no difficulty. The problems discussed above appear in
models which contain LAU parameters. A question of interest here is whether it is possible to
“salvage” Wald-type tests and confidence sets in such cases. We saw above it is totally insufficient to
exclude the regions of the parameter space where the coefficient vector θ or the transformation ψ(θ)
is not identifiable. Whether there is then a practical way of modifying Wald-type procedures remains
doubtful. For example, in models estimated by IV, one may try to find methods for selecting “good”
instruments. However, as the simulation results of Hall, Rudebusch and Wilcox (1996) show, such
procedures do not appear to work and may even make matters worse from the point of view of
test reliability. Further, when it is possible to find alternative procedures that behave “smoothly”
in the presence of identification difficulties (like the Anderson-Rubin procedure in simultaneous
equations), there appears to be little motivation for sticking with Wald-type methods. Accepting the
possibility of an unbounded confidence set for a structural coefficient is simply a matter of logic
and scientific rigour: the data may simply be uninformative about such coefficients. Note this does
not at all mean that the practice of building confidence sets should be abandoned for potentially
unidentified models. Unbounded confidence sets do not necessarily occur for particular data sets
and may indeed be very unlikely: if the data generating process is “far” from those cases where the
structural parameter vector is not identified, we can expect any reasonably powerful confidence
set procedure will yield unbounded confidence sets only with low probability. But unbounded
confidence sets must occur with high probability when the parameters considered are not identified
or are close to be so: the occurrence of such a set may be interpreted as a symptom of the fact that
the parameter cannot be precisely evaluated from the available data.
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A. Appendix: Proofs

PROOF OF PROPOSITION 3.1. For any ψ1 ∈ Ψ0, we can find a sequence (θn)∞n=1 in S(Θ0,Ω1) such
that ψ(θn) = ψ1, ∀n, and Pθn converges weakly to Pθ. Since Cψ(Y ) is a level 1 − α confidence
set for θ ∈ Ω1\Θ0 (Assumption F), we have Pθn [ψ1 ∈ Cψ(Y )] ≥ 1 − α , ∀n . From B, D, F and
the portmanteau theorem for weak convergence [see Billingsley (1968, chapter 1, theorem 2.1)],
we also have: Pθn [ψ1 ∈ Cψ(Y )] −→

n→∞ Pθ[ψ1 ∈ Cψ(Y )], where θ = lim
n→∞θn ∈ Θ0. Then, using

the fact that Pθ is the same for all θ ∈ Θ0 (Assumption C), we see Pθ[ψ1 ∈ Cψ(Y )] = P θ[ψ1 ∈
Cψ(Y )] , ∀θ ∈ Θ0 , and (3.1) follows.

The inequality sup
θ∈ �N(θ)

Pθ[ψ1 ∈ Cψ(Y )] ≥ 1 − α is a direct consequence of (3.1) and the fact

that Ñ(θ) contains all the elements (except possibly a finite number) of any sequence in S(Θ0,Ω1).
To complete the proof, we note that E entails D by the portmanteau theorem for weak convergence
jointly with Scheffé’s theorem [see Billingsley (1968, Appendix II)]. Q.E.D.

PROOF OF PROPOSITION 3.2. To prove (3.3)-(3.4), we shall consider in turn three cases: a) R0 =
0; b) 0 < R0 <∞; c) R0 = ∞ .
a) R0 = 0 The result is obvious since ρU [Cψ(Y ), ψ1] ≥ 0 .
b) 0 < R0 < ∞ For any ε ∈ (0,∞), we can find ψ2 ∈ Ψ0 such that ρ(ψ1, ψ2) ≥ R0 − ε. Since
ψ2 ∈ Cψ(Y ) ⇒ ρU [Cψ(Y ), ψ1] ≥ ρ(ψ2, ψ1) ≥ R0 − ε , where ⇒ is the implication operator, we
see that

Pθ[ρU [Cψ(Y ), ψ1] ≥ R0 − ε] ≥ Pθ[ψ2 ∈ Cψ(Y )] ,∀θ .
Then, for any ε > 0 and θ ∈ Θ0, we see from Proposition 3.1 that

Pθ[ρU [Cψ(Y ), ψ1] ≥ R0 − ε] ≥ 1 − α ,
which entails Pθ[ρU [Cψ(Y ), ψ1] ≥ R0 − εm ] ≥ 1 − α , for any sequence (εm)∞m=1 such that
εm > 0, εm+1 < εm and lim

m→∞εm = 0, hence

Pθ[ρU [Cψ(Y ), ψ1] ≥ R0] ≥ 1 − α , ∀θ ∈ Θ0.
Similarly, for all n and ε > 0, we also have Pθn [ρU [Cψ(Y ), ψ1] ≥ R0 − ε] ≥ Pθn [ψ2 ∈ Cψ(Y )],
hence using again Proposition 3.1,
lim inf
n→∞ Pθn [ρU [Cψ(Y ), ψ1] ≥ R0 − ε] ≥ lim inf

n→∞ Pθn [ψ2 ∈ Cψ(Y )] ≥ 1 − α.

c) R0 = ∞ For any Δ ∈ (0,∞), we can find ψ2 ∈ Ψ0 such that ρ(ψ1, ψ2) ≥ Δ,
hence Pθ[ρU [Cψ(Y ), ψ1] ≥ Δ] ≥ Pθ[ψ2 ∈ Cψ(Y )], ∀θ . Thus, for any Δ > 0 and θ ∈ Θ0,
Pθ[ρU [Cψ(Y ), ψ1] ≥ Δ] ≥ 1 − α, hence

Pθ[ρU [Cψ(Y ), ψ1] = ∞] = Pθ[ρU [Cψ(Y ), ψ1] ≥ R0] ≥ 1 − α, ∀θ ∈ Θ0.
Similarly, Pθn [ρU [Cψ(Y ), ψ1] ≥ Δ] ≥ Pθn [ψ2 ∈ Cψ(Y )],∀Δ > 0,∀n, hence
lim inf
n→∞ Pθn [ρU [Cψ(Y ), ψ1] ≥ Δ] ≥ lim inf

n→∞ Pθn [ψ2 ∈ Cψ(Y )] ≥ 1 − α, ∀Δ ∈ (0,∞).
(3.3) and (3.4) are thus established. (3.5) follows on applying the portmanteau theorem for weak

convergence. Q.E.D.

PROOF OF THEOREM 3.3. Using the Boole-Bonferroni inequality, we first note

Pθ[{ψ1, ψ2} ⊆ Cψ(Y )] ≥ 1 − Pθ[ψ1 /∈ Cψ(Y )] − Pθ[ψ2 /∈ Cψ(Y )] ,∀θ, (A.1)

for any ψ1 , ψ2 ∈ Ψ0. Further, from Proposition 3.1, Pθ[ψi ∈ Cψ(Y )] ≥ 1 − α, i = 1, 2, when
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θ ∈ Θ0, so that Pθ[{ψ1, ψ2} ⊆ Cψ(Y )] ≥ 1 − 2α, ∀θ ∈ Θ0. Now let D1 = D[Ψ0]. To prove
(3.6) and (3.7), we proceed as in the proof of Proposition 3.2 and distinguish again three cases:
a) D1 = 0; b) 0 < D1 <∞; c) D1 = ∞ .
a) D1 = 0 In this case, Pθ[D(Y ) ≥ D1] = Pθ[D(Y ) ≥ 0] ≥ 1 − 2α .
b) 0 < D1 < ∞ For any ε ∈ (0,∞), we can find ψ1, ψ2 ∈ Ψ0 such that ρ(ψ1, ψ2) ≥ D1 − ε .
Then ψ1, ψ2 ∈ Cψ(Y ) ⇒ D[Cψ(Y )] ≥ ρ(ψ1, ψ2) ≥ D1 − ε ⇒ −D[Cψ(Y )] ≥ −D1 + ε , and
using (A.1),

Pθ[−D[Cψ(Y )] ≤ −D1 + ε] ≥ Pθ[{ψ1, ψ2} ⊆ Cψ(Y )] ≥ 1 − 2α,∀θ ∈ Θ0.
Then, by the right continuity of distribution functions,

Pθ[D[Cψ(Y )] ≥ D1] = lim
ε→0+

Pθ[−D[Cψ(Y )] ≤ −D1 + ε] ≥ 1 − 2α , ∀θ ∈ Θ0. Sim-

ilarly, for all n and ε ∈ (0,∞), we also have Pθn [D[Cψ(Y )] ≥ D1 − ε] ≥ Pθn [{ψ1, ψ2} ⊆
Cψ(Y )] ≥ 1 − Pθn [ψ1 /∈ Cψ(Y )] − Pθn [ψ2 /∈ Cψ(Y )] ,∀ε ∈ (0,∞), hence using Proposition
3.1, lim inf

n→∞ Pθn [D[Cψ(Y )] ≥ D1 − ε] ≥ 1 − 2α.

c) D1 = ∞ For any Δ > 0, we can find ψ1, ψ2 ∈ Ψ0 such that ρ(ψ1, ψ2) ≥ Δ. Thus,
Pθ [D[Cψ(Y )] ≥ Δ] ≥ Pθ[{ψ1, ψ2} ⊆ Cψ(Y )] ≥ 1 − 2α , ∀θ ∈ Θ0 . Since the latter inequality
holds for any Δ ∈ (0,∞) however large, we must have:

Pθ [D[Cψ(Y )] ≥ D1] = Pθ [D[Cψ(Y )] = ∞] ≥ 1 − 2α , ∀θ ∈ Θ0.
lim inf
n→∞ Pθn [D[Cψ(Y )] ≥ Δ] ≥ 1 − 2α follows from (A.1) and Proposition 3.1.

Consequently, (3.6)-(3.7) are established. (3.8) follows on applying Proposition 3.2 and noting
D[Cψ(Y )] = ∞ ⇔ ρU [Cψ(Y ), ψ1] = ∞, where ψ1 ∈ Ψ. Q.E.D.

PROOF OF LEMMA 3.5. If Pθ0(A) > 0 , we have:

Pθ(A) =
∫
A dPθ(y) =

∫
A f(y|θ)dy =

∫
A∩�(θ) f(y|θ)dy

≥ ∫
A∩�(θ0) f(y|θ)dy =

∫
A∩�(θ0)

f(y|θ)
f(y|θ0)f(y|θ0)dy > 0

where the last inequality follows on observing that Pθ0(A) =
∫
A∩�(θ0) f(y|θ0)dy > 0 and

f(y|θ)/ f(y|θ0) > 0 for y ∈ A ∩ S(θ0) . Q.E.D.

PROOF OF THEOREM 5.1. The fact that LR(H0) = L(Γ1)/L(Γ0) follows from the invari-
ance of LR test statistics to model reparameterizations [see, for example, Dagenais and Dufour
(1991)] and the observation that model (5.3) is equivalent to H ′

1 [model (5.8) with B ∈ Γ1]
while the hypothesis H0 is equivalent to H ′

0 [model (5.8) with B ∈ Γ0]. Consider now the
hypothesis H00 : B ∈ {B} and H11 : B ∈ M(k,G + 1). H00 is the reduced form model
(5.8) restricted to the single “true” value B = B, while H11 corresponds to a completely un-
restricted reduced form. Under H0, we have {B} ⊆ Γ0 ⊆ Γ1 ⊆ M(k,G + 1), so that
L({B}) ≤ L(Γ0) ≤ L(Γ1) ≤ L (M(k,G+ 1)) and

LR(H0) = L(Γ1)/L(Γ0) ≤ L (M(k,G + 1)) /L({B}) = LR(H00 | H11) ,
where LR(H00 |H11) is the LR statistic for testing H00 against H11. The null distribution of
LR(H00 | H11) is well known from the literature on multivariate statistical analysis, since it is
a monotonic transformation of Wilks Λ statistic with parameters (G + 1, T − k, k). Hence we
have LR(H00 | H11) = Λ−T/2 , where Λ ∼ V1V2 · · ·VG+1 and the variables Vi, i = 1, . . . , G+ 1,
are independent with beta distributions: Vi ∼ Beta

(
T−k−G−1+i

2 , k
2

)
, i = 1, ... , G+ 1; see Rao
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(1973, Chap. 8, pp. 540-541 and 551) or Anderson (1984, Chap. 8). Q.E.D.
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