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Summary We provide a generalization of the Anderson–Rubin (AR) procedure for inference
on parameters that represent the dependence between possibly endogenous explanatory
variables and disturbances in a linear structural equation (endogeneity parameters). We stress
the distinction between regression and covariance endogeneity parameters. Such parameters
have intrinsic interest (because they measure the effect of latent variables, which induce
simultaneity) and play a central role in selecting an estimation method (such as ordinary least-
squares or instrumental variable methods). We observe that endogeneity parameters might
not be identifiable and we give the relevant identification conditions. These conditions entail
a simple identification correspondence between regression endogeneity parameters and the
usual structural parameters, while the identification of covariance endogeneity parameters
typically fails as soon as global identification fails. We develop identification-robust finite-
sample tests for joint hypotheses involving structural and regression endogeneity parameters,
as well as marginal hypotheses on regression endogeneity parameters. For Gaussian errors,
we provide tests and confidence sets based on standard Fisher critical values. For a wide
class of parametric non-Gaussian errors (possibly heavy-tailed), we show that exact Monte
Carlo procedures can be applied using the statistics considered. As a special case, this result
also holds for usual AR-type tests on structural coefficients. For covariance endogeneity
parameters, we supply an asymptotic (identification-robust) distributional theory. Tests for
partial exogeneity hypotheses (for individual potentially endogenous explanatory variables)
are covered as special cases. The proposed tests are applied to two empirical examples: the
relation between trade and economic growth, and the widely studied problem of returns to
education.

Keywords: AR-type statistic, Endogeneity, Identification-robust confidence sets, Partial
exogeneity test, Projection-based techniques.

1. INTRODUCTION

Instrumental variable (IV) regressions are typically motivated by the fact that explanatory
variables can be correlated with the error term, so least-squares methods yield biased inconsistent
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estimators of model coefficients. As is well known, IV estimates are obtained by isolating
the variation in endogenous explanatory variables due to exogenous regressors excluded from
the explanatory variables, and correlating this variation with that of the dependent variable of
interest. Even though coefficients estimated in this way might have interesting interpretations
from the point of view of economic theory, inference on such structural parameters faces
identification difficulties. Furthermore, it is well known that IV estimators can be very imprecise,
while tests and confidence sets can be highly unreliable, especially when instruments are weakly
associated with model variables (weak instruments). This has led to a large body of literature on
reliable inference in the presence of weak instruments; see the reviews of Stock et al. (2002) and
Dufour (2003).

Research on weak instruments has focused on inference for the coefficients of endogenous
variables in so-called IV regressions. This leaves out the parameters that specifically determine
simultaneity features, such as the covariances between endogenous explanatory variables and
disturbances. These parameters can be of interest for several reasons. First, they provide
direct measures of the importance of latent variables, which are typically unobserved and can
simultaneously affect a number of observable endogenous variables. These latent variables are
in a sense left out from structural equations, but they remain hidden in structural disturbances.
For example, in a wide set of economic models, they can represent unobserved latent variables,
such as surprise variables, which play a role in models with expectations; see Barro (1977),
and Dufour and Jasiak (2001). Second, the simultaneity covariance (or regression) coefficients
determine the estimation bias of least-squares methods. Information on the size of such biases
can be useful in interpreting least-squares estimates and related statistics. Third, information on
the parameters of hidden variables (which induce simultaneity) might be important for selecting
statistical procedures. Even if instruments are strong, it is well known that IV estimators can be
considerably less efficient than least-squares estimators; see Kiviet and Niemczyk (2007, 2012),
Doko Tchatoka and Dufour (2011a), Kiviet and Pleus (2012), and Kiviet (2013). Indeed, this
might be the case even when endogeneity is present. If a variable is not correlated (or only
weakly correlated) with the error term, instrumenting it can lead to sizable efficiency losses in
estimation. Assessing when and which variables should be instrumented is an important issue for
the estimation of structural models.

We stress here the view that linear structural models (IV regressions) can be interpreted as
regressions with missing regressors. If the latter were included, there would be no simultaneity
bias, so no correction for simultaneity (such as IV methods) would be needed. This feature allows
one to define a model transformation that maps a linear structural equation to a linear regression
where all the explanatory variables are uncorrelated with the error term. We call this equation
the orthogonalized structural equation, and we use it extensively. Interestingly, the latter is not a
reduced-form equation. Instead, it involves the structural parameters of interest, but also includes
endogeneity parameters that are hidden in the original structural equation.

The problem stems from the fact that the missing regressors are unobserved. Despite
this difficulty, we show that procedures similar to the Anderson–Rubin (AR) procedure, as
proposed by Anderson and Rubin (1949), can be applied to the orthogonalized equation. This
allows one to make inference jointly on both the parameters of the original structural equation
and endogeneity parameters. Two types of endogeneity parameters are considered: regression
endogeneity parameters and covariance endogeneity parameters. Under standard conditions,
where instruments are strictly exogenous and errors are Gaussian, the tests and confidence sets
derived in this way are exact. The proposed methods do not require identification assumptions, so
they can be characterized as identification-robust. For more general inference on transformations
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of the parameters in the orthogonalized structural equation, we propose projection methods, for
such techniques allow for a simple finite-sample distributional theory and preserve robustness to
identification assumptions.

To be more specific, we consider a model of the form

y = Yβ + X1γ + u,

where y is an observed dependent variable, Y is a matrix of observed (possibly) endogenous
regressors, and X1 is a matrix of exogenous variables. We observe that AR-type procedures
can be applied to test hypotheses on the transformed parameter θ = β + a, where a represents
regression coefficients of u on the reduced-form errors of Y (regression endogeneity parameters).
Identification-robust inference for a itself is then derived by exploiting the possibility of making
identification-robust inference on β. Then, inference on covariances (i.e., σV u) between u and Y

(covariance endogeneity parameters) can be derived by considering linear transformations of a.
We stress that regression and covariance endogeneity parameters – though theoretically

related – play distinct but complementary roles: regression endogeneity parameters represent
the effect of reduced-form innovations on y, while covariance endogeneity parameters determine
the need to instrument different variables in Y . When σV u = 0, Y can be treated as exogenous (so
IV estimation is not warranted). So-called exogeneity tests typically test the hypothesis σV u = 0.
It is easy to see that σV u = 0 if and only if a = 0 (provided the covariance matrix between
reduced-form errors is non-singular), but the relationship is more complex in other cases.

In this paper, we emphasize cases where a �= 0. We first study formally the identification
of endogeneity parameters. We establish a simple identification correspondence between the
components of β and a: each component of a is identifiable if and only if the corresponding
component of β is identifiable. In contrast, this does not hold in general for the covariances
σV u: as soon as one element of β is not identifiable, all components of σV u typically fail to be
identifiable. In this sense, σV u is more difficult to interpret than a. Because of the failure of
the exogeneity hypothesis, the distributions of the test statistics are much more complex. It is
relatively easy to produce finite-sample inference for a, but not for σV u. So, for σV u, we propose
asymptotic tests and confidence sets. It is important to note that stronger assumptions are needed
for making inference on σV u (as opposed to a). Indeed, we describe general distributional set-
ups where σV u might not be well defined (because of heterogeneity in the model for Y , or the
non-existence of moments), while a remains well defined and statistically meaningful. In such
cases, inference on a is feasible, while inference on σV u might not be (even when all parameters
in the structural equation of interest are identifiable).

By allowing a �= 0 (or σV u �= 0), we extend earlier results on exogeneity tests, which
focus on the null hypothesis Ha : a = 0. The literature on this topic is considerable; see, for
example, Durbin (1954), Wu (1973, 1974, 1983), Revankar and Hartley (1973), Hausman (1978),
Revankar (1978), Dufour (1979, 1987), Hwang (1980), Kariya and Hodoshima (1980), Hausman
and Taylor (1981), Spencer and Berk (1981), Nakamura and Nakamura (1981), Engle (1982),
Smith (1983, 1984, 1985), Staiger and Stock (1997), and Doko Tchatoka and Dufour (2011a, b).
By contrast, we consider here the problem of testing any value of a (or σV u) and build confidence
sets for these parameters. By allowing for weak instruments, we extend the results in Dufour
(1979, 1987) where Wald-type tests and confidence sets are proposed for inference on a and
σV u, under assumptions that exclude weak instruments. Finally, by considering inference on a

and σV u, we extend a procedure proposed by Dufour and Jasiak (2001) for inference on the
aggregate parameter θ = β + a (but not a or σV u) in the context of a different model.
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On exploiting results from Dufour and Taamouti (2005, 2007), we supply analytical forms
for the proposed confidence sets, and we give the necessary and sufficient conditions under
which they are bounded. These results can be used to assess partial exogeneity hypotheses, even
when identification is deficient or weak. In order to allow for alternative assumptions on error
distributions, we show that the proposed AR-type statistics are pivotal as long as errors follow
a completely specified distribution (up to an unknown scale – possibly random – parameter),
which might be non-Gaussian. Because of this invariance property, exact Monte Carlo tests can
be performed without a Gaussian assumption, as described by Dufour (2006). In particular, we
show this is feasible under general assumptions, which allow considerable heterogeneity in the
reduced-form model for Y , even a completely unspecified model for Y . On allowing for more
general error distributions and weakly exogenous instruments (along with standard high-level
asymptotic assumptions), we also show that the proposed procedures remain asymptotically valid
and identification-robust. Finally, we apply the proposed methods to two empirical examples:
the relationship between trade and economic growth (Frankel and Romer, 1999, and Dufour and
Taamouti, 2007), and the model of returns to education studied by Card (1995) and Kleibergen
(2004, Table 2, p. 421).

The paper is organized as follows. In Section 2, we describe the model and the identification
conditions for endogeneity parameters. In Section 3, we present the finite-sample theory for
inference on regression endogeneity parameters. In Section 4, we discuss asymptotic theory
and inference for covariance endogeneity parameters. In Section 5, we present empirical
applications.

2. FRAMEWORK: ENDOGENEITY PARAMETERS AND THEIR
IDENTIFICATION

We consider a standard linear structural equation of the form

y = Yβ + X1γ + u, (2.1)

where y = [y1, . . . , yT ]′ is a T × 1 vector of observations on a dependent variable, Y =
[Y1, . . . , YT ]′ is a T × G matrix of observations on (possibly) endogenous explanatory
variables (G ≥ 1), X1 is a T × k1 full-column-rank matrix of strictly exogenous variables,
u = [u1, . . . , uT ]′ is a vector of structural disturbances, and β and γ are G × 1 and k1 × 1
unknown coefficient vectors. Further, Y satisfies the model

Y = X� + V = X1�1 + X2�2 + V, (2.2)

where X2 is a T × k2 matrix of observations on exogenous variables (instruments), X =
[X1, X2] = [X•1, . . . , X•T ]′ has full-column rank k = k1 + k2, �1 and �2 are k1 × G and k2 ×
G coefficient matrices, � = [�1,�2], and V = [V1, . . . , VT ]′ is a T × G matrix of reduced-
form disturbances. Equation (2.1) is the structural equation of interest, while (2.2) represents the
reduced form for Y . On substituting (2.2) into (2.1), we obtain the reduced form for y

y = X1π1 + X2π2 + v, (2.3)

where π1 = γ + �1β, π2 = �2β, and v = Vβ + u = [v1, . . . , vT ]′.
When the errors u and V have finite means (although this assumption could easily be replaced

by another location assumption, such as zero medians), the usual necessary and sufficient
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condition for identification of β and γ (from the first moments of y and Y ) in (2.1) and (2.2)
is

rank(�2) = G. (2.4)

If �2 = 0, the instruments X2 are irrelevant, and β is completely unidentified. If 1 ≤ rank(�2) <

G, β is not identifiable, but some linear combinations of the elements of β are identifiable (see
Dufour and Hsiao, 2008). If �2 is close not to have full rank (e.g., if some eigenvalues of �′

2�2

are close to zero), some linear combinations of β are ill determined by the data, a situation often
called weak identification (see Dufour, 2003).

Throughout this paper, Im is the identity matrix of order m. For any full-column-rank
T × m matrix A, P (A) = A(A′A)−1A′, M(A) = IT − P (A), vec(A) is the (T m) × 1 column
vectorization of A and ‖A‖ = [tr(A′A)]1/2 is the matrix Euclidian norm. For A square, A > 0
means A is positive definite (p.d.), and A ≥ 0 means A is positive semi-definite (p.s.d.). We use
p→ to denote convergence in probability, and

d→ to denote convergence in distribution.

2.1. Identification of endogeneity parameters

We now wish to represent the fact that u and V can be correlated, allowing for the possibility
of identification failure. It is important to note that the structural error ut might not be uniquely
determined by the data when β and γ are not identified. For this, it will be useful to consider
two alternative set-ups for the disturbance distribution. In the first set-up, the disturbance vectors
(ut , V

′
t )′ have common finite second moments (structural homoscedasticity). In the second set-

up, we allow for a large amount of heterogeneity in the distributions of reduced-form errors
(reduced-form heterogeneity). The second set-up is more appropriate for practical work, and we
wish to go as far as possible in that direction. However, it will be illuminating to consider the
first set-up.

ASSUMPTION 2.1 (STRUCTURAL HOMOSCEDASTICITY). The vectors Ut = (ut , V
′
t )′, t =

1, . . . , T , all have finite second moments with mean zero and the same covariance matrix

�U = E[UtU
′
t ] =

[
σ 2

u σ ′
V u

σV u �V

]
, (2.5)

where �V = E[VtV
′
t ] is non-singular.

Under the above assumption, we have

σV v = E[Vtvt ] = E[Vt (V
′
t β + ut ] = �V β + σV u, σ 2

v = σ 2
u + β ′�V β + 2β ′σV u. (2.6)

The covariance vector σV u indicates which variables in Y are correlated with ut , so it is a
basic determinant of the level of endogeneity of these variables. Note, however, that σV u is not
identifiable when β is not (for then the structural error ut is not uniquely determined by the data).

In this context, it will be illuminating to look at the following two regressions: (1) the linear
regression of ut on Vt ,

ut = V ′
t a + et , t = 1, . . . , T , (2.7)

where a = �−1
V σV u and E[Vtet ] = 0 for all t ; and (2) the linear regression of vt on Vt ,

vt = V ′
t θ + ηt , t = 1, . . . , T , (2.8)
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where θ = �−1
V σV v and E[Vtηt ] = 0 for all t . It is easy to see that

σV u = �V a, σ 2
u = σ 2

e + a′�V a = σ 2
e + σ ′

V u�
−1
V σV u, (2.9)

where E[e2
t ] = σ 2

e for all t . This entails that a = 0 if and only if σV u = 0, so the exogeneity
of Y can be assessed by testing whether a = 0. However, there is no simple match between the
components of a and σV u (unless �V is a diagonal matrix). For example, if a = (a′

1, a
′
2)′ and

σV u = (σ ′
V u1, σ ′

V u2)′ where a1 and σV u1 have dimension G1 < G, a1 = 0 is not equivalent to
σV u1 = 0. We call a the regression endogeneity parameter, and σV u the covariance endogeneity
parameter.

As long as the identification condition (2.4) holds, both σV u and a are identifiable. This is not
the case, however, when (2.4) does not hold. By contrast, the regression coefficient θ is always
identifiable, because it is uniquely determined by the second moments of reduced-form errors. It
is then useful to observe the following identity:

θ = �−1
V σV v = �−1

V (�V β + σV u) = β + a. (2.10)

In other words, the sum β + a is equal to the regression coefficient of vt on Vt . Even though
β and a might not be identifiable, the sum β + a is identifiable (from the first and second
moments of v and V ). Further, for any fixed G × 1 vector w, w′θ is identifiable, so the identities
w′a = w′θ − w′β and σV u = �V a along with the invertibility of �V entail the following
equivalences:

β is identifiable ⇔ a is identifiable ⇔ σV u is identifiable; (2.11)

w′β is identifiable ⇔ w′a is identifiable ⇔ w′�−1
V σV u is identifiable. (2.12)

In particular, (2.12) entails a simple identification correspondence between the components of β

and a: for each 1 ≤ i ≤ G, ai is identifiable ⇔ βi is identifiable. In other words, the identification
conditions for β and a are identical. In contrast, the equivalences [w′σV u is identifiable ⇔ w′β
is identifiable] and [σV ui is identifiable ⇔ βi is identifiable] do not hold, in general: as soon as
one element of β is not identifiable, all components of σV u typically fail to be identifiable. In this
sense, σV u is more difficult to interpret than a.

The first set-up (Assumption 2.1) requires that the reduced-form disturbances Vt , t =
1, . . . , T , have identical second moments. In many practical situations, this might not be
appropriate, especially in a limited-information analysis, which focuses on the structural equation
of interest (2.1) rather than the marginal distribution of the explanatory variables Y . To allow
for more heterogeneity among the observations in Y , we consider the following alternative
assumptions (where X•t is the t th row of X).

ASSUMPTION 2.2 (SECOND-ORDER REDUCED-FORM HETEROGENEITY). For some fixed
vector a in R

G, we have

u = V a + e (2.13)

where e, V , and X have finite second moments, E[e] = 0, and e is uncorrelated with V and X.

ASSUMPTION 2.3 (REDUCED-FORM HETEROGENEITY). Equation (2.13) holds with
E[et |Vt ,X•t ] = 0, t = 1, . . . , T .

Assumptions 2.2 and 2.3 allow substantial heterogeneity in the distribution of the
disturbances Vt , t = 1, . . . , T . The latter need not be identically distributed or independent.
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Assumption 2.2 maintains the existence of second moments (even though the covariance matrices
E[VtV

′
t ] can vary with t) and defines e through a zero mean and orthogonality with V and X.

Assumption 2.3 replaces this condition by a zero conditional mean; no further restriction on
V is imposed. The existence of moments for Vt and X•t is not required. An important case
where Assumption 2.2 holds is the one where V and e are independent (strong linear structural
decomposition). Given equation (2.1), the three conditions E[et |Vt ,X•t ] = 0, E[et |Yt ,X•t ] = 0,
and E[et |Yt , Vt , X•t ] = 0 are equivalent. In such cases, σV u might not be well defined (because
of heterogeneity in the model for Y , or the non-existence of moments), but a remains statistically
meaningful.

In view of the decomposition (2.13), equation (2.1) can be viewed as a regression model with
missing regressors. On substituting (2.13) into (2.1), we obtain

y = Yβ + X1γ + V a + e, (2.14)

where e is uncorrelated with all the regressors. Because of this property, we call (2.14) the
orthogonalized structural equation associated with (2.2), and we call e the orthogonalized
structural disturbance vector.1 In this equation, the original structural parameters (β and γ )
can be interpreted as regression coefficients, along with the regression endogeneity parameter
a. We see that a represents the effect of the latent variable V . Even though (2.14) is a regression
equation (i.e., (Y,X1, V ) is orthogonal to the disturbance e), it is quite distinct from the reduced-
form equation (2.3) for y.

The orthogonalized structural equation is quite helpful for interpreting model coefficients.
A structural model of the form (2.1) and (2.2) often represents a causal structure to explain
y. The endogenous variables (y and Y ) are determined by two types of inputs: observable
exogenous variables (X1 and X2) and unobserved variables (V and e). Here, X1 has both a direct
effect (X1γ ) on y and an indirect effect (X1�1β through Y ), while X2 only has an indirect
effect (X2�2β). Similarly, V represents unobserved variables (e.g., shocks, latent variables,
expectation errors), which have both a direct effect (V a) and an indirect effect (Vβ), while e

represents idiosyncratic shocks to y, which are orthogonal to Y . Finally, we can interpret the sum
Vβ + V a = V (β + a) as the net final effect (both direct and indirect) of V on y. In the context of
a causal interpretation, the coefficient vectors β, a, and β + a have useful distinct interpretations:
β represents the impact of Y (in particular, its systematic component E[Y ] = X1�1 + X2�2) on
y, a the direct effect of the latent variable V on y, and β + a the total effect of V on y. Statistical
inference on each of the coefficients has its own independent interest.

The identification of a can be studied through the orthogonalized structural equation. By
equation (2.2),

y = Yθ + X1π
∗
1 + X2π

∗
2 + e, (2.15)

where θ = β + a, π∗
1 = γ − �1a, π∗

2 = −�2a, and e is uncorrelated with all the regressors
(Y , X1 and X2). Equation (2.15) is a regression equation obtained by adding X2 to the original
structural equation or, equivalently, by adding Y to the reduced form (2.3) for y. We call (2.15)
the extended reduced form associated with (2.2). As soon as the matrix Z = [Y,X1, X2] has
full-column rank with probability one (almost surely (a.s.)), the parameters of equation (2.15)

1 The form (2.14) was originally proposed by Revankar and Hartley (1973) for the purpose of testing complete
exogeneity (a = 0). As pointed out by Dufour (1979, 1987), the distributional theory is substantially simpler in that
case and does not allow one to test more general restrictions on a (because the covariance matrix is modified).
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are identifiable (a.s.), because they are uniquely determined by the linear projections of yt on Yt

and X•t for t = 1, . . . , T (under Assumption 2.2) or by the corresponding conditional means
(under assumption 2.3). This is the case in particular for θ = β + a (with probability one)
when Z has full-column rank with probability one. This rank condition holds in particular when
the matrix V has full-column rank (a.s., conditional on X), for example, if its distribution is
absolutely continuous. This entails again that a is identifiable if and only if β is identifiable, and
similarly between w′a and w′β for any w ∈ R

G. This establishes the following identification
result for a, where identification refers to the conditional distributions of yt given Yt and X•t ,
t = 1, . . . , T .

PROPOSITION 2.1 (IDENTIFICATION OF REGRESSION ENDOGENEITY PARAMETERS). Under
the model given by (2.2), (2.3), and Assumption 2.2 or 2.3, suppose the matrix [Y,X1, X2]
has full-column rank. Then, a + β is identifiable, and the following two equivalences
hold:

a is identifiable ⇔ β is identifiable; (2.16)

for any w ∈ R
G, w′a is identifiable ⇔ w′β is identifiable. (2.17)

Under Assumption 2.2, covariance endogeneity parameters can depend on t . Indeed, it is easy
to see that E[Vtut ] = E[VtV

′
t ]a ≡ σV ut , which might depend on t if E[VtV

′
t ] does. However,

the identification of the parameters σV ut remains determined by the identification of a, whenever
the reduced-form covariances (which are parameters of reduced forms) are identifiable. Inference
on covariance endogeneity parameters requires additional assumptions. In Sections 3 and 4, we
see that finite-sample inference methods can be derived for regression endogeneity parameters
under the relatively weak Assumption 2.2, while only asymptotically justified methods are
proposed for covariance endogeneity parameters. For covariances, we focus on the case where
σV ut is constant.

2.2. Statistical problems

In this paper, we consider the problem of testing hypotheses and building confidence sets for
regression endogeneity parameters (a) and covariance endogeneity parameters (σV u), allowing
for the possibility of identification failure (or weak identification). We develop inference
procedures for the full vectors a and σV u, as well as linear transformations of these parameters
w′a and w′σV u. In view of the identification difficulties present here, we emphasize methods
for which a finite-sample distributional theory is possible (see Dufour, 1997, 2003), at least
partially.

In line with the above discussion of the identification of endogeneity parameters, we observe
that inference on a can be tackled more easily than inference on σV u, so we study this
problem first. The problem of testing hypotheses of the form Ha(a0) : a = a0 can be viewed
as an extension of the classical AR problem on testing Hβ(β0) : β = β0. However, there is an
additional complication: the variable V is not observable. For this reason, substantial adjustments
are required. To achieve our purpose, we propose a strategy that builds on two-stage confidence
procedures (Dufour, 1990), projection methods (Dufour, 1987, 1990, Abdelkhalek and Dufour,
1998, Dufour and Jasiak, 2001, and Dufour and Taamouti, 2005), and Monte Carlo tests (Dufour,
2006).
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Specifically, in order to build a confidence set with level 1 − α for a, choose α1 and α2 such
that 0 < α = α1 + α2 < 1, 0 < α1 < 1, and 0 < α2 < 1. We can then proceed as follows.

STEP 1. We build an identification-robust confidence set with level 1 − α1 for β. There are
several methods available to do this. In view of the existence of a finite-sample
distributional theory (as well as computational simplicity), we focus on the AR
approach, but alternative procedures could be exploited for this purpose.2

STEP 2. We build an identification-robust confidence set for the sum θ = β + a, which
happens to be an identifiable parameter. We show that this can be done easily though
simple regression methods.

STEP 3. The confidence sets for β and θ are combined to obtain a simultaneous confidence
set for the stacked parameter vector ϕ = (β ′, θ ′)′. Using the Boole–Bonferroni
inequality, this yields a confidence set for ϕ with level 1 − α (at least), as in Dufour
(1990).

STEP 4. Confidence sets for a = θ − β and any linear transformation w′a can then be derived
by projection. These confidence sets have level 1 − α.

STEP 5. Confidence sets for σV u and w′σV u can finally be built using the relationship σV u =
�V a.

For inference on a, we develop a finite-sample approach, which remains valid irrespective
of assumptions on the distribution of V . In addition, we observe that the test statistics used for
inference on β (the AR-type statistic) and θ enjoy invariance properties that allow the application
of Monte Carlo test methods. As long as the distribution of the errors u is specified up to an
unknown scale parameter, exact tests can be performed on β and θ through a small number of
Monte Carlo simulations (see Dufour, 2006). For inference on both regression and covariance
endogeneity parameters (a and σV u), we also provide a large-sample distributional theory based
on standard asymptotic assumptions, which relax various restrictions used in the finite-sample
theory. None of the proposed methods makes identification assumptions on β, either in finite
samples or asymptotically.

3. FINITE-SAMPLE INFERENCE FOR REGRESSION ENDOGENEITY
PARAMETERS

In this section, we study the problem of building identification-robust tests and confidence sets
for the regression endogeneity parameter a from a finite-sample point of view. Along with (2.1)
and (2.2), we suppose that Assumption 2.2 holds with the following condition on u.

ASSUMPTION 3.1 (CONDITIONAL SCALE MODEL FOR STRUCTURAL ERRORS). u = σ (X)υ,
where σ (X) is a (possibly random) function of X such that P[σ (X) �= 0|X] = 1, and the
conditional distribution of υ given X is completely specified.

ASSUMPTION 3.2 (CONDITIONAL SCALE MODEL FOR ORTHOGONALIZED STRUCTURAL

ERRORS). e = σ1(X)ε, where σ1(X) is a (possibly random) function of X such that P[σ1(X) �=
0|X] = 1, and the conditional distribution of ε given X is completely specified.

2 Such procedures include, for example, the methods proposed by Kleibergen (2002) or Moreira (2003). However,
no finite-sample distributional theory is available for these methods. Furthermore, these are not robust to missing
instruments; see Dufour (2003), and Dufour and Taamouti (2007).
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Assumption 3.1 means the distribution of u given X only depends on X and a (typically
unknown) scale factor σ (X). The scale factor can also be random, so we can have σ (X) =
σ̄ (X, υ). Of course, this holds whenever u = συ, where σ is an unknown positive constant and
v is independent of X with a completely specified distribution. In this context, the standard
Gaussian assumption is obtained by taking υ ∼ N[0, IT ]. However, non-Gaussian distributions
are covered, including heavy-tailed distributions, which can lack moments (such as the Cauchy
distribution). Similarly, Assumption 3.2 means the distribution of e given X only depends on X

and a (typically unknown, possibly random) scale factor σ1(X). So, again, a standard Gaussian
model is obtained by assuming that σ1(X) is fixed (given X) and ε ∼ N[0, IT ]. In general,
Assumptions 3.1 and 3.2 do not entail each other. However, it is easy to see that both hold
when the vectors (ut , V

′
t )

′
, t, . . . , T , are i.i.d. (given X) with finite second moments and the

decomposition specified by Assumption 2.2 holds. This will be the case a fortiori if the vectors
(ut , V

′
t )

′
, t, . . . , T , are i.i.d. multinormal (given X).

We study in turn the following problems: (1) we test and build confidence sets for β; (2) we
test and build confidence sets for θ = β + a; (3) we test and build confidence sets for a; (4) we
test and build confidence sets for scalar linear transformations w′a.

3.1. AR-type tests for β with possibly non-Gaussian errors

Because this is a basic building block for inference on endogeneity parameters, we consider first
the problem of testing the hypothesis

Hβ(β0) : β = β0, (3.1)

where β0 is any given possible value of β. Several methods have been proposed for this purpose.
However, because we wish to use an identification-robust procedure for which a finite-sample
theory can easily be obtained and that does not require assumptions on the distribution of Y , we
focus on the AR procedure. So we consider the transformed equation

y − Yβ0 = X1π
0
1 + X2π

0
2 + v0, (3.2)

where π0
1 = γ + �1(β − β0), π0

2 = �2(β − β0), and v0 = u + V (β − β0). Because π0
2 = 0

under Hβ(β0), it is natural to consider the corresponding F -statistic in order to test Hβ(β0)

AR(β0) = (y − Yβ0)′(M1 − M)(y − Yβ0)/k2

(y − Yβ0)′M(y − Yβ0)/(T − k)
, (3.3)

where M1 ≡ M(X1) and M ≡ M(X). Under the usual assumption where u ∼ N[0, σ 2IT ]
independently of X, the conditional distribution of AR(β0) under Hβ(β0) is F (k2, T − k). In
the following proposition, we characterize by invariance the distribution of AR(β0) under the
general Assumption 3.1.

PROPOSITION 3.1 (NULL DISTRIBUTION OF AR STATISTICS UNDER SCALE STRUCTURAL

ERROR MODEL). Suppose equations (2.1) and (2.2) and Assumption 3.1 hold. If β = β0, we
have

AR(β0) = υ ′(M1 − M)υ/k2

υ ′Mυ/(T − k)
, (3.4)

and the conditional distribution of AR(β0) given X only depends on X and the distribution of υ.
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The proof is given in the Appendix. This proposition means that the conditional null
distribution of AR(β0), given X, only depends on the distribution of υ. The distribution of V

plays no role here, so no decomposition assumption (such as Assumption 2.1 or 2.2) is needed.
If the distribution of υ|X can be simulated, we can obtain exact tests based on AR(β0) through
the Monte Carlo test method (see Dufour, 2006), even if this conditional distribution is non-
Gaussian. Furthermore, the exact test obtained in this way is robust to weak instruments as well
as instrument exclusion, even if the distribution of u|X does not have moments (e.g., the Cauchy
distribution).3 This might be useful in financial models with fat-tailed error distributions, such
as the Student-t distribution.

When the normality assumption holds
(
υ ∼ N[0, IT ]

)
and X is exogenous, we have

AR(β0) ∼ F (k2, T − k), so that Hβ(β0) can be assessed by using a critical region of the form
{AR(β0) > f (α)}, where f (α) = Fα(k2, T − k) is the (1 − α)-quantile of the F (k2, T − k)
distribution. A confidence set with level 1 − α for β is then given by

Cβ(α) = {β0 : AR(β0) ≤ Fα(k2, T − k)} = {β : Q(β) ≤ 0} , (3.5)

where Q(β) = β ′Aβ + b′β + c, A = Y ′HY , b = −2Y ′Hy, c = y ′Hy, H = M1 − (
1 +

f (α)(k2/(T − k))
)
M , and f (α) = Fα(k2, T − k) (see Dufour and Taamouti, 2005).

3.2. Inference on θ

Let us now consider the problem of testing the hypothesis Hθ (θ0) : θ = θ0, where θ0 is a given
vector of dimension G, and Assumption 3.2 holds. This can be done by considering the extended
reduced form in (2.15). By Assumption 3.2, e is independent of Y , X1, and X2, and (2.15) is a
linear regression model. As soon as the matrix [Y,X1, X2] has full-column rank, the parameters
of equation (2.15) can be tested through standard F -tests.

We now assume that [Y,X1, X2] has full-column rank with probability one. This property
holds as soon as X = [X1, X2] has full-column rank and Y has a continuous distribution
(conditional on X). The F -statistic for testing Hθ (θ0) is

Fθ (θ0) = (θ̂ − θ0)′(Y ′MY )(θ̂ − θ0)/G

y ′M(Z)y/(T − G − k)
, (3.6)

where θ̂ = (Y ′MY )−1Y ′My is the ordinary least-squares (OLS) estimate of θ in (2.15), M =
M(X), X = [X1, X2], and Z = [Y,X1, X2]. When υ ∼ N[0, IT ], we have Fθ (θ0) ∼ F (G,T −
k − G) under Hθ (θ0). Under the more general Assumption 3.2, it is easy to see that

Fθ (θ0) = ε′MY (Y ′MY )−1Y ′Mε/G

ε′M(Z)ε/(T − G − k)
, (3.7)

3 By “robustness to weak instruments”, we mean the fact that the null distribution of the test statistic remains valid
even if rank[�2] < G, so β might not be identifiable from the available data. By “robustness to excluded instruments”,
we mean that the test remains valid even if Y depends on additional explanatory variables (X3), which are not taken
in IV-based inference; for further discussion of this issue, see Dufour and Taamouti (2007). Of course, identification
failure (or weak identification) typically affects test power and confidence set precision. For example, if identification
fails completely (rank[�2] = 0), it is impossible to distinguish between alternative values of β, and a valid test of Hβ (β0)
should have power no larger than its level. Further, confidence sets of unidentified parameters should be uninformative
(e.g., unbounded) with high probability (see Dufour, 1997).
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under Hθ (θ0). On observing that the conditional distribution of Fθ (θ0), given Y and X, does
not involve any nuisance parameter, the critical value can be obtained by simulation. It is also
important to note that this distribution does not depend on θ0, so the same critical value can be
applied irrespective of θ0. The main difference with the Gaussian case is that the critical value
can depend on Y and X. Irrespective of the case, we denote by c(α2) the critical value for Fθ (θ0).

From (3.6), a confidence set with level 1 − α for θ can be obtained by inverting Fθ (θ0)

Cθ (α) = {
θ0 : Fθ (θ0) ≤ f̄ (α)

} = {
θ0 : Q̄(θ0) ≤ 0

}
, (3.8)

where Q̄(θ ) = (θ̂ − θ )′(Y ′MY)(θ̂ − θ ) − c̄0 = θ ′Āθ + b̄′θ + c̄, c̄0 = f̄ (α)Gs2, s2 = y ′M(Z)y/

(T − G − k), Ā = Y ′MY, b̄ = −2Āθ̂ = −2Y ′My, c̄ = θ̂ ′Āθ̂ − c̄0 = θ̂ ′(Y ′MY)θ̂ − c̄0 = y ′H̃y,
and H̄ = P (MY ) − f̄ (α) (G/(T − G − k)) M1. Because the matrix Ā is positive definite (with
probability one), the quadric set Cθ (α) is an ellipsoid (hence bounded); see Dufour and
Taamouti (2005, 2007). This reflects the fact that θ is an identifiable parameter. As a result, the
corresponding projection-based confidence sets for scalar transformations w′θ are also bounded
intervals.

In view of the form (2.15) as a linear regression, we can test in the same way linear restrictions
of the form Hw′θ (γ0) : w′θ = γ0, where w is a G × 1 vector and γ0 is known constant. We can
then use the corresponding t-statistic

tw′θ (γ0) = w′θ̂ − γ0

s
(
w′(Y ′MY )−1w

)1/2 , (3.9)

and reject Hw′θ (γ0) when |tw′θ (γ0)| > cw(α), where cw(α) is the critical value for a test with
level α. In the Gaussian case, tw′θ (γ0) follows a Student distribution with T − G − k degrees of
freedom, so we can take cw(α) = t(α2; T − G − k). When ε follows a non-Gaussian distribution,
we have

tw′θ (γ0) = (T − G − k)1/2w′(Y ′MY )−1Y ′Mε(
ε′M(Z)ε

)1/2 (
w′(Y ′MY )−1w

)1/2 (3.10)

under Hw′θ (γ0), so that the distribution of tw′θ (γ0) can be simulated like Fθ (θ0) in (3.7).

3.3. Joint inference on β and regression endogeneity parameters

We can now derive confidence sets for the vectors (β ′, a′)′ and (β ′, θ ′)′. Consider the set

C(β,θ)(α1, α2) = {(θ ′
0, β

′
0)′ : β0 ∈ Cβ(α1), θ0 ∈ Cθ (α2)}

= {(θ ′
0, β

′
0)′ : Q(β0) ≤ 0, Q̄(θ0) ≤ 0}.

Using the Boole–Bonferroni inequality, we have

P[β ∈ Cβ(α1) and θ ∈ Cθ (α2)] ≥ 1 − P[β /∈ Cβ(α1)] − P[θ /∈ Cθ (α2)] ≥ 1 − α1 − α2.

(3.11)
So, C(β,θ)(α1, α2) is a confidence set for (β ′, θ ′)′ with level 1 − α, where α = α1 + α2. In view of
the identity θ = β + a, we can write Q̄(θ ) in (3.8) as a function of β and a:

Q̄(θ ) = Q̄(β + a) = a′Āa + (b̄ + 2Āβ)′a + (
c̄ + b̄′β + β ′Āβ

)
.
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Thus, we obtain a confidence set with level 1 − α for β and a by taking

C̄(β,a)(α) = {(β ′
0, a

′
0)′ : Q(β0) ≤ 0 and Q̄(β0 + a0) ≤ 0}. (3.12)

Thus, finite-sample inference on the structural (possibly unidentifiable) parameter a can be
achieved. Of course, if a is not identified, a valid confidence set will cover the set of all possible
values (or be unbounded) with probability 1 − α (see Dufour, 1997).

3.4. Confidence sets for regression endogeneity parameters

We can now build marginal confidence sets for the endogeneity coefficient vector a. In view of the
possibility of identification failure, this is most easily done by projection techniques. Let g(β, a)
be any function of β and a. Because the event (β, a) ∈ C̄(β,a)(α) entails g(β, a) ∈ g[C̄(β,a)(α)],
where g[C̄(β,a)(α)] = {g(β, a) : (β, a) ∈ C̄(β,a)(α)}, we have

P
[
g(β, a) ∈ g[C̄(β,a)(α)

] ≥ P[(β, a) ∈ C̄(β,a)(α)] ≥ 1 − α. (3.13)

On taking g(β, a) = a ∈ R
G, we see that

Ca(α) = {a : (β, a) ∈ C̄(β,a)(α) for some β}
= {a : Q̄(β + a) ≤ 0 and Q(β) ≤ 0 for some β}

is a confidence set with level 1 − α for a.
When G = 1, the matrices A, Ā, b, b̄, c, and c̄ in (3.8) reduce to scalars, and the different

confidence sets take the following simple forms:

Cβ(α1) = {
β : Aβ2 + bβ + c ≤ 0

}
, Cθ (α2) = {θ : Āθ2 + b̄θ + c̄ ≤ 0}, (3.14)

Ca(α) = {a : Aβ2 + bβ + c ≤ 0, Āa2 + (b̄ + 2Āβ)a + [c̄ + b̄β + Āβ2] ≤ 0}. (3.15)

Closed forms for the sets Cβ(α1) and Cθ (α2) are easily derived by finding the roots of the second-
order polynomial equations Aβ2 + bβ + c = 0 and Āθ2 + b̄θ + c̄ = 0 (as in Dufour and Jasiak,
2001), while the set Ca(α) can be obtained by finding the roots of Āa2 + b̄(β)a + c̄(β) = 0,
where b̄(β) = b̄ + 2Āβ and c̄(β) = c̄ + b̄β + Āβ2 for each β ∈ Cβ(α1).

We now focus on building confidence sets for scalar linear transformations g(a) = w′a =
w′θ − w′β, where w is a G × 1 vector. Conceptually, the simplest approach consists in applying
the projection method to Ca(α), which yields the confidence set

Cw′a(α) = gw[Ca(α)] = {d : d = w′a for some a ∈ Ca(α)}
= {d : d = w′a, Q̄(β + a) ≤ 0 and Q(β) ≤ 0 for some β}.

However, it will be more efficient to exploit the linear structure of model (3.15), which allows us
to build a confidence interval for w′θ .

Following Dufour and Taamouti (2005, 2007), confidence sets for gw(β) = w′β and gw(θ ) =
gw = w′θ can be derived from Cβ(α1) and Cθ (α2) as

Cw′β(α1) ≡ gw[Cβ(α1)] = {x1 : x1 = w′β, Q(β) ≤ 0}
= {x1 : x1 = w′β, β ′Aβ + b′β + c ≤ 0},
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where A, b, and c are defined as in (3.5). For w′θ , we can use a t-type confidence interval based
on t(γ0):

C̄w′θ (α2) ≡ ḡw[Cθ (α2)] = {γ0 : |tw′θ (γ0)| < cw(α2)} = {γ0 : |w′θ̂ − γ0| < D̄(α2)}. (3.16)

Here, D̄(α2) = cw(α2) σ̂ (w′θ̂ ), σ̂ (w′θ̂) = s[w′(Y ′MY)−1w]1/2 with s = (y ′M(Z)y)1/2/(T −
G − k)1/2, and cw(α2) is the critical value for a test with level α2 based on tw′θ (γ0) (in (3.9)).
Setting

C(w′β,w′θ)(α1, α2) = {(x, y)′ : x ∈ Cw′β(α1) and y ∈ C̄w′θ (α2)}, (3.17)

we see that C(w′β,w′θ)(α1, α2) is a confidence set for (w′β,w′θ ) with level 1 − α1 − α2,

P[(w′β,w′θ ) ∈ C(w′β,w′θ)(α1, α2)] = P[w′β ∈ Cw′β(α1) and w′θ ∈ C̄w′θ (α2)] ≥ 1 − α, (3.18)

where α = α1 + α2. For any point x ∈ R and any subset A ⊆ R, set x − A = {z ∈ R : z = x − y

and y ∈ A}. Because w′a = w′θ − w′β, it is clear that

(w′β,w′θ ) ∈ C(w′β,w′θ)(α1, α2) ⇔ w′θ − w′a ∈ Cw′β(α1) and w′θ ∈ C̄w′θ (α2)

⇔ w′a ∈ w′θ − Cw′β(α1) and w′θ ∈ C̄w′θ (α2),

P[w′a ∈ w′θ − Cw′β(α1) and w′θ ∈ C̄w′θ (α2)] = P[w′β ∈ Cw′β(α1) and w′θ ∈ C̄w′θ (α2)]

≥ 1 − α1 − α2.

Now, consider the set

Cw′a(α1, α2) = {z ∈ R : z ∈ y − Cw′β(α1) for some y ∈ C̄w′θ (α2)}. (3.19)

Because the event {w′a ∈ w′θ − Cw′β(α1) and w′θ ∈ C̄w′θ (α2)} entails w′a ∈ Cw′a(α1, α2), we
have

P[w′a ∈ Cw′a(α1, α2)] ≥ P[w′β ∈ Cw′β(α1) and w′θ ∈ C̄w′θ (α2)] ≥ 1 − α1 − α2, (3.20)

and Cw′a(α1, α2) is a confidence set with level 1 − α1 − α2 for w′a.
Because C̄w′θ (α2) is a bounded interval, the shape of Cw′a(α1, α2) can be deduced easily by

using the results given by Dufour and Taamouti (2005, 2007). We focus on the case where A is
non-singular (an event with probability one as soon as the distribution of AR(β0) is continuous)
and w �= 0. Then, the set Cw′β(α1) can then rewritten as follows. If A is positive definite,

Cw′β(α1) = [w′β̃ − D(α1), w′β̃ + D(α1)], if d ≥ 0,

= ∅, if d < 0,

where β̃ = −(1/2)A−1b, d = (1/4)b′A−1b − c, and D(α1) =
√

d (w′A−1w). If A has exactly
one negative eigenvalue and d < 0,

Cw′β(α1) =] − ∞, w′β̃ − D(α1)] ∪ [w′β̃ + D(α1),+∞[, if w′A−1w < 0,

= R\{w′β̃}, if w′A−1w = 0;
(3.21)

otherwise, Cw′β(α1) = R. Here, Cw′β(α1) = ∅ corresponds to a case where the model is
not consistent with the data (so that Cw′a(α1, α2) = ∅ as well), while Cw′β(α1) = R and
Cw′β(α1) = R\{w′β̃} indicate that w′β is not identifiable and, similarly, for w′a (so that
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Cw′a(α1, α2) = R). This yields the following confidence sets for w′a. If A is positive definite,

Cw′a(α1, α2) = [w′(θ̂ − β̃) − DU (α1, α2), w′(θ̂ − β̃) + DU (α1, α2)], if d ≥ 0,

= ∅, if d < 0,
(3.22)

where DU (α1, α2) = D(α1) + D̄(α2). If A has exactly one negative eigenvalue, w′A−1w < 0 and
d < 0,

Cw′a(α1, α2) =] − ∞, w′(θ̂ − β̃) − DL(α1, α2)] ∪ [w′(θ̂ − β̃) + DL(α1, α2),+∞[, (3.23)

where DL(α1, α2) = D(α1) − D̄(α2); otherwise, Cw′a(α1, α2) = R. These results can be extended
to cases where A is singular, as done by Dufour and Taamouti (2007).

3.5. Exact Monte Carlo identification-robust tests with non-Gaussian errors

Suppose now that the conditional distribution of υ (given X) is continuous, so that the conditional
distribution of AR(β0) under the null hypothesis Hβ(β0) is also continuous. We can then proceed
as follows to obtain an exact Monte Carlo test of Hβ(β0) with level α (0 < α < 1).

STEP 1. Choose α∗ and N so that α = (
I [α∗N ] + 1

)
/(N + 1).

STEP 2. For given β0, compute the test statistic AR(0)(β0) based on the observed data.
STEP 3. Generate N i.i.d. error vectors υ(j ) = [υ(j )

1 , . . . , υ
(j )
T ]′, j = 1, . . . , N , according to

the specified distribution of υ|X, and compute the corresponding statistic AR(j ),
j = 1, . . . , N , following (3.4). Note that the distribution of AR(β0) does not depend
on the specific value β0 tested, so there is no need to make it depend on β0.

STEP 4. Compute the simulated p-value function: p̂N [x] = (1 + ∑N
j=1 1[AR(j ) ≥ x])/(N +

1), where 1[C] = 1 if condition C holds, and 1[C] = 0 otherwise.
STEP 5. Reject the null hypothesis Hβ(β0) at level α when p̂N [AR(0)(β0)] ≤ α.

Under the null hypothesis Hβ(β0), P
[
p̂N [AR(0)(β0)] ≤ α

] = α, so that we have a test
with level α. If the distribution of the test statistic is not continuous, the Monte Carlo test
procedure can easily be adapted by using the tie-breaking method described by Dufour (2006).4

Correspondingly, a confidence set with level 1 − α for β is given by the set of all values β0,
which are not rejected by the above Monte Carlo test. More precisely, the set

Cβ(α) = {β0 : p̂N [AR(0)(β0)] > α} (3.24)

is a confidence set with level 1 − α for β. On noting that the distribution of AR(β0) does not
depend on β0, we can use a single simulation for all values β0. Setting f̂N (α∗) = F̂−1

N (1 − α∗),
the set

Cβ(α; N ) = {β0 : AR(0) < f̂N (α∗)} (3.25)

is equivalent to Cβ(α) – with probability one – and so has level 1 − α. On replacing > and < by
≥ and ≤ in (3.24) and (3.25), it is also clear that the sets

{
β0 : p̂N [AR(0)(β0)] ≥ α

}
and

C̄β(α; N ) = {β0 : AR(0)(β0) ≤ f̂N (α∗)} (3.26)

4 Without the correction for continuity, the algorithm proposed for statistics with continuous distributions yields a
conservative test (i.e., the probability of rejection under the null hypothesis is not larger than the nominal level (α1)).
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constitute confidence sets for β with level 1 − α (though possibly a little larger than 1 − α). The
quadric form given in (3.5) also remains valid with f (α) = f̂N (α∗).

4. ASYMPTOTIC THEORY FOR INFERENCE ON ENDOGENEITY
PARAMETERS

In this section, we examine the validity of the procedures developed in Section 3 under weaker
distributional assumptions, and we show how inference on covariance endogeneity parameters
can be made. On noting that equations (3.2) and (2.15) constitute standard linear regression
models (at least under the null hypothesis β = β0), it is straightforward to find high-level
regularity conditions under which the tests based on AR(β0) and Fθ (θ0) are asymptotically
valid.

For AR(β0), we can consider the following general assumption.

ASSUMPTION 4.1. When the sample size T converges to infinity, the following convergence

results hold jointly: (a) (1/T )X′u
p→ 0; (b) (1/T )u′u

p→ σ 2
u > 0, (1/T )X′X

p→ �X with

det(X′X) �= 0; (c) (1/
√

T )X′u
d→ ψXu, ψXu ∼ N

[
0, σ 2

u �X

]
, where X = [X1, X2] .

The above conditions are easy to interpret: (a) represents the asymptotic orthogonality
between u and the instruments in X, (b) can be viewed as the laws of large numbers for u and X,
while (c) is a central limit property. Then, it is a simple exercise to see that

AR(β0)
d→ χ2(k2)/k2, when β = β0. (4.1)

Similarly, for Fθ (θ0), we can suppose the following.

ASSUMPTION 4.2. When the sample size T converges to infinity, the following convergence

results hold jointly: (a) (1/T )Z′e
p→ 0; (b) (1/T )e′e

p→ σ 2
e > 0, (1/T )Z′Z

p→ �Z with

det(Z′Z) �= 0; (c) (1/
√

T )Z′e
d→ ψZe, ψZe ∼ N

[
0, σ 2

e �Z

]
, where Z = [Y,X1, X2] .

Then

Fθ (θ0)
d→ χ2(G)/G, when θ = θ0. (4.2)

The asymptotic distributions in equations (4.1) and (4.2) hold irrespective whether the
instruments X are weak or strong. Furthermore, as soon as Assumptions 4.1 and 4.2 hold,
the confidence procedures described in Section 3 remain asymptotically valid with f (α1) =
χ2(α1; k2)/k2 and f̄ (α2) = χ2(α2; G)/G, where χ2(α1; k2) and χ2(α2; G) are the 1 − α1 and
1 − α2 quantiles, respectively, of the corresponding χ2 distributions. Of course, the Gaussian-
based Fisher critical values can also be used (because they converge to the χ2 critical values as
T → ∞).

We can now consider inference for covariance endogeneity parameters σV u. The problem
of building confidence sets for σV u is especially important for assessing partial exogeneity
hypotheses. Because aj = 0, j = 1, . . . ,G does not entail σuVj = 0 (where 1 ≤ j ≤ G),
confidence sets on the components of a cannot directly be used to assess, for example, the
exogeneity of each regressor Yj , j = 1, . . . ,G. Confidence sets and tests for σuV can be deduced
from those on a through the relationship σV u = �V a given in (2.9). On replacing a by �−1

V σV u
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in Ca(α), we see that the set

CσV u
(α; �V ) = {σV u ∈ R

G : σV u = �V a and a ∈ Ca(α)}
= {σV u ∈ R

G : Q̄(β + �−1
V σV u) ≤ 0 and Q(β) ≤ 0 for some β} (4.3)

is a confidence set with level 1 − α for σV u. This set is simply the image of Ca(α) by the linear
transformation g(x) = �V x. The difficulty here comes from the fact that �V is unknown. Let
�̂V = V̂ ′V̂ /(T − k), where V̂ = M(X)Y is the matrix of least-squares residuals from the first-
step regression (2.2). Under standard regularity conditions, we have

�̂V

p→ �V , (4.4)

where det(�V ) > 0. If β0 and a0 are the true values of β and a, the relations θ0 = β0 + a0 and
σV u0 = �V a0 entail that Fθ (θ0) can be rewritten as

Fθ (β0 + �−1
V σV u0) = (θ̂ − β0 − �−1

V σV u0)′(Y ′MY )(θ̂ − β0 − �−1
V σV u0)/G

y ′M(Z)y/(T − G − k)
. (4.5)

Replacing �V by �̂V , we obtain the approximate pivotal function Fθ (β0 + �̂−1
V σV u0). If (4.4)

holds, it is easy to see (by continuity) that Fθ (β0 + �̂−1
V σV u0) and Fθ (β0 + �−1

V σV u0) are
asymptotically equivalent with a non-degenerate distribution, when β0 and σV u0 are the true
parameter values. Consequently, the confidence set of type CσV u

(α) based on Fθ (β0 + �̂−1
V σV u0)

as opposed to Fθ (β0 + �−1
V σV u0) has level 1 − α asymptotically. This set is simply the image of

Ca(α) by the linear transformation ĝ(x) = �̂V x, that is

CσV u
(α; �̂V ) = {σV u ∈ R

G : Q̄(β + �̂−1
V σV u) ≤ 0 and Q(β) ≤ 0 for some β}. (4.6)

Finally, confidence sets for the components of σV u, and more generally for linear
combinations w′σV u, can be derived from those on w′a as described in Section 3.4. For �V given,
the relation σV u = �V a entails that a confidence set for w′σV u (with level 1 − α) can be obtained
by computing a confidence set (at level 1 − α) for w′

1a with w1 = �V w. When �V is estimated
by �̂V , taking w1 = �̂V w yields a confidence set for σV u with level 1 − α asymptotically.

5. EMPIRICAL APPLICATIONS

We now apply the methods proposed to two empirical examples: a model of the relation between
trade and economic growth, previously studied by Frankel and Romer (1999) and Dufour and
Taamouti (2007), and the model of returns to education studied by Card (1995) and Kleibergen
(2004, Table 2, p. 421).

5.1. Trade and growth

The trade and growth model studies the relationship between standards of living and openness.
Frankel and Romer (1999) have argued that trade share (the ratio of imports or exports to GDP),
which is the commonly used indicator of openness, might be endogenous. The equation studied
is given by

ln(Incomei) = β0 + βTradei + γ1ln(Popi) + γ2ln(Areai) + ui, i = 1, . . . , N, (5.1)
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where Income is the income per capita, Trade is measured as a ratio of imports and exports to
GDP, Pop is the logarithm of the country population, and Area is the logarithm of the country
area. The instrument suggested is constructed on the basis of geographic characteristics. The first
stage equation is then given by

Tradei = b0 + b1Zi + c1Popi + c2Areai + Vi, i = 1, . . . , N, (5.2)

where Zi is a constructed instrument. We use the sample of 150 countries and the data are for
1985. Dufour and Taamouti (2005) have shown that the fitted instrument in this sample is not
very weak.5

The identification-robust confidence intervals with level 97.5% for β and θ = β1 + a, which
result on inverting AR(β0) and tθ (γ0), are given by Cβ(α) = {β0 : 0.23β2

0 − 4.76β0 + 0.04 ≤
0} = [0.01, 20.62] and Cθ (α) = [−0.05, 0.47]. The results reported are based on the critical
values of the F -distributions of Section 3. The Monte Carlo method, as described in Section
3.5, gives similar results even with 1000 replications. We see that Cβ(α) is a bounded interval,
thus confirming that identification is not weak in this model. The estimates of regression and
covariance endogeneity parameters are given by â = −1.82 and σ̂uV = −0.38, respectively. The
confidence intervals with level 95% for a and σV u are given by6

Ca(α) = [−20.67, 0.46] and CσV u
(α) = [−4.33, 0.09].

Both confidence intervals are bounded and contain the estimates of a and σV u from observed
data. Both confidence intervals, although including zero, are left skewed at zero. In particular, the
upper bound for CσV u

(α) is very close to zero. So, the true covariance and regression endogeneity
parameters can actually be large, thus indicating the importance of omitting variables bias (for
a) and trade share endogeneity (for σV u). The latter is likely plausible because the discrepancy
between the OLS estimate of β (β̂OLS = 0.28) and the two-stage least-squares (2SLS) estimate
(β̂2SLS = 2.03) is relatively large.

5.2. Card model of education and earnings

We also apply the methods proposed to the following alternative model studied by Card (1995)
for the return of education to earnings:

yi = Y1iβ1 + Y2iβ2 + Y3iβ3 + X′
1iγ + ui ; (5.3)

(Y1i , Y2i , Y3i) = X′
1i�1 + X′

2i�2 + Vi. (5.4)

Here, Y1i is the length of education of individual i, (Y2i , Y3i) = (experi , exper2
i ) contains the

experience (exper) and experience squared of individual i, where experi = agei − 6 − Y1i ;X1i =
(1, racei , smsai , southi)′ consists of a constant and indicator variables for race, residence in
a metropolitan area, and residence in the south of the United States, and yi is the logarithm
of the wage of individual i. All variables in X1 are assumed exogenous. X2i is the vector
of instruments that contains age, age2 of individual i, and proximity-to-college indicators for
educational attainment; these are proximity to two- and four-year college. Kleibergen (2004,

5 The F -statistic in the first stage (5.2) is about 13; see also Frankel and Romer (1999, Table 2, p. 385).
6 Note that the confidence intervals with level 95% for a and σV u, obtained on inverting AR(β0) and Fθ (θ0), are similar

to those reported here.
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Table 2, p. 421) shows that the proximity-to-college indicator instruments are not very strong.
Hence, it is important to be careful when interpreting the 2SLS estimates of this model. We follow
the methodology developed in this paper for building projection-based confidence intervals of
the components of the regression and covariance endogeneity parameters a = (a1, a2, a3)′ and
σV u = (σV u1, σV u2, σV u3)′.

The data analysed are from the National Longitudinal Survey of Young Men (from 1966
to 1981). We use the cross-sectional 1976 subsample, which contains 3010 observations. After
accounting for missing data, the final sample has 2061 observations. The variables contained in
the data set are: two variables indicating the proximity to college, the length of education, log
wages, experience, IQ score, age, racial, metropolitan, family, and regional indicators.

To build confidence sets with level 95% for a and σV u, we take α1 = α2 = 0.025.
The identification-robust confidence sets with level 97.5% for β = (β1, β2, β3)′ and θ = β + a,
based on inverting AR(β0) and Fθ (θ0), are given by Cβ(α) = {

β0 : β ′
0Aβ0 − b′β0+

0.37 ≤ 0} and Cθ (α) = {
θ0 : θ ′

0Āθ0 + b̄′θ0 + 0.63 ≤ 0
}
, where

A =
⎛
⎝ 0.7 6.17 87.34

6.14 170.88 3210.82
87.34 3210.82 61730.62

⎞
⎠ , Ā =

⎛
⎝ 770.72 −770.70 −13287.73

−770.70 770.72 13287.70
−13287.73 13287.70 270277.74

⎞
⎠ ,

(5.5)
b = (−0.8,−15.62,−285.9)′ and b̄ = (−33.59, 33.59, 838.17)′. The matrix A has exactly one
negative eigenvalue, while all eigenvalues of Ā are positive. Hence, Cβ(α) is an unbounded
ellipsoid, while Cθ (α) is a bounded ellipsoid, thus confirming that θ is identified while β is
not. Then, for any scalar linear transformations w′θ , a confidence set with level 1 − α2 is
given by (3.16) with θ̂ = (0.279, 0.312,−0.003) and D̄(α2) = 0.72[w′(Y ′MY )−1w]1/2. For w′β,
we can obtain a projection-based confidence set with level 1 − α1 by using (3.21) with β̃ =
(−0.361, 0.218,−0.010), d = −1.55 < 0 and D(α1) = [−1.55w′A−1w]1/2 when w′A−1w < 0.
For inference on a, we also use the following estimates:7

â =
⎛
⎝−0.102

0.102
−0.004

⎞
⎠ , σ̂V u =

⎛
⎝−0.492

0.492
7.634

⎞
⎠ , �̂V =

⎛
⎝ 3.76 − 3.75 − 64.75

−3.75 3.74 64.76
−64.75 64.76 1317.14

⎞
⎠ .

The 2SLS estimate of β is β̂2SLS = (0.190, 0.019, 0.001)′, and the eigenvalues of �̂′
2�̂2, where

�̂2 is the OLS estimate of �2 from (5.4), are (0.0003, 0.095, 3858.326). The value 0.0003 is
quite close to zero, which suggests that the instruments are weak.

Table 1 presents the projection-based confidence intervals with level 95% for individual
components of endogeneity parameters (a and σV u). In the first part of the table, the IQ variable
is omitted from the model, but it is included in the second part. The results are similar with and
without this variable: the confidence intervals for all components of a and σV u are unbounded. So,
all components of both endogeneity parameters are weakly identified. While the estimate of a3

(â3 = −0.004) seems very close to zero, the corresponding covariance estimate σ̂V u3 = 7.634 is
relatively large, which confirms the fact that ai = 0 does not necessarily imply that σV ui = 0, as
argued in Section 2.1. All confidence intervals, though unbounded, contain zero, suggesting that
there is not enough information from the data to support the presence of bias as a result of omitted

7 The results reported are based on the critical values of the F-distributions of Section 3. The Monte Carlo method as
described in Section 3.5 gives similar results even with 1000 replications, for both (1) Gaussian errors, and (2) Student
type errors with three degrees of freedom.
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Table 1. Card model of education and earnings.

Regression endogeneity Covariance endogeneity

Without IQ variable

Ca1 ] − ∞, 0.47] ∪ [1.45, +∞[ CσV u1 ] − ∞, 0.41] ∪ [9.08, +∞[

Ca2 ] − ∞, −0.12] ∪ [−0.03, +∞[ CσV u3 ] − ∞, −9.08] ∪ [−0.41, +∞[

Ca3 ] − ∞, 0.002] ∪ [0.03, +∞[ CσV u3 ] − ∞, −165.35] ∪ [−7.65, +∞[

With IQ variable

Ca1 ] − ∞, 0.55] ∪ [0.73, +∞[ CσV u1 ] − ∞, 0.24] ∪ [3.19, +∞[

Ca2 R CσV u3 ] − ∞, −3.19] ∪ [−0.24, +∞[

Ca3 ] − ∞, 0.001] ∪ [0.013, +∞[ CσV u3 ] − ∞, −52.05] ∪ [−4.37, +∞[

variables (regression endogeneity parameters ai, i = 1, 2, 3, measure the importance of omitted
variables) or to reject the partial exogeneity of the schooling and experience variables (covariance
endogeneity parameters σV ui, i = 1, 2, 3, measure the endogeneity of the corresponding variable
Yi). Meanwhile, though zero belongs to the 95% confidence intervals of all these parameters, it
might be the case that the true values of these parameters are actually large, because the 95%
corresponding confidence intervals are unbounded. So, the use of the standard t-type statistics
based on the estimates of a and σV u in the extended regression (2.14), where V is replaced by
V̂ = MY , to build confidence intervals for scalar linear transformations w′a and w′σV u can be
misleading when identification is weak. The Monte Carlo simulations indicate that such t-type
confidence intervals have poor coverage probabilities (which might even be equal to zero) when
identification is weak, while the coverage probabilities of the projection method developed in this
paper are always above 1 − α, irrespective of whether identification is strong or weak, where α

is the nominal level.
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APPENDIX A: PROOF OF RESULTS

Proof of Lemma 3.1: On multiplying the two sides of equation (3.2) by M and M1 − M , we see that

M(y − Yβ0) = Mu + MV (β − β0), (A.1)

(M1 − M)(y − Yβ0) = M1X2�2(β − β0) + (M1 − M)u + (M1 − M)V (β − β0).
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When Assumption 3.1 holds and β = β0, this entails

M(y − Yβ0) = σ (X)Mυ, (M1 − M)(y − Yβ0) = σ (X)(M1 − M)υ.

Thus, the AR-statistic in equation (3.3) can be rewritten as

AR(β0) = σ (X)2υ ′(M1 − M)υ/k2

σ (X)2υ ′Mυ/(T − k)
= υ ′(M1 − M)υ/k2

υ ′Mυ/(T − k)
.

Hence, the null conditional distribution of AR(β0), given X, only depends on υ and X. If normality
holds conditional on X (i.e., υ|X ∼ N[0, , IT ]), we have υ ′Mυ ∼ χ 2(T − k) and υ ′(M1 − M)υ ∼
χ 2(k2). Because M(M1 − M) = 0, hence υ ′Mυ and υ ′(M1 − M)υ are independent conditional on X.
Consequently, AR(β0) ∼ F (k2, T − k). �

C© 2013 The Author(s). The Econometrics Journal C© 2013 Royal Economic Society.


