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ABSTRACT

We provide a generalization of the Anderson-Rubin (AR) procedure for inference on parameters
which represent the dependence between possibly endogenous explanatory variables and distur-
bances in a linear structural equation (endogeneity parameters). We stress the distinction between
regressionandcovariance endogeneity parameters. Such parameters have intrinsic interest (be-
cause they measure the effect of latent variables which induce simultaneity)and play a central role
in selecting an estimation method (such as OLS or IV methods). We observe thatendogeneity
parameters may not be identifiable and we give the relevant identification conditions. These condi-
tions entail a simple identification correspondence between regression endogeneity parameters and
usual structural parameters, while the identification of covariance endogeneity parameters typically
fails as soon as global identification fails. We develop identification-robustfinite-sample tests for
joint hypotheses involving structural and regression endogeneity parameters, as well as marginal
hypotheses on regression endogeneity parameters. For Gaussian errors, we provide tests and con-
fidence sets based on standard Fisher critical values. For a wide class of parametric non-Gaussian
errors (possibly heavy-tailed), we show that exact Monte Carlo procedures can be applied using
the statistics considered. As a special case, this result also holds for usual AR-type tests on struc-
tural coefficients. For covariance endogeneity parameters, we supplyan asymptotic (identification-
robust) distributional theory. Tests for partial exogeneity hypotheses (for individual potentially
endogenous explanatory variables) are covered as special cases.The proposed tests are applied to
two empirical examples: the relation between trade and economic growth, and the widely studied
problem of returns to education.

Key words: Identification-robust confidence sets; endogeneity; AR-type statistic;projection-based
techniques; partial exogeneity test.

Journal of Economic Literature classification: C3; C12; C15; C52.
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1. Introduction

Instrumental variable (IV) regressions are typically motivated by the factthat “explanatory vari-
ables” may be correlated with the error term, so least-squares methods yield biased inconsistent
estimators of model coefficients. As is well-known, IV estimates are obtained by isolating the
variation in endogenous explanatory variables due to exogenous regressors excluded from the ex-
planatory variables and correlating this variation with that of the dependentvariable of interest.
Even though coefficients estimated in this way may have interesting interpretations from the view-
point of economic theory, inference on such “structural parameters” faces identification difficulties.
Further, it is well known that IV estimators may be very imprecise, while tests and confidence sets
can be highly unreliable, especially when instruments are weakly associatedwith model variables
(weak instruments). This has led to a large literature on reliable inference in the presence of weak
instruments; see the reviews of Stock, Wright and Yogo (2002) and Dufour (2003).

Research on weak instruments has focused on inference for the coefficients of endogenous
variables in so-called “IV regressions”. This leaves out the parameterswhich specifically deter-
mine simultaneity features, such as the covariances between endogenous explanatory variables and
disturbances. These parameters can be of interest for several reasons. First, they provide direct
measures of the importance of latent variables, which are typically unobserved and may simultane-
ously affect a number of observable endogenous variables. These latent variables are in a sense left
out from structural equations, but they remain hidden in structural disturbances. For example, in
a wide set of economic models, they may represent unobserved latent variables, such as “surprise
variables” which play a role in models with expectations [see Barro (1977),Dufour and Jasiak
(2001)]. Second, the simultaneity covariance (or regression) coefficients determine the estimation
bias of least-squares methods. Information on the size of such biases canbe useful in interpret-
ing least-squares estimates and related statistics.Third, information on the parameters of hidden
variables (which induce simultaneity) may be important for selecting statistical procedures. Even
if instruments are “strong”, it is well known that IV estimators may be considerably less efficient
than least-squares estimators; see Kiviet and Niemczyk (2007, 2012), Doko Tchatoka and Dufour
(2011a), Kiviet and Pleus (2012) and Kiviet (2013). Indeed, this may be the case even when en-
dogeneity is present. If a variable is not correlated (or only weakly correlated) with the error term,
instrumenting it can lead to sizable efficiency losses in estimation. Assessing when and which
variables should be instrumented is an important issue for the estimation of structural models.

We stress here the view that linear structural models (IV regressions) can be interpreted as
regressions with missing regressors. If the latter were included, there would be no simultaneity
bias, so no correction for simultaneity (such as IV methods) would be needed. This feature allows
one to define a model transformation which maps a linear structural equation toa linear regression
where all the explanatory variables are uncorrelated with the error term. We call this equation
theorthogonalized structural equation, and we use it extensively. Interestingly, the latter is not a
reduced-form equation. Instead, it involves the structural parametersof interest, but also includes
endogeneity parameterswhich are “hidden” in the original structural equation.

The problem stems from the fact that the missing regressors are unobserved. Despite this dif-
ficulty, we show that procedures similar to the one proposed by Andersonand Rubin (1949, AR)
can be applied to the orthogonalized equation. This allows one to make inference jointly on both
the parameters of the original structural equation and endogeneity parameters. Two types of endo-
geneity parameters are considered:regression endogeneity parametersandcovariance endogeneity
parameters. Under standard conditions, where instruments are strictly exogenous and errors are
Gaussian, the tests and confidence sets derived in this way are exact. The proposed methods do not
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require identification assumptions, so they can be characterized asidentification-robust. For more
general inference on transformations of the parameters in the orthogonalized structural equation,
we propose projection methods, for such techniques allow for a simple finite-sample distributional
theory and preserve robustness to identification assumptions.

To be more specific, we consider a model of the form

y = Yβ +X1γ +u

wherey is an observed dependent variable,Y is a matrix of observed (possibly) endogenous re-
gressors, andX1 is a matrix of exogenous variables. We observe that AR-type procedures may
be applied to test hypotheses on the transformed parameterθ = β + a, wherea represents re-
gression coefficients ofu on the reduced-form errors ofY (regression endogeneity parameters).
Identification-robust inference fora itself is then derived by exploiting the possibility of making
identification-robust inference onβ . Then, inference on covariances (sayσVu) betweenu andY
(covariance endogeneity parameters) can be derived by considering linear transformations ofa.

We stress that regression and covariance endogeneity parameters – though theoretically related
– play distinct but complementary roles: regression endogeneity parameters represent the effect
of reduced-form innovations ony, while covariance endogeneity parameters determine the need to
instrument different variables inY. WhenσVu = 0, Y can be treated as exogenous (so IV estimation
is not warranted). So-called exogeneity tests typically test the hypothesisσVu = 0. It is easy to see
thatσVu = 0 if and only if a = 0 (provided the covariance matrix between reduced-form errors is
nonsingular), but the relationship is more complex in other cases.

In this paper, we emphasize cases wherea 6= 0. We first study formally the identification of
endogeneity parameters. We establish a simple identification correspondence between the compo-
nents ofβ anda: each component ofa is identifiable if and only if the corresponding component of
β is identifiable. In contrast, thisdoes not holdin general for the covariancesσVu: as soon as one
element ofβ is not identifiable, all components ofσVu typically fail to be identifiable. In this sense,
σVu is more difficult to interpret thana. Due to the failure of the exogeneity hypothesis, the distri-
butions of the test statistics are much more complex. It is relatively easy to produce finite-sample
inference fora, but not forσVu. So, forσVu, we propose asymptotic tests and confidence sets. It is
important to note that stronger assumptions are needed for making inference onσVu (as opposed
to a). Indeed, we describe general distributional setups whereσVu may not be well-defined [due to
heterogeneity in the model forY, or the non-existence of moments], whilea remains well-defined
and statistically meaningful. In such cases, inference ona is feasible, while inference onσVu may
not be (even when all parameters in the structural equation of interest are identifiable).

By allowing a 6= 0 (or σVu 6= 0), we extend earlier results on exogeneity tests, which focus
on the null hypothesisHa : a = 0. The literature on this topic is considerable; see, for example,
Durbin (1954), Wu (1973, 1974, 1983), Revankar and Hartley (1973), Hausman (1978), Revankar
(1978), Dufour (1979, 1987), Hwang (1980), Kariya and Hodoshima (1980), Hausman and Taylor
(1981), Spencer and Berk (1981), Nakamura and Nakamura (1981), Engle (1982), Smith (1983,
1984, 1985), Staiger and Stock (1997), Doko Tchatoka and Dufour (2011b, 2011a). By contrast,
we consider here the problem of testing any value ofa (or σVu) and build confidence sets for these
parameters. By allowing for weak instruments, we extend the results in Dufour (1979, 1987) where
Wald-type tests and confidence sets are proposed for inference ona andσVu, under assumptions
which exclude weak instruments. Finally, by considering inference ona andσVu, we extend a
procedure proposed in Dufour and Jasiak (2001) for inference onthe aggregate parameterθ = β +a
(but nota or σVu) in the context of a different model.

On exploiting results from Dufour and Taamouti (2005, 2007), we supplyanalytical forms for

2



the proposed confidence sets, and we give the necessary and sufficient conditions under which they
are bounded. These results can be used to assess partial exogeneity hypotheses even when iden-
tification is deficient or weak. In order to allow for alternative assumptions on error distributions,
we show that the proposed AR-type statistics are pivotal as long as errors follow a completely
specified distribution (up to an unknown scale – possibly random – parameter), which may be non-
Gaussian. Due to this invariance property, exact Monte Carlo tests can beperformed without a
Gaussian assumption [as described in Dufour (2006)]. In particular, we show this is feasible un-
der general assumptions which allow considerable heterogeneity in the reduced-form model forY,
even a completely unspecified model forY. On allowing for more general error distributions and
weakly exogenous instruments (along with standard high-level asymptotic assumptions), we also
show that the proposed procedures remain asymptotically valid and identification-robust. Finally,
we apply the proposed methods to two empirical examples: the relationship between trade and eco-
nomic growth [Frankel and Romer (1999), Dufour and Taamouti (2007)], and the model of returns
to education studied by Card (1995) and Kleibergen (2004, Table 2, p. 421).

The paper is organized as follows. Section 2 describes the model and the identification con-
ditions for endogeneity parameters. Section 3 presents the finite-sample theory for inference on
regression endogeneity parameters. Section 4 discusses asymptotic theory and inference for co-
variance endogeneity parameters. In Section 5, we present empirical applications.

2. Framework: endogeneity parameters and their identification

We consider a standard linear structural equation of the form:

y = Yβ +X1γ +u (2.1)

wherey = [y1, . . . , yT ] is aT ×1 vector of observations on a dependent variable,Y = [Y1, . . . , YT ]′

is a T ×G matrix of observations on (possibly) endogenous explanatory variables(G ≥ 1), X1

is a T × k1 full-column-rank matrix of strictly exogenous variables,u = [u1, . . . , uT ]′ is a vector
of structural disturbances,β andγ areG×1 andk1×1 unknown coefficient vectors. Further,Y
satisfies the model:

Y = XΠ +V = X1Π1 +X2Π2 +V (2.2)
whereX2 is aT ×k2 matrix of observations on exogenous variables (instruments),X = [X1, X2] =
[X•1, . . . , X•T ]′ has full-column rankk = k1 + k2, Π1and Π2 are k1 ×G and k2 ×G coefficient
matrices,Π = [Π1, Π2], andV = [V1, . . . , VT ]′ is a T ×G matrix of reduced-form disturbances.
Equation (2.1) is the “structural equation” of interest, while (2.2) represents the “reduced form” for
Y. On substituting (2.2) into (2.1), we get the reduced form fory:

y = X1π1 +X2π2 +v (2.3)

whereπ1 = γ +Π1β , π2 = Π2β , andv = Vβ +u = [v1, . . . ,vT ]′.
When the errorsu andV have finite means (although this assumption could easily be replaced

by another “location assumption”, such as zero medians), the usual necessary and sufficient condi-
tion for identification ofβ andγ (from the first moments ofy andY) in (2.1) - (2.2) is:

rank(Π2) = G. (2.4)

If Π2 = 0, the instrumentsX2 are irrelevant, andβ is completely unidentified. If 1≤ rank(Π2) < G,
β is not identifiable, but some linear combinations of the elements ofβ are identifiable [see Dufour
and Hsiao (2008)]. IfΠ2 is close not to have full rank [e.g., if some eigenvalues ofΠ ′

2Π2 are close
to zero], some linear combinations ofβ are ill-determined by the data, a situation often called
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“weak identification” [see Dufour (2003)].
Throughout this paper,Im is the identity matrix of orderm. For any full-column-rankT ×m

matrix A, P(A) = A(A′A)−1A′, M(A) = IT −P(A), vec(A) is the(Tm)× 1 column vectorization
of A,and‖A‖ = [tr(A′A)]

1
2 the matrix Euclidian norm. ForA square,A > 0 meansA is positive

definite (p.d.), andA≥ 0 meansA is positive semidefinite (p.s.d.). “
p→ ” stands for convergence in

probability, and “
L→ ” for convergence in distribution.

2.1. Identification of endogeneity parameters

We now wish to represent the fact thatu andV can be correlated, allowing for the possibility of
identification failure. It is important to note that the “structural error”ut may not be uniquely
determined by the data whenβ and γ are not identified. For this, it will be useful to consider
two alternative setups for the disturbance distribution: (A) in the first one,the disturbance vectors
(ut , V ′

t )
′ have common finite second moments (structural homoskedasticity); (B) in the second one,

we allow for a large amount of heterogeneity in the distributions of reduced-form errors (reduced-
form heterogeneity). The second setup is more appropriate for practical work, and we wishto go
as far as possible in that direction. But it will be illuminating to first consider setup A.

Assumption A STRUCTURAL HOMOSKEDASTICITY. The vectors Ut = (ut , V ′
t )

′, t = 1, . . . , T,
all have finite second moments with mean zero and the same covariance matrix

ΣU = E
[

UtU
′
t

]

=

[

σ2
u σ ′

Vu
σVu ΣV

]

, whereΣV = E
[

VtV
′
t

]

is nonsingular. (2.5)

Under the above assumption, we have:

σVv = E[Vtvt ] = E[Vt(V
′
t β +ut ] = ΣVβ +σVu, σ2

v = σ2
u +β ′ΣVβ +2β ′σVu. (2.6)

The covariance vectorσVu indicates which variables inY are “correlated” withut , so it is a ba-
sic determinant of the level of “endogeneity” of these variables. Note, however, thatσVu is not
identifiable whenβ is not (for then the “structural error”ut is not uniquely determined by the data).

In this context, it will be illuminating to look at the following two regressions: (1) the linear
regression ofut onVt ,

ut = V ′
t a+et , t = 1, . . . , T, (2.7)

wherea = Σ−1
V σVu andE[Vtet ] = 0 for all t; and (2) the linear regression ofvt onVt ,

vt = V ′
t θ +η t , t = 1, . . . , T, (2.8)

whereθ = Σ−1
V σVv andE[Vtη t ] = 0 for all t. It is easy to see that

σVu = ΣVa, σ2
u = σ2

e +a′ΣVa = σ2
e +σ ′

VuΣ−1
V σVu, (2.9)

whereE[e2
t ] = σ2

e for all t.This entails that:a= 0 if and only ifσVu = 0, so the exogeneity ofY can
be assessed by testing whethera = 0.There is however no simple match between the components
of a andσVu (unlessΣV is a diagonal matrix). For example, ifa= (a′1, a′2)

′ andσVu = (σ ′
Vu1, σ ′

Vu2)
′

wherea1 andσVu1 have dimensionG1 < G, a1 = 0 is not equivalent toσVu1 = 0. We call a the
“regression endogeneity parameter”, andσVu the “covariance endogeneity parameter”.

As long as the identification condition (2.4) holds, bothσVu anda are identifiable. This is not
the case, however, when (2.4) does not hold. By contrast, the regression coefficientθ is always
identifiable, because it is uniquely determined by the second moments of reduced-form errors. It is
then useful to observe the following identity:

θ = Σ−1
V σVv = Σ−1

V (ΣVβ +σVu) = β +a. (2.10)
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In other words, the sumβ + a is equal to the regression coefficient ofvt on Vt . Even thoughβ
anda may not be identifiable, the sumβ + a is identifiable (from the first and second moments
of v andV). Further, for any fixedG× 1 vectorw, w′θ is identifiable, so the identitiesw′a =
w′θ −w′β andσVu = ΣVa along with the invertibility ofΣV entail the following equivalences:

β is identifiable ⇔ a is identifiable⇔ σVu is identifiable ; (2.11)

w′β is identifiable ⇔ w′a is identifiable⇔ w′Σ−1
V σVu is identifiable . (2.12)

In particular, (2.12) entails a simple identification correspondence betweenthe components ofβ
anda: for each 1≤ i ≤ G, ai is identifiable⇔ β i is identifiable. In other words, the identification
conditions forβ anda are identical. In contrast, the equivalences [w′σVu is identifiable⇔ w′β is
identifiable] and [σVui is identifiable⇔ β i is identifiable]do not holdin general: as soon as one
element ofβ is not identifiable, all components ofσVu typically fail to be identifiable. In this sense,
σVu is more difficult to interpret thana.

Setup A requires that the reduced-form disturbancesVt , t = 1, . . . , T, have identical second mo-
ments. In many practical situations, this may not be appropriate, especially in alimited-information
analysis which focuses on the structural equation of interest (2.1), rather than the marginal distri-
bution of the explanatory variablesY. To allow for more heterogeneity among the observations in
Y, we consider the following alternative assumptions (whereX•t is thet-th row ofX).

Assumption B SECOND-ORDER REDUCED-FORM HETEROGENEITY. For some fixed vector a
in R

G, we have:
u = Va+e (2.13)

where e, V and X have finite second moments,E[e] = 0, and e is uncorrelated with V and X.

Assumption C REDUCED-FORM HETEROGENEITY. Equation(2.13) holds withE[et |Vt , X•t ] =
0, t = 1, . . . , T .

Assumptions B and C allow substantial heterogeneity in the distribution of the disturbances
Vt , t = 1, . . . , T. The latter need not be identically distributed or independent. Assumption B main-
tains the existence of second moments [even though the covariance matricesE

(

VtV
′
t

)

may vary
with t] and definese through a zero mean and orthogonality withV andX. Assumption C replaces
this condition by a zero conditional mean; no further restriction onV is imposed. The existence of
moments forVt andX•t is not required. An important case where Assumption B holds is the one
whereV andeare independent (strong linear structural decomposition). Given (2.1), the three con-
ditionsE[et |Vt , X•t ] = 0, E[et |Yt , X•t ] = 0 andE[et |Yt , Vt , X•t ] = 0 are equivalent. In such cases,
σVu may not be well-defined [due to heterogeneity in the model forY, or the non-existence of
moments], buta remains statistically meaningful.

In view of the decomposition (2.13), equation (2.1) can be viewed as a regression model with
missing regressors. On substituting (2.13) into (2.1), we get:

y = Yβ +X1γ +Va+e (2.14)

wheree is uncorrelated with all the regressors. Because of this property, we call (2.14) theorthog-
onalized structural equationassociated with (2.2), ande theorthogonalized structural disturbance
vector.1 In this equation, the original structural parameters(β andγ) can be interpreted as regres-
sion coefficients, along with the regression endogeneity parametera. We see thata represents the

1The form (2.14) was orignally proposed by Revankar and Hartley (1973) for the purpose of testing complete exo-
geneity(a = 0). As pointed out in Dufour (1979, 1987), the disributional theory is substantially simpler in that case and
does not allow one to test more general restrictions ona (because the covariance matrix is modified).
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effect of the latent variableV. Even though (2.14) is a regression equation [(Y, X1,V) is orthogonal
to the disturbancee], it is quite distinct from the reduced-form equation (2.3) fory.

The orthogonalized structural equation is quite helpful for interpreting model coefficients. A
structural model of the form (2.1) - (2.2) often represents a causal structure to explainy. The en-
dogenous variables(y andY) are determined by two types of inputs: observable exogenous vari-
ables (X1 and X2) and unobserved variables (V ande). X1 has both a direct effect(X1γ) on y and
an indirect effect(X1Π1β throughY), while X2 only has an indirect effect(X2Π2β ). Similarly,V
represents unobserved variables (e.g., shocks, latent variables, expectation errors) which have both
a direct effect(Va) and an indirect effect(Vβ ), while e represents idiosyncratic shocks toy which
are orthogonal toY. Finally, we may interpret the sumVβ +Va= V(β +a) as the net final effect
(both direct and indirect) ofV ony. In the context of a causal interpretation, the coefficient vectors
β , a andβ +a have useful distinct interpretations:β represents the impact ofY [in particular, its
systematic componentE(Y) = X1Π1 +X2Π2] on y, a the direct effect of the latent variableV on y,
andβ +a the total effect ofV ony. Statistical inference on each one of the coefficients has its own
independent interest.

The identification ofa can be studied through the orthogonalized structural equation. By (2.2),

y = Yθ +X1π∗
1 +X2π∗

2 +e (2.15)
whereθ = β + a, π∗

1 = γ −Π1a, π∗
2 = −Π2a, ande is uncorrelated with all the regressors(Y, X1

andX2). Equation (2.15) is a regression equation obtained by addingX2 to the original structural
equation or, equivalently, by addingY to the reduced form (2.3) fory. We call (2.15) theextended
reduced formassociated with (2.2). As soon as the matrixZ = [Y, X1, X2] has full-column rank
with probability one [almost surely(a.s.)], the parameters of equation (2.15) are identifiable (a.s.),
because they are uniquely determined by the linear projections ofyt onYt andX•t for t = 1, . . . , T
[under Assumption B] or by the corresponding conditional means [underassumption C]. This
is the case in particular forθ = β + a (with probability one) whenZ has full-column rank with
probability one. This rank condition holds in particular when the matrixV has full column rank
(a.s., conditional onX), e.g. if its distribution is absolutely continuous. This entails again thata is
identifiable if and only ifβ is identifiable, and similarly betweenw′a andw′β for anyw∈R

G. This
establishes the following identification result fora, where “identification” refers to the conditional
distributions ofyt givenYt andX•t , t = 1, . . . , T.

Proposition 2.1 IDENTIFICATION OF REGRESSION ENDOGENEITY PARAMETERS. Under the
model given by(2.2), (2.3) and Assumption B or C, suppose the matrix[Y, X1, X2] has full column
rank. Then a+β is identifiable, and the following two equivalences hold:

a is identifiable⇔ β is identifiable ; (2.16)

for any w∈ R
G, w′a is identifiable⇔ w′β is identifiable. (2.17)

Under Assumption B, covariance endogeneity parameters may depend ont. Indeed, it is easy
to see thatE

[

Vtut
]

= E
[

VtV
′
t

]

a≡ σVut , which may depend ont if E
[

VtV
′
t

]

does. However, identifi-
cation of the parametersσVut remains determined by the identification ofa, whenever the reduced-
form covariance (which are parameters of reduced forms) are identifiable. Inference on covariance
endogeneity parameters requires additional assumptions. In sections 3 and 4, we will see that
finite-sample inference methods can be derived for regression endogeneity parameters under the
relatively “weak” Assumption B, while only asymptotically justified methods will be proposed
for covariance endogeneity parameters. For covariances, we will focus on the case whereσVut is
constant.
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2.2. Statistical problems

In this paper, we consider the problem of testing hypotheses and building confidence sets for regres-
sion endogeneity parameters(a) and covariance endogeneity parameters(σVu), allowing for the
possibility of identification failure (or weak identification). We develop inference procedures for
the full vectorsa andσVu, as well as linear transformations of these parametersw′a andw′σVu. In
view of the identification difficulties present here, we emphasize methods forwhich a finite-sample
distributional theory is possible [see Dufour (1997, 2003)], at least partially.

In line with the above discussion of the identification of endogeneity parameters, we observe
that inference ona can be tackled more easily than inference onσVu, so we study this problem
first. The problem of testing hypotheses of the formHa(a0) : a = a0 can be viewed as an extension
of the classical Anderson and Rubin (1949, AR) problem on testingHβ (β 0) : β = β 0. There is,
however, an additional complication: the variableV is not observable. For this reason, substantial
adjustments are required. To achieve our purpose, we propose a strategy that builds on two-stage
confidence procedures [Dufour (1990)], projection methods [Dufour (1990, 1987), Abdelkhalek
and Dufour (1998), Dufour and Jasiak (2001), Dufour and Taamouti (2005)], and Monte Carlo
tests [Dufour (2006)].

Specifically, in order to build a confidence set with level 1−α for a, chooseα1 andα2 such
that 0< α = α1 +α2 < 1, 0 < α1 < 1 and 0< α2 < 1. We can then proceed as follows:
(1) we build an identification-robust confidence set with level 1−α1 for β ; several methods are
available to do this; in view of the existence of a finite-sample distributional theory (as well as com-
putational simplicity), we focus on the Anderson and Rubin (1949, AR) approach; but alternative
procedures could be exploited for that purpose;2

(2) we build an identification-robust confidence set for the sumθ = β +a, which happens to be an
identifiable parameter; we show this can be done easily though simple regression methods;
(3) the confidence sets forβ andθ are combined to obtain a simultaneous confidence set for the
stacked parameter vectorϕ = (β ′, θ ′)′; by the Boole-Bonferroni inequality, this yields a confidence
set forϕ with level 1−α (at least), as in Dufour (1990);
(4) confidence sets fora= θ −β and any linear transformationw′a may then be derived by projec-
tion; these confidence sets have level 1−α ;
(5) confidence sets forσVu andw′σVu can finally be built using the relationshipσVu = ΣVa.

For inference ona, we develop a finite-sample approach which remains valid irrespective of as-
sumptions on the distribution ofV. In addition, we observe that the test statistics used for inference
onβ [the AR-type statistic] andθ enjoy invariance properties which allow the application of Monte
Carlo test methods: as long as the distribution of the errorsu is specified up to an unknown scale
parameter, exact tests can be performed onβ andθ through a small number of Monte Carlo simula-
tions [see Dufour (2006)]. For inference on both regression and covariance endogeneity parameters
(a andσVu), we also provide a large-sample distributional theory based on standard asymptotic as-
sumptions which relax various restrictions used in the finite-sample theory. Allproposed methods
do not make identification assumptions onβ , either in finite samples or asymptotically.

2Such procedures include, for example, the methods proposed by Kleibergen (2002) or Moreira (2003). No finite-
sample distributional theory is, however, available for these methods. Further, these are not robust to missing instru-
ments; see Dufour (2003) and Dufour and Taamouti (2007).
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3. Finite-sample inference for regression endogeneity parameters

In this section, we study the problem of building identification-robust tests and confidence sets for
the regression endogeneity parametera from a finite-sample viewpoint. Along with (2.1) - (2.2),
we suppose that Assumption B holds under (at least) one of the following conditions on model
disturbances.

Assumption 3.1 CONDITIONAL SCALE MODEL FOR STRUCTURAL ERRORS. u = σ(X)υ,
whereσ(X) is a (possibly random) function of X such thatP[σ(X) 6= 0|X] = 1, and the con-
ditional distribution ofυ given X is completely specified.

Assumption 3.2 CONDITIONAL SCALE MODEL FOR ORTHOGONALIZED STRUCTURAL ER-
RORS. e= σ1(X)ε , whereσ1(X) is a (possibly random) function of X such thatP[σ1(X) 6=
0|X] = 1, and the conditional distribution ofε given X is completely specified.

Assumption 3.1 means the distribution ofu given X only depends onX and a (typically un-
known) scale factorσ(X). The scale factor can also be random, so we can haveσ(X) = σ̄(X, υ).
Of course, this holds when everu= σ υ , whereσ is an unknown positive constant andv is indepen-
dent ofX with a completely specified distribution. In this context, the standard Gaussian assump-
tion is obtained by taking:υ ∼ N[0, IT ] . But non-Gaussian distributions are covered, including
heavy-tailed distributions which may lack moments (such as the Cauchy distribution). Similarly,
Assumption 3.2 means the distribution ofe givenX only depends onX and a (typically unknown,
possibly random) scale factorσ1(X), so again a standard Gaussian model is obtained by assuming
thatσ1(X) is fixed (givenX) andε ∼ N[0, IT ] . In general, assumptions 3.1 and 3.2 do not entail
each other. However, it is easy to see that both hold when the vectors[ut ,V

′
t ]

′
, t, , . . . , T, are i.i.d.

(given X) with finite second moments and the decomposition specified by Assumption B holds.
This will be the casea fortiori if the vectors[ut ,V

′
t ]

′
, t, , . . . , T, are i.i.d. multinormal (givenX).

We will study in turn the following problems:(1) test and build confidence sets forβ ; (2) test
and build confidence sets forθ = β +a; (3) test and build confidence sets fora; (4) test and build
confidence sets for scalar linear transformationsw′a.

3.1. AR-type tests forβ with possibly non-Gaussian errors

Since this will be a basic building block for inference on endogeneity parameters, we consider first
the problem of testing the hypothesis

Hβ (β 0) : β = β 0 (3.1)

whereβ 0 is any given possible value ofβ . Several methods have been proposed for that purpose.
However, since we wish to use an identification-robust procedure for which a finite-sample theory
can easily be obtained and does not require assumptions on the distribution of Y, we focus on the
Anderson and Rubin (1949, AR) procedure. So we consider the transformed equation:

y−Yβ 0 = X1π0
1 +X2π0

2 +v0 (3.2)

whereπ0
1 = γ +Π1(β −β 0), π0

2 = Π2(β −β 0) andv0 = u+V(β −β 0). Sinceπ0
2 = 0 underHβ (β 0),

it is natural to consider the correspondingF-statistic in order to testHβ (β 0) :

AR(β 0) =
(y−Yβ 0)

′(M1−M)(y−Yβ 0)/k2

(y−Yβ 0)
′M(y−Yβ 0)/(T −k)

(3.3)

whereM1 ≡ M(X1) andM ≡ M(X). Under the usual assumption whereu ∼ N[0, σ2IT ] indepen-
dently ofX, the conditional distribution ofAR(β 0) underHβ (β 0) is F(k2, T −k). In the following
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proposition, we characterize by invariance the distribution ofAR(β 0) under the general Assumption
3.1.

Proposition 3.1 NULL DISTRIBUTION OF AR STATISTICS UNDER SCALE STRUCTURAL ERROR

MODEL. Suppose the assumptions(2.1), (2.2) and 3.1 hold. Ifβ = β 0,we have:

AR(β 0) =
υ ′(M1−M)υ/k2

υ ′Mυ/(T −k)
(3.4)

and the conditional distribution of AR(β 0) given X only depends on X and the distribution ofυ .

The proof is given in Appendix. This proposition means that the conditionalnull distribution
of AR(β 0), given X, only depends on the distribution ofυ . The distribution ofV plays no role
here, so no decomposition assumption [such as A or B] is needed. If the distribution of υ |X can
be simulated, one can get exact tests based onAR(β 0) through the Monte Carlo test method [see
Dufour (2006)], even if this conditional distribution is non-Gaussian. Furthermore, the exact test
obtained in this way is robust to weak instruments as well as instrument exclusion even if the
distribution ofu|X does not have moments (e.g., the Cauchy distribution).3 This may be useful in
financial models with fat-tailed error distributions, such as the Studentt distribution.

When the normality assumption holds
(

υ ∼ N[0, IT ]
)

and X is exogenous, we have
AR(β 0) ∼ F(k2,T − k), so thatHβ (β 0) can be assessed by using a critical region of the form
{AR(β 0) > f (α)} , where f (α) = Fα(k2,T −k) is the(1−α)-quantile of theF(k2,T −k) distri-
bution. A confidence set with level 1−α for β is then given by

Cβ (α) = {β 0 : AR(β 0) ≤ Fα(k2,T −k)} = {β : Q(β ) ≤ 0} (3.5)

whereQ(β ) = β ′Aβ +b′β +c, A = Y′HY , b = −2Y′Hy, c = y′Hy, H = M1− [1+ f (α)( k2
T−k)]M,

and f (α) = Fα(k2,T −k); see Dufour and Taamouti (2005).

3.2. Inference onθ

Let us now consider the problem of testing the hypothesisHθ (θ 0) : θ = θ 0, whereθ 0 is a given
vector of dimensionG, and Assumption 3.2 holds. This can be done by considering the extended
reduced form in (2.15). By Assumption 3.2,e is independent ofY, X1 and X2, and (2.15) is a
linear regression model. As soon as the matrix[Y, X1, X2] has full-column rank, the parameters of
equation (2.15) can be tested through standardF-tests.

We will now assume that[Y, X1, X2] has full-column rank with probability one. This property
holds as soon asX = [X1, X2] has full column rank andY has a continuous distribution (conditional
onX). TheF-statistic for testingHθ (θ 0) is

Fθ (θ 0) =
(θ̂ −θ 0)

′(Y′MY)(θ̂ −θ 0)/G
y′M(Z)y/(T −G−k)

(3.6)

3By “robustness to weak instruments”, we mean the fact that the null distribution of the test statistic remains valid
even if rank[Π2] < G, soβ may not be identifiable from the available data. By “robustness to excludedinstruments”, we
mean that the test remains valid even ifY depends on additional explanatory variables(X3) which are not taken in IV-
based inference; for further discussion of this issue, see Dufour and Taamouti (2007). Of course, identification failure
(or weak identification) typically affects test power and confidence set precision. For example, if identification fails
completely(rank[Π2] = 0), it is impossible to distinguish between alternative values ofβ , and a valid test ofHβ (β 0)
should have power not larger than its level. Further, confidence sets ofunidentified parameters should be uninformative
(e.g., unbounded) with high probability; see Dufour (1997).
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where θ̂ = (Y′MY)−1Y′My is the OLS estimate ofθ in (2.15), M = M(X), X = [X1, X2], and
Z = [Y , X1 , X2]. Whenυ ∼ N[0, IT ], we have:Fθ (θ 0) ∼ F(G, T − k−G) underHθ (θ 0). Under
the more general assumption 3.2, it is easy to see that

Fθ (θ 0) =
ε ′MY(Y′MY)−1Y′Mε/G

ε ′M(Z)ε/(T −G−k)
(3.7)

underHθ (θ 0). On observing that the conditional distribution ofFθ (θ 0), givenY andX, does not
involve any nuisance parameter, the critical value can be obtained by simulation. It is also important
to note that this distribution does not depend onθ 0, so the same critical value can be applied
irrespective ofθ 0. The main difference with the Gaussian case is that the critical value may depend
onY andX. Irrespective of the case, we shall denote byc(α2) the critical value forFθ (θ 0).

From (3.6), a confidence set with level 1−α for θ can be obtained by invertingFθ (θ 0) :

Cθ (α) =
{

θ 0 : Fθ (θ 0) ≤ f̄ (α)
}

=
{

θ 0 : Q̄(θ 0) ≤ 0
}

(3.8)

whereQ̄(θ) = (θ̂ −θ)′(Y′MY)(θ̂ −θ)− c̄0 = θ ′Āθ + b̄′θ + c̄, c̄0 = f̄ (α)Gs2 , s2 = y′M(Z)y/(T−
G− k) , Ā = Y′MY, b̄ = −2Āθ̂ = −2Y′My, c̄ = θ̂ ′

Āθ̂ − c̄0 = θ̂ ′
(Y′MY)θ̂ − c̄0 = y′H̃y,and H̄ =

P(MY)− f̄ (α)[G/(T −G− k)]M1. Since the matrixĀ is positive definite (with probability one),
the quadric setCθ (α) is an ellipsoid (hence bounded); see Dufour and Taamouti (2005, 2007). This
reflects the fact thatθ is an identifiable parameter. As a result, the corresponding projection-based
confidence sets for scalar transformationsw′θ are also bounded intervals.

In view of the form (2.15) as a linear regression, we can test in the same way linear restrictions
of the formHw′θ (γ0) : w′θ = γ0, wherew is aG×1 vector andγ0 is known constant. We can then
use the correspondingt statistic

tw′θ (γ0) =
w′θ̂ − γ0

s[w′(Y′MY)−1w]1/2
(3.9)

and rejectHw′θ (γ0) when |tw′θ (γ0)|> cw(α), wherecw(α) is the critical value for a test with level
α. In the Gaussian case,tw′θ (γ0) follows a Student distribution withT −G−k degrees of freedom,
so we can takecw(α) = t(α2; T −G−k). Whenε follows a non-Gaussian distribution, we have

tw′θ (γ0) =
(T −G−k)1/2w′(Y′MY)−1Y′Mε
(

ε ′M(Z)ε
)1/2

[w′(Y′MY)−1w]1/2
(3.10)

underHw′θ (γ0), so that the distribution oftw′θ (γ0) can be simulated likeFθ (θ 0) in (3.7).

3.3. Joint inference onβ and regression endogeneity parameters

We can now derive confidence sets for the vectors(β ′, a′)′ and(β ′, θ ′)′. Consider the set:

C(β , θ)(α1, α2)= {(θ ′
0, β ′

0)
′ : β 0∈Cβ (α1) , θ 0∈Cθ (α2)}= {(θ ′

0, β ′
0)

′ : Q(β 0)≤0 , Q̄(θ 0)≤0} .

By the Boole-Bonferroni inequality, we have:

P[β ∈ Cβ (α1)andθ ∈ Cθ (α2)] ≥ 1−P[β /∈ Cβ (α1)]−P[θ /∈ Cθ (α2)] ≥ 1−α1−α2 (3.11)

soC(β , θ)(α1, α2) is a confidence set for(β ′, θ ′)′ with level 1−α, whereα = α1+α2. In view of
the identityθ = β +a, we can writeQ̄(θ) in (3.8) as a function ofβ anda:

Q̄(θ) = Q̄(β +a) = a′Āa+(b̄+2Āβ )′a+[c̄+ b̄′β +β ′Āβ ] ,

so that we get a confidence set with level 1−α for β anda by taking
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C̄(β , a)(α) = {(β ′
0, a′0)

′ : Q(β 0) ≤ 0 andQ̄(β 0 +a0) ≤ 0} (3.12)

Thus, finite-sample inference on the structural (possibly unidentifiable) parametera can be
achieved. Of course, ifa is not identified, a valid confidence set will cover the set of all possi-
ble values (or be unbounded) with probability 1−α [see Dufour (1997)].

3.4. Confidence sets for regression endogeneity parameters

We can now build “marginal” confidence sets for the endogeneity coefficient vectora. In view
of the possibility of identification failure, this is most easily done by projection techniques.
Let g(β , a) be any function ofβ and a. Since the event(β , a) ∈ C̄(β , a)(α) entailsg(β , a) ∈
g[C̄(β , a)(α)], whereg[C̄(β , a)(α)] = {g(β , a) : (β , a) ∈ C̄(β , a)(α)}, we have:

P
[

g(β , a) ∈ g[C̄(β , a)(α)
]

≥ P[(β , a) ∈ C̄(β , a)(α)] ≥ 1−α . (3.13)

On takingg(β , a) = a∈ R
G,we see that

Ca(α) = {a : (β , a) ∈ C̄(β , a)(α) for someβ} = {a : Q̄(β +a) ≤ 0 andQ(β ) ≤ 0 for someβ}
is a confidence set with level 1−α for a.

When G = 1, the matricesA, Ā, b, b̄, c and c̄ in (3.8) reduce to scalars, and the different
confidence sets take the following simple forms:

Cβ (α1) =
{

β : Aβ 2 +bβ +c≤ 0
}

, Cθ (α2) = {θ : Āθ 2 + b̄θ + c̄≤ 0} , (3.14)

Ca(α) = {a : Aβ 2 +bβ +c≤ 0, Āa2 +(b̄+2Āβ )a+[c̄+ b̄β + Āβ 2] ≤ 0} . (3.15)

Closed forms for the setsCβ (α1) andCθ (α2) are easily derived by finding the roots of the second-

order polynomial equationsAβ 2 + bβ + c = 0 andĀθ 2 + b̄θ + c̄ = 0 [as in Dufour and Jasiak
(2001)], while the setCa(α) can be obtained by finding the roots of the equation

Āa2 + b̄(β )a+ c̄(β ) = 0 whereb̄(β ) = b̄+2Āβ andc̄(β ) = c̄+ b̄β + Āβ 2 , for eachβ ∈ Cβ (α1).

We shall now focus on building confidence sets for scalar linear transformationsg(a) = w′a =
w′θ −w′β , wherew is aG×1 vector. Conceptually, the simplest approach consists in applying
the projection method toCa(α), which yields the confidence set:

Cw′a(α) = gw[Ca(α)] = {d : d = w′a for somea∈ Ca(α)}
= {d : d = w′a , Q̄(β +a) ≤ 0 andQ(β ) ≤ 0 for someβ} .

But it will be more efficient to exploit the linear structure of model (2.15), which allows one to
build a confidence interval forw′θ .

Following Dufour and Taamouti (2005, 2007), confidence sets forgw(β ) = w′β andgw(θ) =
gw = w′θ can be derived fromCβ (α1) andCθ (α2) as follows:

Cw′β (α1) ≡ gw[Cβ (α1)] = {x1 : x1 = w′β , Q(β ) ≤ 0} = {x1 : x1 = w′β , β ′Aβ +b′β +c≤ 0}
whereA, b andc are defined as in (3.5). Forw′θ , we can use at−type confidence interval based
on t(γ0):

C̄w′θ (α2) ≡ ḡw[Cθ (α2)] = {γ0 : |tw′θ (γ0)| < cw(α2)} = {γ0 : |w′θ̂ − γ0| < D̄(α2)} (3.16)

whereD̄(α2) = cw(α2) σ̂(w′θ̂), σ̂(w′θ̂) = s[w′(Y′MY)−1w]1/2 with s = [y′M(Z)y]1/2/(T −G−
k)1/2, andcw(α2) is the critical value for a test with levelα2 based ontw′θ (γ0) [in (3.9)]. Setting
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C(w′β , w′θ)(α1, α2) = {(x, y)′ : x∈ Cw′β (α1)andy∈ C̄w′θ (α2)} , (3.17)

we see thatC(w′β , w′θ)(α1, α2) is a confidence set for(w′β , w′θ) with level 1−α1−α2:

P[(w′β , w′θ) ∈ C(w′β , w′θ)(α1, α2)] = P[w′β ∈ Cw′β (α1)andw′θ ∈ C̄w′θ (α2)] ≥ 1−α (3.18)

whereα = α1+α2. For any pointx∈R and any subsetA⊆R, setx−A= {z∈R : z= x−yandy∈
A}. Sincew′a = w′θ −w′β , it is clear that

(w′β , w′θ) ∈ C(w′β , w′θ)(α1, α2) ⇔ w′θ −w′a∈ Cw′β (α1)andw′θ ∈ C̄w′θ (α2)

⇔ w′a∈ w′θ −Cw′β (α1) andw′θ ∈ C̄w′θ (α2) ,

P[w′a∈ w′θ −Cw′β (α1) andw′θ ∈ C̄w′θ (α2)] = P[w′β ∈ Cw′β (α1)andw′θ ∈ C̄w′θ (α2)]
≥ 1−α1−α2 .

Now, consider the set

Cw′a(α1, α2) = {z∈ R : z∈ y−Cw′β (α1) for somey∈ C̄w′θ (α2)} . (3.19)

Since the event{w′a∈ w′θ −Cw′β (α1) andw′θ ∈ C̄w′θ (α2)} entailsw′a∈ Cw′a(α1, α2), we have:

P[w′a∈ Cw′a(α1, α2)] ≥ P[w′β ∈ Cw′β (α1)andw′θ ∈ C̄w′θ (α2)] ≥ 1−α1−α2 (3.20)
andCw′a(α1, α2) is a confidence set with level 1−α1−α2 for w′a.

SinceC̄w′θ (α2) is a bounded interval, the shape ofCw′a(α1, α2) can be deduced easily by
using the results given in Dufour and Taamouti (2005, 2007). We focuson the case whereA is
nonsingular [an event with probability one as soon as the distribution ofAR(β 0) is continuous] and
w 6= 0. Then the setCw′β (α1) may then rewritten as follows: ifA is positive definite,

Cw′β (α1) =
[

w′β̃ −D(α1), w′β̃ +D(α1)
]

, if d ≥ 0,

= /0, if d < 0,

whereβ̃ = −1
2A−1b, d = 1

4b′A−1b− c andD(α1) =
√

d(w′A−1w); if A has exactly one negative
eigenvalue andd < 0,

Cw′β (α1) =
]

−∞ , w′β̃ −D(α1)
]

∪
[

w′β̃ +D(α1) , +∞
[

, if w′A−1w < 0 ,

= R\{w′β̃} , if w′A−1w = 0 ;
(3.21)

otherwise,Cw′β (α1) = R. Cw′β (α1) = /0 corresponds to a case where the model is not consistent
with the data [so thatCw′a(α1, α2) = /0 as well], whileCw′β (α1) = R andCw′β (α1) = R\{w′β̃}
indicate thatw′β is not identifiable and similarly forw′a [so thatCw′a(α1, α2) = R]. This yields
the following confidence sets forw′a : if A is positive definite,

Cw′a(α1, α2) =
[

w′(θ̂ − β̃ )−DU(α1, α2) , w′(θ̂ − β̃ )+DU(α1, α2)
]

, if d ≥ 0,

= /0, if d < 0,
(3.22)

whereDU(α1, α2) = D(α1)+ D̄(α2); if A has exactly one negative eigenvalue,w′A−1w < 0 and
d < 0,

Cw′a(α1, α2) =
]

−∞ , w′(θ̂ − β̃ )−DL(α1, α2)
]

∪
[

w′(θ̂ − β̃ )+DL(α1, α2) , +∞
[

(3.23)

whereDL(α1, α2) = D(α1)−D̄(α2); otherwise,Cw′a(α1, α2) = R. These results may be extended
to cases whereA is singular, as done by Dufour and Taamouti (2007).
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3.5. Exact Monte Carlo identification-robust tests with non-Gaussian errors

Suppose now that the conditional distribution ofυ (givenX) is continuous, so that the conditional
distribution ofAR(β 0) under the null hypothesisHβ (β 0) is also continuous. We can then proceed
as follows to obtain an exact Monte Carlo test ofHβ (β 0) with level α (0 < α < 1):
(1) chooseα∗ andN so thatα =

(

I [α∗N]+1
)

/(N+1) ;
(2) for givenβ 0, compute the test statisticAR(0)(β 0) based on the observed data;

(3) generateN i.i.d. error vectorsυ( j) = [υ( j)
1 , . . . , υ( j)

T ]′, j = 1, . . . , N , according to the specified
distribution ofυ |X , and compute the corresponding statisticAR( j), j = 1, . . . , N, following (3.4);
note the distribution ofAR(β 0) does not depend on the specific valueβ 0 tested, so there is no need
to make it depend onβ 0;
(4) compute the simulatedp-value function: ˆpN[x] = {1+ ∑N

j=11[AR( j) ≥ x]}/(N + 1), where
1[C] = 1 if conditionC holds, and1[C] = 0 otherwise;
(5) reject the null hypothesisHβ (β 0) at levelα when p̂N[AR(0)(β 0)] ≤ α.

Under the null hypothesisHβ (β 0), P
[

p̂N[AR(0)(β 0)] ≤ α
]

= α, so that we have a test with
level α. If the distribution of the test statistic is not continuous, the MC test procedure can easily
be adapted by using “tie-breaking” method described in Dufour (2006).4 Correspondingly, a con-
fidence set with level 1−α for β is given by the set of all valuesβ 0 which are not rejected by the
above MC test. More precisely, the set

Cβ (α) =
{

β 0 : p̂N[AR(0)(β 0)] > α
}

(3.24)

is a confidence set with level 1−α for β . On noting that the distribution ofAR(β 0) does not depend
on β 0, we can use a single simulation for all valuesβ 0: setting f̂N(α∗) = F̂−1

N (1−α∗) , the set

Cβ (α; N) =
{

β 0 : AR(0) < f̂N(α∗)
}

(3.25)

is equivalent toCβ (α) – with probability one – and so has level 1−α. On replacing> and< by
≥ and≤ in (3.24) - (3.25), it is also clear that the sets

{

β 0 : p̂N[AR(0)(β 0)] ≥ α
}

and

C̄β (α; N) = {β 0 : AR(0)(β 0) ≤ f̂N(α∗)} (3.26)

constitute confidence sets forβ with level 1−α (though possibly a little larger than 1−α). The
quadric form given in (3.5) also remains valid withf (α) = f̂N(α∗).

4. Asymptotic theory for inference on endogeneity parameters

In this section, we examine the validity of the procedures developed in Section3 under weaker
distributional assumptions, and we show how inference on covariance endogeneity parameters can
be made. On noting that equations (3.2) and (2.15) constitute standard linear regression models (at
least under the null hypothesisβ = β 0), it is straightforward to find high-level regularity conditions
under which the tests based onAR(β 0) andFθ (θ 0) are asymptotically valid.

ForAR(β 0), we can consider the following general assumption.

Assumption 4.1 When the sample size T converges to infinity, the following convergence results

hold jointly: (a) 1
T X′u

p→ 0; (b) 1
T u′u

p→ σ2
u > 0, 1

T X′X
p→ ΣX with det(X′X) 6= 0; (c) 1√

T
X′u

L→
ψXu, ψXu ∼ N

[

0, σ2
uΣX

]

, where X= [X1, X2] .

4Without the correction for continuity, the algorithm proposed for statistics withcontinuous distributions yields a
conservative test,i.e. the probability of rejection under the null hypothesis is not larger than the nominal level(α1).
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The above conditions are easy to interpret: (a) represents the asymptotic orthogonality between
u and the instruments inX, (b) may be viewed as laws of large numbers foru andX, while (c) is a
central limit property. Then, it is a simple exercise to see that

AR(β 0)
L→ χ2(k2)/k2 , whenβ = β 0 . (4.1)

Similarly, for Fθ (θ 0), we can suppose the following.

Assumption 4.2 When the sample size T converges to infinity, the following convergence results

hold jointly: (a) 1
T Z′e

p→ 0; (b) 1
T e′e

p→ σ2
e > 0, 1

T Z′Z
p→ ΣZ with det(Z′Z) 6= 0; (c) 1√

T
Z′e

L→
ψZe, ψZe∼ N

[

0, σ2
eΣZ

]

, where Z= [Y, X1, X2] .

Then
Fθ (θ 0)

L→ χ2(G)/G, whenθ = θ 0 . (4.2)

The asymptotic distributions in (4.1) and (4.2) hold irrespective whether the instrumentsX are
weak or strong. Further, as soon as assumptions 4.1 and 4.2 hold, the confidence procedures
described in Section 3 remain “asymptotically valid” withf (α1) = χ2(α1; k2)/k2 and f̄ (α2) =
χ2(α2; G)/G, whereχ2(α1; k2) andχ2(α2; G) are respectively the 1−α1 and 1−α2 quantiles of
the correspondingχ2 distributions. Of course, the Gaussian-based Fisher critical values may also
be used (for they converge to the chi-square critical values asT → ∞).

We can now consider inference for covariance endogeneity parameters σVu. The problem of
building confidence sets forσVu is especially important for assessing partial exogeneity hypotheses.
Sincea j = 0, j = 1, . . . ,G does not entailσuV j = 0(where 1≤ j ≤ G), confidence sets on the
components ofa cannot directly be used to assess for example, the exogeneity of each regressor
Yj , j = 1, . . . ,G. Confidence sets and tests forσuV can be deduced from those ona through the
relationshipσVu = ΣVa given in (2.9). On replacinga by Σ−1

V σVu in Ca(α), we see that the set

CσVu(α; ΣV) = {σVu ∈ R
G : σVu = ΣVa anda∈ Ca(α)}

= {σVu ∈ R
G : Q̄(β +Σ−1

V σVu) ≤ 0 andQ(β ) ≤ 0 for someβ} (4.3)

is a confidence set with level 1−α for σVu. This set is simply the image ofCa(α) by the linear
transformationg(x) = ΣVx. The difficulty here comes from the fact thatΣV is unknown. LetΣ̂V =
V̂ ′V̂/(T−k) whereV̂ = M(X)Y is the matrix of least-squares residuals from the first-step regression
(2.2). Under standard regularity conditions, we have:

Σ̂V
p→ ΣV (4.4)

where det(ΣV) > 0. If β 0 anda0 are the true values ofβ anda, the relationsθ 0 = β 0 + a0 and
σVu0 = ΣVa0 entail thatFθ (θ 0) can be rewritten as follows:

Fθ (β 0 +Σ−1
V σVu0) =

(θ̂ −β 0−Σ−1
V σVu0)

′(Y′MY)(θ̂ −β 0−Σ−1
V σVu0)/G

y′M(Z)y/(T −G−k)
. (4.5)

ReplacingΣV by Σ̂V , we get the approximate pivotal functionFθ (β 0 + Σ̂−1
V σVu0). If (4.4) holds,

it is easy to see (by continuity) thatFθ (β 0 + Σ̂−1
V σVu0) and Fθ (β 0 + Σ−1

V σVu0) are asymptoti-
cally equivalent with a nondegenerate distribution, whenβ 0 andσVu0 are the true parameter val-
ues. Consequently, the confidence set of typeCσVu(α) based onFθ (β 0 + Σ̂−1

V σVu0) as opposed to
Fθ (β 0 + Σ−1

V σVu0) has level 1−α asymptotically. This set is simply the image ofCa(α) by the
linear transformation ˆg(x) = Σ̂Vx, i.e.

CσVu(α; Σ̂V) = {σVu ∈ R
G : Q̄(β + Σ̂−1

V σVu) ≤ 0 andQ(β ) ≤ 0 for someβ} . (4.6)
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Finally, confidence sets for the components ofσVu, and more generally for linear combinations
w′σVu, can be derived from those onw′a as described in Section 3.4. ForΣV given, the relation
σVu = ΣVa entails that a confidence set forw′σVu (with level 1−α) can be obtained by computing
a confidence set (at level 1−α) for w′

1a with w1 = ΣVw. WhenΣV is estimated bŷΣV , takingw1 =
Σ̂Vw yields a confidence set forσVu with level 1−α asymptotically.

5. Empirical applications

We will now apply the methods proposed above to two empirical examples: a model of the relation
between trade and economic growth, previously studied in Frankel and Romer (1999) and Dufour
and Taamouti (2007), and the model of returns to education studied by Card (1995) and Kleibergen
(2004, Table 2, p. 421).

5.1. Trade and growth

The trade and growth model studies the relationship between standards of living and openness.
Frankel and Romer (1999) argued that trade share (ratio of imports or exports to GDP) which is the
commonly used indicator of openness may be endogenous. The equation studied is given by:

ln(Incomei) = β 0 +βTradei + γ1ln(Popi)+ γ2ln(Areai)+ui , i = 1, . . . , N (5.1)

where Income is the income per capita, Trade is measured as a ratio of imports and exports to
GDP, Pop is the logarithm of the country population, and Area is the logarithm of the country area.
The instrument suggested is constructed on the basis of geographic characteristics. The first stage
equation is then given by:

Tradei = b0 +b1Zi +c1Popi +c2Areai +Vi , i = 1, . . . , N, (5.2)

whereZi is a constructed instrument. We use the sample of 150 countries and the data are for 1985.
Dufour and Taamouti (2005) showed that the fitted instrument in this sample is not very weak.5

The identification-robust confidence intervals with level 97.5% forβ andθ = β 1+a, that result

on invertingAR(β 0) and tθ (γ0) are given by:Cβ (α) =
{

β 0 : 0.23β 2
0−4.76β 0 +0.04≤ 0

}

=

[0.01, 20.62] andCθ (α) = [−0.05, 0.47]. The results reported are based on the critical values of
theF-distributions of Section 3. The Monte Carlo method as described in Section 3.5gives similar
results even with 1000 replications. We see thatCβ (α) is a bounded interval, thus confirming that
identification is not weak in this model. The estimates of regression and covariance endogeneity
parameters are given by ˆa=−1.82 andσ̂uV =−0.38, respectively. The confidence intervals6 with
level 95% fora andσVu are given by:

Ca(α) = [−20.67, 0.46] and CσVu(α) = [−4.33, 0.09].

Both confidence intervals are bounded and contain the estimates ofa andσVu from observed data.
Both confidence intervals, though include zero, are left skewed at zero. In particular, the upper
bound forCσVu(α) is very close to zero. So the true covariance and regression endogeneity pa-
rameters can be actually large, thus indicating the importance of omitting variablesbias (fora) and

5TheF-statistic in the first stage (5.2) is about 13, see also Frankel and Romer(1999, Table 2, p.385).
6Note that the confidence interval with level 95% fora andσVu, obtained on invertingAR(β 0) andFθ (θ0) are similar

to those reported here.
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trade share endogeneity (forσVu). The latter is likely plausible as the discrepancy between the
OLS estimate ofβ (β̂ OLS= 0.28) and the 2SLS estimate (β̂ 2SLS= 2.03) is relatively large.

5.2. Card model of education and earnings

We will also apply the methods proposed to the following alternative model studied by Card (1995)
for the return of education to earnings:

yi = Y1iβ 1 +Y2iβ 2 +Y3iβ 3 +X′
1iγ +ui , (5.3)

(Y1i , Y2i , Y3i) = X′
1iΠ1 +X′

2iΠ2 +Vi , (5.4)

whereY1i is the length of education of individuali, (Y2i , Y3i) = (experi , exper2i ) contains the ex-
perience (exper) and experience squared of individuali where experi = agei − 6−Y1i ; X1i =
(1, racei , smsai , southi)′ consists of a constant and indicator variables for race, residence in a
metropolitan area, and residence in the south of the United States; andyi is the logarithm of the
wage of individuali. All variables inX1 are assumed exogenous.X2i is the vector of instruments
that containsage, age2 of individual i, and proximity-to-college indicators for educational attain-
ment; these areproximity to 2- and 4-year college.Kleibergen (2004, Table 2, p. 421) shows
that the proximity-to-college indicator instruments are not very strong. Hence, it is important to be
careful when interpreting the 2SLS estimates of this model. We follow the methodology developed
in this paper for building projection-based confidence intervals of the components of the regression
and covariance endogeneity parametersa = (a1,a2,a3)

′ andσVu = (σVu1,σVu2,σVu3)
′.

The data analyzed are from the National Longitudinal Survey of Young Men (from 1966 to
1981). We use the cross-sectional 1976 subsample which contains 3010observations. After ac-
counting for missing data, the final sample has 2061 observations. The variables contained in the
data set are: two variables indicating the proximity to college, the length of education, log wages,
experience, IQ score, age, racial, metropolitan, family, and regional indicators.

To build confidence sets with level 95% fora and σVu, we takeα1 = α2 = 0.025. The
identification-robust confidence sets with level 97.5% for β = (β 1, β 2, β 3)

′ andθ = β +a, based
on invertingAR(β 0) and Fθ (θ 0) are given by: Cβ (α) =

{

β 0 : β ′
0Aβ 0−b′β 0 +0.37≤ 0

}

and
Cθ (α) =

{

θ 0 : θ ′
0Āθ 0 + b̄′θ 0 +0.63≤ 0

}

, where

A =





0.7 6.17 87.34
6.14 170.88 3210.82
87.34 3210.82 61730.62



 , Ā =





770.72 −770.70 −13287.73
−770.70 770.72 13287.70
−13287.73 13287.70 270277.74



 , (5.5)

b = (−0.8,−15.62,−285.9)′ andb̄ = (−33.59,33.59, 838.17)′.The matrixA has exactly one neg-
ative eigenvalue, while all eigenvalues ofĀ are positive. Hence,Cβ (α) is an unbounded ellipsoid,
while Cθ (α) is a bounded ellipsoid, thus confirming thatθ is identified whileβ is not. Then, for
any scalar linear transformationsw′θ , a confidence set with level 1−α2 is given by (3.16) witĥθ =
(

0.279, 0.312, −0.003
)

andD̄(α2) = 0.72[w′(Y′MY)−1w]1/2. Forw′β , we can obtain a projection-
based confidence set with level 1− α1 by using (3.21) withβ̃ =

(

− 0.361, 0.218, −0.010
)

,

d =−1.55< 0 andD(α1) = [−1.55w′A−1w]1/2 whenw′A−1w< 0. For inference ona, we also use
the following estimates:

â =





−0.102
0.102
−0.004



 , σ̂Vu =





−0.492
0.492
7.634



 , Σ̂V =





3.76 −3.75 −64.75
−3.75 3.74 64.76
−64.75 64.76 1317.14



 .
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Table 1. Card model of education and earnings
Projection-based confidence intervals for endogeneity parameters (95% level)

Without IQ variable

Regression endogeneity Covariance endogeneity

Ca1 ]−∞,0.47]∪ [1.45,+∞[ CσVu1 ]−∞,0.41]∪ [9.08,+∞[

Ca2 ]−∞,−0.12]∪ [−0.03,+∞[ CσVu3 ]−∞,−9.08]∪ [−0.41,+∞[

Ca3 ]−∞,0.002]∪ [0.03,+∞[ CσVu3 ]−∞,−165.35]∪ [−7.65,+∞[

With IQ variable

Ca1 ]−∞,0.55]∪ [0.73,+∞[ CσVu1 ]−∞,0.24]∪ [3.19,+∞[

Ca2 R CσVu3 ]−∞,−3.19]∪ [−0.24,+∞[

Ca3 ]−∞,0.001]∪ [0.013,+∞[ CσVu3 ]−∞,−52.05]∪ [−4.37,+∞[

The 2SLS estimate ofβ is β̂ 2SLS= (0.190, 0.019, 0.001)′, and the eigenvalues of̂Π ′
2Π̂2, whereΠ̂2

is the OLS estimate ofΠ2 from (5.4), are:(0.0003, 0.095, 3858.326). The value 0.0003 is quite
close to zero, which suggests instruments are weak.7

Table 1 presents the projection-based confidence intervals with level 95%for individual com-
ponents of endogeneity parameters (a andσVu). In the first part of the table, theIQ variable is
omitted from the model, and it is included in the second part. The results are similarwith and
without this variable: the confidence intervals for all components ofa andσVu are unbounded. So,
all components of both endogeneity parameters are weakly identified. While the estimate ofa3

(â3 = −0.004) seems very close to zero, the corresponding covariance estimateσ̂Vu3 = 7.634 is
relatively large, which confirms the fact thatai = 0 does necessarily not implies thatσVui = 0, as
argued in Section 2.1. All confidence intervals, thought unbounded, contain zero, suggesting that
there is not enough information from the data to: (1) support the presence of bias due to omitted
variables (regression endogeneity parametersai , i = 1,2,3, measure the importance of omitted vari-
ables), and (2) reject the partial exogeneity of theschoolingandexperiencevariables (covariance
endogeneity parametersσVui, i = 1,2,3, measure the endogeneity of the corresponding variableYi).
Meanwhile, though zero belongs to the 95% confidence intervals of all these parameters, it may
be the case that the true values of these parameters are actually large, because the the 95% corre-
sponding confidence intervals are unbounded. So, the use of the standardt-type statistics based on
the estimates ofa andσVu in the extended regression (2.14), whereV is replace byV̂ = MY, to
build confidence intervals for scalar linear transformationsw′a andw′σVu can be misleading when
identification is weak. The Monte Carlo simulations indicate that sucht-type confidence intervals
have poor coverage probabilities (which may even be equal to zero) when identification is weak,
while the coverage probabilities of the projection method developed in this paper are always above
1−α irrespective of whether identification is strong or weak, whereα is the nominal level.

APPENDIX
7The results reported are based on the critical values of theF-distributions of Section 3. The Monte Carlo method as

described in Section 3.5 gives similar results even with 1000 replications, for both (1) Gaussian errors, and (2) Student-
type errors with three degrees of freedom.
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A. Proof

PROOF OFPROPOSITION3.1 On multiplying the two sides of (3.2) byM andM1−M, we see
that:

M(y−Yβ 0) = Mu+MV(β −β 0) ,

(M1−M)(y−Yβ 0) = M1X2Π2(β −β 0)+(M1−M)u+(M1−M)V(β −β 0) . (A.1)

When Assumption 3.1 holds andβ = β 0, this entails:

M(y−Yβ 0) = σ(X)Mυ, (M1−M)(y−Yβ 0) = σ(X)(M1−M)υ.

Thus, theAR-statistic in (3.3) can be rewritten as:

AR(β 0) =
σ(X)2υ ′(M1−M)υ/k2

σ(X)2υ ′Mυ/(T −k)
=

υ ′(M1−M)υ/k2

υ ′Mυ/(T −k)
.

Hence, the null conditional distribution ofAR(β 0), givenX, only depends onυ andX. If normality
holds conditional onX, i.e. υ |X ∼ N[0, IT ],we haveυ ′Mυ ∼ χ2(T − k) and υ ′(M1 −M)υ ∼
χ2(k2). SinceM(M1−M) = 0, henceυ ′Mυ andυ ′(M1−M)υ are independent conditional onX.
Consequently,AR(β 0) ∼ F(k2,T −k).
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