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Fourteen different tests applicable in nonlinear models are shown not to be invariant to irrelevant changes in measurement 

units of the variables. The tests studied include procedures suggested by Durbin, Sargan-Mehta, Hausman, and White (e.g., 
the information matrix test). 

1. Introduction 

Statistical inference should not depend on incidental elements which have no impact on the 

decision under consideration, such as the selection of measurement units or equivalent ways of 
expressing a parameter constraint; see Lehmann (1986? chap. 6). In the classical linear regression 
model, t and F-tests of linear restrictions possess such invariance properties. In nonlinear models 
or for nonlinear constraints, only asymptotic tests are usually available and several alternative 
procedures can be used. The invariance properties of these are more complex and less well known. 

The non-invariance of asymptotic Wald tests to equivalent formulations of nonlinear null 
hypotheses is already well documented [see, e.g., Gregory and Veal1 (1985) and Dagenais and 
Dufour (199111. Furthermore, Wald tests are not invariant to resealing in regression models which 
involve Box-Cox transformations [Spitzer (19841, Dagenais and Dufour (1991)]. Dagenais and 
Dufour (1991) also showed that C(a) tests [(Neyman (1959), Smith (19X7)] as well as a frequently 
used form of the Lagrange multiplier (LM) test, in which the Hessian of the log-likelihood function 
is used to estimate the asymptotic covariance matrix of the score vector, are not invariant to 
resealing. Likelihood ratio (LR) tests are clearly invariant to such changes. 

Several other test procedures have been suggested by econometricians. In this paper, we show 
that the non-invariance to measurement unit changes that plague Wald tests and certain variants of 
the Lagrange multiplier test also affect several other asymptotic tests widely used in econometrics. 
The tests studied include Durbin’s (1970) procedure, Sargan and Mehta’s (1983) generalization of 
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the latter, Hausman’s (1978) specification test as well as five ‘robust’ tests suggested by White 
(1982) [pseudo-Wald, pseudo-LM, information matrix, Hausman-type and gradient tests]. Further, 
for the three first procedures, three alternative ways of estimating the information matrix (Hessian, 
outer product, exact formula) are considered, so that 14 different test statistics are examined 
overall. To study the invariance properties of these tests, we consider a simple nonlinear regression 
model with Box-Cox transformations on the explanatory variables. Of the 14 test statistics 
computed, none is found to be invariant to resealing of model variables. In several cases, changing 
measurement units can lead to dramatic changes in the values of the test criteria and thus also in 
the conclusions drawn from the tests. Although this is not illustrated here, it is not difficult to 
demonstrate that the same lack of invariance to changes in measurement units will also affect 
regression models with Box-Cox transformations on the dependent variable and/or various power 
transformations on the explanatory variables, such as the CES or VES production functions. 

The main test criteria studied in this paper are described in section 2. In section 3, we report the 
numerical illustrations of non-invariance to measurement unit changes. Section 4 contains a few 
concluding remarks. 

2. Description of the tests 

Let us consider a 
function 

general statistical model with independent observations and log-likelihood 

n n 

L(O; Z) =log[P(Y/xq] = Cl%[q(YtI-bq] = CL (1) 
f=l f=l 

where Z = [Y, Xl, Y = [Y, y2,. .., Y,]', X= [x1, x2,. . ., xn]‘, yr is a m X 1 random vector (‘depend- 
ent variables’), x, is a k x 1 vector of fixed (or strictly exogenous) variables (t = 1,. . . , n>, 0 is a 
p x 1 vector of fixed parameters in the space 0, n is the number of observations, y E U,, X E U, 
and Z E Y = U, x U,; U, and CT, are the sets of n X m and n X k matrices where y and X can take 
their values; p(y I X, 0) = TI:=, q(yt 1 x,, f3) is the density function of y given X and 0, q(y, ( x,, 0) 
is the conditional density function of yr given x, and 1, = log[q(y, I x,, o>]. ’ We suppose that the 
probability distributions corresponding to different values of 0 are distinct (identification condition). 
Let also D, = D,(e; Z> = al,/ae, 

qe; z) = aqe; z)/ae = t D,, 
t=l 

(2) 

1 a*L 1 n azl, 
zf(e;z)=n-=- C ___ 

n tz, a8 ae" 
Z(e) =E,[f+lD,Q’] = -E,[H(e; Z>]> 

(3) 

where D(e; Z) and H(0; Z) have dimensions p x 1 and p Xp. The information matrix correspond- 
ing to the log-likelihood function L(0; Z) is Z(0) = Z(0; XI = - E,[H(0; Z)l, where the expected 

’ We could also allow X, to include lagged dependent variables. However, to simplify the exposition, we will assume that x, 

is strictly exogenous. 
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value E,(.) is taken with respect to the distribution of y (conditional on X> when the true 
parameter is 8. 

Under standard regularity conditions [see, e.g., Burguete, Gallant and Souza (1982) and 
Lehmann (1983, chap. 611, a consistent maximum likelihood (ML) estimator e^ exists and both 
o(0; 2) and e^ have asymptotic normal distributions: 

n-“*D(O; 2) + N[O. j(H)], n”“(e^-0) -N[O, t(O)-‘], (4) 

where j(0) = lim .,,1(0). Depending on circumstances, three alternative consistent estimators of 
7((e) are usually considered: 

f(e’), = -H(B; Z), @i>*=; t Lqe; z)D,(e; Z)‘, f(6), =1(i), (5) 
/=I 

. - 
where 6 is a consistent estimator of 8. Z(0), is the Hessian estimator of I(0), ice’>, is the outer 
product estimator, and f(i), is the exact information matrix (evaluated at e’>. Which estimator is 
the most convenient depends on the context. In particular, [(I$>, requires one to compute the 
expected value of H(8; Z), which is difficult in many problems. In the sequel, the symbol i(s), with 
no subscript, will refer to any of the three estimators in (5). 

Let 0 = (0;, 0;>‘, where 0, and 0, are p, x 1 and pz X 1 subvectors of 8 and p, +pz =p. 
Consider the problem of testing the null hypothesis H,, : 0, = 0:. As pointed out above, we will 
concentrate here on the following criteria: Durbin’s (1970) procedure, Sargan and Mehta’s (1983) 
generalization of the latter, Hausman-type tests [Hausman (197811 and a number of tests suggested 
by White (1982). Since ambiguities can easily arise, we now define some of these test criteria in a 
common notation. Unless stated otherwise, the asymptotic null distribution of each of the test 
statistics described below is x’(p,). 

Given 6’) = (e:l, I?:‘)’ the restricted ML estimator of 0, let 6, be the estimator of 0, obtained by 
maximizing L(B,, I!?:> with respect to 0,. The test criterion suggested by Durbin is 

where 4 = (ii, @‘jr and i= &e^“> = [I^. . . I is partitioned conformably with (0;, 0;)‘. 
Sargan and Mehta’s (1983) generalized Durbin method is obtained by partitioning e2 = (0;,, 0i2)’ 

and allowing one of the subvectors to be reestimated in the second step of the procedure. Given 
i,, = (or,, I?,“,, @;I’ the restricted ML estimate of 8, let e, and e,, be the estimates obtained by 

. . 
maximlzmg ue,, e,,, e^,“,> with respect to 8, and e2,. For testing 0, = 0:, the criterion suggested by 
Sargan and Mehta takes the form 

where 6 = (8;, 6);,, @;>‘, and i= f(e^“> = [[ , .I as well as i- ’ = [ I^. 1.1 are now partitioned into nine 
subvectors conformably with (e;, e;,, 0&I’. 
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When ML estimators are used, Hausman’s (1978) test is based on a statistic of the following 

form [Hausman and Taylor (198l)l: 

(8) 

where t;,z” and e^ are the restricted and unrestricted ML estimators of 0z, f = f(O> = [ f ,] as well as 

r’-’ = [I. ,] are partitioned conformably with 0 = (13;) O;)‘, and [ I- refers to a generalized inverse. 
Under appropriate regularity conditions, the asymptotic distributions of &l(e^,, e^> is x2(v), where 

v is the rank of the asymptotic covariance matrix of n’i2(@ - e^,>. 
White’s (1982) modified Wald and LM tests (for 0, = f3:) are respectively 

ww(6, 0:‘) =nh(B^)‘[Vh(QC(@ vh(a)‘]-‘h(A), (9) 

Iv@)) =nD(e^“; Z)‘A(6O)-’ Vh(e^“)‘[Vh(H^“)T(i~~) vh(e”)‘]-l Vh(e^O) 

x/4@-‘qio; Z), (10) 

where h(8) = 8, - 07, V/z(O) = ?h/W’, c(O) =A(tl-‘B(B)A(B)-‘, A(O) = f(O), and B(B) = f(e),. 

Here e^ and e^O are ML estimators based on model (l), which could be misspecified. White (1982) 
also proposed three tests for misspecification: the information matrix test (Theorem 4.1), a 
Hausman-type test (Theorem 5.1) and the gradient test (Theorem 5.2). By taking the restricted 
model (with e1 = ey> as the model tested for misspecification, each of these procedures may be 

used to test H, : 8, = Of. Because these three tests are rather complex to define, we refer to White 

(1982) for their definition (degrees of freedom may differ from p,). 

3. Numerical illustrations 

To illustrate the lack of invariance of the various tests described in section 2, we will use the 
following nonlinear regression model with Box-Cox transformations on the explanatory variables: 

Yt = y + p,xp + p,-q + u,, t = l,...,n, (11) 

where x,, > 0 (i = 1, 2), x$” = (x; - 1)/h when A f 0, and xit (‘) = ln(x,,) when A = 0. The explana- 

tory variables x,, are nonstochastic and the disturbances uf, t = 1,. . . , II, are i.i.d. normal with 
mean zero and variance a2 > 0. y, PI, &, A and a2 are unknown coefficients. We consider the 
problem of testing H, : p2 = 0. 

In this model, the choice of the measurement units for y, x1 and x2 is a matter of convenience. 
Given the arbitrariness of the unit choice (provided the model contains an intercept), it is natural 
to require that the result of a test for p2 = 0 be invariant to changes in measurement units. 

For the nonlinear model (ll), we studied how the test statistics described in section 2 behave 
when x1 and x2 are multiplied by the same scaling factor k > 0. 2 The data set used for y, x1, and 

* A similar exercise could be performed by multiplying only one variable (y, x,, or x2) by k or each variable by a different 
factor. The results would be similar. 
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Table 1 
Test statistics for pz = 0 in model (11). 

255 

Test criterion Information matrix 

estimator 

Scaling factor 

k=l k=3 k=lO 

1. Hausman 

2. Durbin 

3. Sargan-Metha 

4. White 

(a) Wald 

(b) LM 
Cc) Information matrix 

Cd) Hausman 

(e) Gradient 

i, 1.13347 

i, 0.81449 

& 1.05921 

& - 2.42083 

i2 23.94212 

i, 19.05885 

i, - 2.42046 

iz 39.51960 

& 19.05842 

_ 6.52795 28.18386 2.79509 
_ 2.22340 24.67461 1.52301 
_ 0.04093 0.40295 0.10991 
_ 0.29169 4.23203 0.39965 
_ 0.27667 7.33279 0.63055 

52.08373 1.70088 

26.20728 1.39686 
53.71247 1.55811 

146.20932 - 1.28795 

42.99915 28.28281 

19.05830 19.05683 

146.21033 - 1.28956 

47.95808 2047.79770 

19.05835 19.05917 

30. 
t 

WALDW 

0. 2. 4. 6. 6. 10. 0. 2. 4. 6. 8. 10. 

SCALlNG FACTOR SCALING FACTOR 

50. DLIRBIN' 

‘lo. 

Y 

630 
E 
c, 
z 

20. 

!e 10. r” 
O. I 

0. 2. 4. 6. 6. 10. 

SCALING FACTOR 

0.00 N_, 
0. 2. 4. 6. 6. 10. 

* Test using 2, (outer product ma&) 

Fig. 1. Test statistics for pz = 0 in model (11). 
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x2 has been produced artificially. 3 The sample size is 50. In table 1, we report the results obtained 
for the different test statistics considered, when setting k = 1 (original units), k = 3 and k = 10. 4 
Graphs illustrating how the Hausman, Durbin and information matrix test statistics change with k 

appear in fig. 1. For the sake of comparison, we also present a graph of the usual Wald statistic. 
To compute Hausman’s statistic (S), we used the Moore-Penrose generalized inverse. To 

implement the Sargan-Mehta test, we took 13, = p2, 612r = (y, p,>’ and tiZ2 = (X, u2)’ in (7). The 
generalized Wald and LM tests of White (1982) are based on (9) and (10). To get tests of & = 0 
from the three other tests suggested by White (19821, we took the restricted model as the model 
studied for specification error. The information matrix test was performed on one indicator only, 
namely the one associated with p, (9 = 1 in Theorem 4.1). For the Hausman-type test and for the 
gradient test, we took the restricted ML estimator as i,, (White’s notation), the unrestricted ML 
estimator as qn (White’s notation) and /3 = /3, in eqs. (5.1) and (5.2) of White (1982). 

From the results of table 1 and fig. 1, we see that none of the 14 test statistics considered is 
invariant to resealing of the explanatory variables; changes k can produce considerable differences 
in the values of the test statistics. ’ Scale changes can easily transform a non-significant test statistic 
(say, at the 5% level) into a significant statistic, or vice versa. Note also that some of the test 
statistics based on fI can take negative values because there is no general guarantee that i(6), be 
non-negative definite (unless 6 is the unrestricted ML estimator). 

4. Conclusion 

The illustrations of table 1 and fig. 1 strongly suggest that non-invariant asymptotic tests should 
be avoided or used with great care. On this ground, although they are generally relatively expensive 
to calculate, likelihood ratio tests or Lagrange multiplier tests using I, or I, should be preferred, 
when appropriate. Another alternative is to use the modified generalized C(a) tests proposed by 
Dagenais and Dufour (19911, which can be considerably less costly to calculate than LR of LM 
tests. 
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