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ABSTRACT

We construct finite-sample distribution-free tests and confidence sets for the parameters of
a linear median regression where no parametric assumption is imposed on the noise distri-
bution. The setup studied allows for nonnormality, both discrete and continuous distribu-
tions, heteroskedasticity and nonlinear serial dependence of unknown forms. We consider
amediangalestructure – the median-based analogue of a martingale difference – and show
that the signs of mediangale sequences follow a nuisance-parameter-free distribution de-
spite the presence of nonlinear dependence and heterogeneity of unknown form. We point
out that a simultaneous inference approach in conjunction with sign transformations yield
statistics with the required pivotality features – in addition to usual robustness properties.
Monte Carlo tests and projection techniques are then exploited to produce finite-sample
tests and confidence sets. Further, under even weaker assumptions which allow for weakly
exogenous regressors and a wide class of linear dependence schemes in the errors, we show
that the procedures proposed remain asymptotically valid.The regularity assumptions used
are notably less restrictive than those required by procedures based on least absolute devi-
ations (LAD), for example by allowing the absence of finite moments as well as discrete
distributions to which usual density estimation methods donot apply. Simulation results
illustrate the performance of the procedures. Finally, theproposed methods are applied
to two empirical examples: a test of the drift in the Standardand Poor’s composite price
index series (allowing for conditional heteroskedasticity of unknown form), and a test of
β-convergence between levels of per capita output across U.S. States.

Key words: sign-based methods; median regression; simultaneous inference; Monte Carlo
tests; bootstrap; projection methods; quantile regressions; non-normality; heteroskedastic-
ity; serial dependence; GARCH; stochastic volatility; sign test.
Journal of Economic Literature classification: C12, C14, C15.
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RÉSUMÉ

Dans cet article, nous construisons des tests et des régionsde confiance pour les
paramètres d’une régression linéaire sur la médiane, qui sont valides à distance finie sans
imposer d’hypothèse paramétrique sur la distribution des erreurs. Les erreurs peuvent être
non gaussiennes, hétéroscédastique ou bien, présenter unedépendance sérielle de forme
arbitraire. Habituellement, l’analyse de ces modèles semi-paramétriques s’appuie sur des
approximations asymptotiques normales, lequelles peuvent être trompeuses en échantillon
fini. Nous introduisons une propriété analogue à la différence de martingale pour la mé-
diane, la «médiangale» et remarquons que les signes d’une suite de «médiangale» sont
indépendants entre eux et suivent une distribution connue et simulable. Nous utilisons
la transformation par les signes et proposons des statistiques pivotales qui, en plus d’être
robustes, permettent de construire une approche d’inférence simultanée valide quelle que
soit la taille de l’échantillon. Nous utilisons la méthode des tests de Monte Carlo, puis
déduisons par projection des tests et des régions de confiance pour n’importe quelle trans-
formation du paramètre. Nous fournissons aussi une théorieasymptotique sous des hy-
pothèses plus faibles. Les études par simulation illustrent la performance de la méthode
proposée lorsque les données sont très hétérogènes. Enfin, nous présentons deux exemples
d’application.

Mots clés : méthodes de signes ; régression sur la médiane ; échantillons finis; non nor-
malité ; hétéroscédasticité ; dépendance sérielle ; GARCH ;volatilité stochastique ; tests
de signes ; inférence simultanée ; tests de Monte Carlo ; bootstrap ; méthodes de projection
; régressions quantiles.
Classification JEL : C12, C14, C15.
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1. Introduction

The Laplace-Boscovich median regression has attracted renewed interest in recent years,
especially because it is considerably more robust to non-normality and outliers than least
squares [see Dodge (1997)]. It has been adapted to models involving heteroskedasticity
and autocorrelation [Zhao (2001), Weiss (1990)], endogeneity [Amemiya (1982), Powell
(1983), Hong and Tamer (2003)], nonlinear functional forms[Weiss (1991)] and has been
extended to quantile regressions [Koenker and Bassett (1978)]. Theoretical advances on the
behavior of the associated estimators have completed this process [Powell (1994), Chen,
Linton and Van Keilegom (2003)]. In empirical studies, partly thanks to the generalization
to quantile regressions, new fields of potential applications have emerged.1 The recent and
fast development of computer technology clearly stimulates interest for these robust, but
formerly cumbersome, methods.

Linear median regression assumes a linear relation betweenthe dependent variabley
and the explanatory variablesx. Only a null median assumption is imposed on the dis-
turbance process. Such a condition of identification “by themedian” can be motivated
by fundamental results on nonparametric inference. Since Bahadur and Savage (1956), it
is known that without strong distributional assumptions (such as normality), it is impos-
sible to obtain reasonable tests on the mean of independent identically distributed (i.i.d.)
observations, for any sample size. In general, moments are not empirically meaningful
without further distributional assumptions. This form of nonidentification can be elimi-
nated by choosing alternative measures of central tendency, such as the median, because
nonparametric hypotheses on the median can be tested through signs tests. This suggests
that median identification is more appropriate in nonparametric setups than its mean coun-
terpart.

Median regression (and related quantile regressions) provides an attractive bridge be-
tween parametric and nonparametric models. Distributional assumptions on the distur-
bance process are relaxed but the functional form remains parametric. Associated esti-
mators, such as the least absolute deviations (LAD) estimator, are more robust to outliers
than usual least squares (LS) methods and may be more efficient whenever the median is a
better measure of location than the mean. This holds for heavy-tailed distributions or distri-
butions with a probability mass at zero. They are especiallyappropriate when unobserved
heterogeneity is suspected in the data. The current expansion of such “semiparametric”
techniques reflects an intention to depart from restrictiveparametric frameworks [see Pow-
ell (1994)]. However, related tests remain based on asymptotic normality approximations.

In this paper, we show that tests based on residual signs yield an entire system of finite-
sample exact inference for a linear median regression model. The family of statistics con-

1The reader is referred to Buchinsky (1994) for an interpretation in terms of inequality and mobility topics
in the U.S. labor market, Engle and Manganelli (2000) for an application in Value at Risk issues in finance.
For reviews of this literature, see Buchinsky (1998), Koenker and Hallock (2001) and Koenker (2005).
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sidered include optimal sign tests. We provide both finite-sample and asymptotic distrib-
utional theories. In the first set of results, we show that thelevel of the tests is provably
equal to the nominal level, for any sample size. Exact tests and confidence regions are valid
under general assumptions and allow for heteroskedasticity and nonlinear dependence of
unknown forms, as well as fordiscretedistributions. This is done in particular by com-
bining Monte Carlo tests adapted to discrete distributions(using a tie-breaking procedure)
with projection techniques (to allow inference on general parameter transformations). We
also show that the tests proposed include locally optimal tests. Second, under even weaker
assumptions which allow for weakly exogenous regressors and a wide class of linear depen-
dence schemes in the errors, we show that the procedures proposed remain asymptotically
valid. The regularity assumptions used are notably less restrictive than those required by
procedures based on least absolute deviations (LAD). For example, moment non-existence
is allowed as well as discrete distributions (to which density estimators required by LAD
tests do not apply).

A basic motivation for the sign-based methods considered inthis paper comes from
an impossibility result due to Lehmann and Stein (1949), whoproved that inference pro-
cedures that are valid under conditions of heteroskedasticity of unknown form when the
number of observations is finite, must control the level of the tests conditional on the ab-
solute values [see also Pratt and Gibbons (1981)]. This result has two main consequences.
First, sign-based methods constitute the only general way of producing valid inference for
any sample size. Second, all other methods, including the usual heteroskedasticity and
autocorrelation corrected (HAC) methods developed by White (1980), Newey and West
(1987), Andrews (1991) and others, which are not based on signs, are not proved to be
valid for any sample size. Although this provides a compelling argument for using sign-
based procedures, the latter have barely been exploited in econometrics. Our point is to
stress their robustness and to generalize their use to median regressions.

To our knowledge, sign-based methods have not received muchattention in economet-
rics; for a few exceptions which focus on simple time series models, see Dufour (1981),
Campbell and Dufour (1991, 1995, 1997) and Wright (2000). Ina regression context,
the vast majority of the statistical literature is reviewedby Boldin, Simonova and Tyurin
(1997). These authors also develop sign-based inference and estimation for linear mod-
els, both exact and asymptotic withi.i.d. errors. We consider sign-based statistics related
to locally optimal sign tests, which are simple quadratic forms and can easily be used for
estimation as well. However, we demonstrate this distribution-free property to allow for a
wide array of nonlinear dependence schemes. An important feature of these results con-
sists in allowing for a dynamic structure in the error distribution, providing a considerable
extension of earlier results on the distribution of signs inthe presence of dependent obser-
vations [Dufour (1981), Campbell and Dufour (1991, 1995, 1997)]. We combine them with
projection techniques and Monte Carlo tests to derive exactconfidence sets.

The pivotality of the sign-based statistics validates the use of Monte Carlo tests, a tech-
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nique proposed by Dwass (1957) and Barnard (1963). This method, once adapted to dis-
crete distributions by a tie-breaking procedure [Dufour (2006)], yields exact simultaneous
confidence regions forβ. Then, conservative confidence intervals (CIs) for each component
of the parameter (or any real function of the parameter) can be obtained by projection [Du-
four (1990), Dufour and Kiviet (1998), Dufour and Jasiak (2001), Dufour and Taamouti
(2005)]. In particular, confidence interval (or set) boundaries may be calculated using
global optimization methods such as simulated annealing [see Goffe, Ferrier and Rogers
(1994)].

Sign-based inference methods constitute an alternative toinference derived from the
asymptotic distribution of LAD estimators. The LAD estimator (such as related quantile
estimators) is consistent and asymptotically normal in case of heteroskedasticity [Powell
(1984) and Zhao (2001) for efficient weighted LAD estimator], or temporal dependence
[Weiss (1991)]. Fitzenberger (1997b) extended the scheme of potential temporal depen-
dence including stationary ARMA disturbance processes. Horowitz (1998) proposed a
smoothed version of the LAD estimator. At the same time, an important problem in the
LAD literature consists in providing good estimates of the asymptotic covariance matrix,
on which inference relies. Powell (1984) suggested kernel estimation, but the most wide-
spread method of estimation is the bootstrap. Buchinsky (1995) advocated the use of design
matrix bootstrap for independent observations. In dependent cases, Fitzenberger (1997b)
proposed a moving block bootstrap. Finally, Hahn (1997) suggested a Bayesian bootstrap.2

Other notable areas of investigation in theL1-literature concern the study of nonlinear func-
tional forms and structural models with endogeneity [censored quantile regressions: Powell
(1984, 1986) Fitzenberger (1997a) and Buchinsky and Hahn (1998); simultaneous equa-
tions: Amemiya (1982) and Hong and Tamer (2003)]. More recently, authors have allowed
for misspecification [Kim and White (2002), Komunjer (2005), Jung (1996)].

In the context of LAD-based inference, kernel techniques are sensitive to the choice
of kernel function and bandwidth parameter, and the estimation of the LAD asymptotic
covariance matrix needs a reliable estimator of the error term density at zero. This may be
tricky especially when disturbances are heteroskedastic or simply do not possess a density
with respect to the Lebesgue measure (discrete distributions). Besides, whenever the nor-
mal distribution is not a good finite-sample approximation,inference based on covariance
matrix estimation may be problematic. From a finite-sample point of view, asymptotically
justified methods can be arbitrarily unreliable. Test sizescan be far from their nominal
levels. One can find examples of such distortions for time series context in Dufour (1981),
Campbell and Dufour (1995, 1997) and forL1-estimation in Dielman and Pfaffenberger
(1988a, 1988b), De Angelis, Hall and Young (1993), Buchinsky (1995). Inference based
on signs constitutes an alternative that does not suffer from these shortcomings.

2The reader is referred to Buchinsky (1995, 1998), for a review and to Fitzenberger (1997b) for a com-
parison between these methods.
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We study here a linear median regression model where the (possibly dependent) distur-
bance process is assumed to have a null median conditional onsome exogenous explanatory
variables and its own past. This setup covers non stochasticheteroskedasticity, standard
conditional heteroskedasticity (like ARCH, GARCH, stochastic volatility models, . . . ) as
well as other forms of nonlinear dependence. However, linear autocorrelation in the resid-
uals is not allowed. We first treat the problem of inference and show that pivotal statistics
based on the signs of the residuals are available for any sample size. Hence, exact inference
and exact simultaneous confidence regions onβ can be derived using Monte Carlo tests.

For more general processes which may involve stationary ARMA disturbances, these
statistics are no longer pivotal. The serial dependence parameters constitute nuisance pa-
rameters. However, transforming sign-based statistics with standard HAC methods allows
to asymptotically get rid of these nuisance parameters. We thus extend the validity of the
Monte Carlo test method. In such cases, we loose the exactness but keep an asymptotic
validity. This asymptotic validity requires less assumptions on moments or the shape of
the distribution (such as the existence of a density) than usual asymptotic-based inference
(such as results for LAD-based estimators). Besides, one does not need to evaluate the
disturbance density at zero, which constitutes one of the major difficulties of asymptotic
kernel-based methods associated with LAD and other quantile estimators.

The paper is organized as follows. In section 2, we present the model and the notations.
Section 3 contains general results on exact inference. Theyare applied to median regres-
sions in section 4. In section 5, we derive confidence intervals at any given confidence level
and illustrate the method on a numerical example. Section 6 is dedicated to the asymptotic
validity of the finite-sample inference method. In section 7, we give simulation results
from comparisons to usual techniques. Section 8 presents illustrative applications: testing
the presence of a drift in the Standard and Poor’s composite price index series, and testing
for β-convergence between levels of per capita output across theU. S. States. Section 9
concludes. The Appendix contains the proofs.

2. Framework

2.1. Model

We consider a stochastic process{(yt, x
′
t) : Ω → R

p+1 : t = 1, 2, . . . } defined on a
probability space(Ω,F , P), such thatyt andxt satisfy a linear model of the form

yt = x′
tβ + ut, t = 1, . . . , n, (2.1)

whereyt is a dependent variable,xt = (xt1, . . . , xtp)
′ is a p-vector of explanatory vari-

ables, andut is an error process. Thext’s may be random or fixed. In the sequel,
y = (y1, . . . , yn)′ ∈ R

n will denote the dependent vector,X = [x1, . . . , xn]′ the n × p

4



matrix of explanatory variables, andu = (u1, . . . , un)
′ ∈ R

n the disturbance vector. More-
over,Ft( · |x1, . . . , xn) represents the distribution function ofut conditional onX.

Inference on this model will be made possible through assumptions on the conditional
medians of the errors. To do this, it will be convenient to consideradaptedsequences

S(v, F) = {vt, Ft : t = 1, 2, . . . } (2.2)

wherevt is any measurable function ofWt = (yt, x
′
t)

′, Ft is aσ-field in Ω, Fs ⊆ Ft for
s < t, σ(W1, . . . ,Wt) ⊂ Ft andσ(W1, . . . , Wt) is theσ-algebra spanned byW1, . . . , Wt.

A common assumption – which allows for general forms of dependence – consists in
assuming thatu = {ut : t = 1, 2, . . . } in the adapted sequenceS(u,F) = {ut,Ft : t =
1, 2, . . . } is a martingale difference with respect toFt = σ(W1, . . . , Wt), t = 1, 2, . . . .

Definition 2.1 MARTINGALE DIFFERENCE. u in the adapted sequenceS(u,F) is a
martingale difference sequence with respect to{Ft : t = 1, 2, . . . } iff E(ut|Ft−1) =
0, ∀t ≥ 1.

We shall depart from this usual assumption, which requires the existence of the first mo-
ments ofut. Indeed, our aim is to develop a framework which allows for heteroskedasticity
of unknown form. From Bahadur and Savage (1956), it is known that inference on the mean
of i.i.d. observations of a random variable without any further assumption on the form of
the distribution is impossible. Such a test has no power. This problem of non-testability
can be viewed as a form of non-identification in a wide sense. Unless relatively strong dis-
tributional assumptions are made, moments are not empirically meaningful. Thus, if one
wants to relax the distributional assumptions, one must choose another measure of central
tendency such as the median. The median is especially appropriate if the distribution of the
disturbance process does not possess moments. Thus, in the median regression framework,
it appears that the martingale difference assumption should be replaced by an analogue in
terms of median. We call such a structure amediangale, which may be defined conditional
on the design matrixX or unconditionally, as follows.

Definition 2.2 STRICT MEDIANGALE. u in the adapted sequenceS(u,F) is a strict
mediangale with respect to{Ft : t = 1, 2, . . . } iff P[u1 < 0] = P[u1 > 0] = 0.5 and

P[ut < 0|Ft−1] = P[ut > 0|Ft−1] = 0.5, for t > 1. (2.3)

Definition 2.3 STRICT CONDITIONAL MEDIANGALE . LetFt = σ(u1, . . . , ut,X), for
t ≥ 1. u in the adapted sequenceS(u,F) is a strict mediangale conditional onX with
respect to{Ft : t = 1, 2, . . . } iff P[u1 < 0|X] = P[u1 > 0|X] = 0.5 and

P[ut < 0|u1, . . . , ut−1, X] = P[ut > 0|u1, . . . , ut−1, X] = 0.5, for t > 1. (2.4)

5



The above definitions allowut to have a discrete distribution, but exclude the presence
of a probability mass at zero. This constraint is relaxed in the following definition.

Definition 2.4 WEAK CONDITIONAL MEDIANGALE . LetFt = σ(u1, . . . , ut, X), for
t ≥ 1. u in the adapted sequenceS(u,F) is a weak mediangale conditional onX with
respect to{Ft : t = 1, 2, . . . } iff P[u1 > 0|X] = P[u1 < 0|X] and

P[ut > 0|u1, . . . , ut−1, X] = P[ut < 0|u1, . . . , ut−1, X], for t > 1. (2.5)

The sign operators : R → {−1, 0, 1} is defined ass(a) = 1[0,+∞)(a) − 1(−∞, 0](a)
where 1A(a) = 1 if a ∈ A and1A(a) = 0 if a /∈ A. For convenience, ifu ∈ R

n, we will
notes(u), then-vector composed by the signs of its components.

Stating that{ut : t = 1, 2, . . . } is a weak mediangale with respect to{Ft : t = 1, 2, . . . }
is equivalent to assuming that{s(ut) : t = 1, 2, . . . } is a martingale difference with respect
to the same sequence of sub-σ algebras{Ft : t = 1, 2, . . . }. However, the weak condi-
tional mediangale concept differs from a martingale difference on the signs because of the
conditioning upon the whole processX. Indeed, the reference sequence of sub-σ algebras
is usually taken to{Ft = σ(W1, . . . , Wt) : t = 1, 2, . . . }. Here, the reference sequence
is {Ft = σ(W1, . . . , Wt,X) : t = 1, 2, . . . }. We shall see later that asymptotic inference
may be available under weaker assumptions, as a classical martingale difference on signs
or more generally mixing conditions on{s(ut), σ(W1, . . . , Wt) : t = 1, 2, . . . }. However,
the conditional mediangale concept allows one to develop exact inference (conditional on
X). We have replaced the difference of martingale assumptionon the raw processu by a
quasi-similar hypothesis on a robust transform of this processs(u). Below we will see it
is relatively easy to deal with a weak mediangale by a simple transformation of the sign
operator, but to simplify the presentation, we shall focus on the strict mediangale concept.
Therefore, our model will rely on the following assumption.

Assumption 2.1 STRICT CONDITIONAL MEDIANGALE . The components ofu =
(u1, . . . , un)′ satisfy a strict mediangale conditional onX.

It is easy to see that Assumption 2.1 entailsmed(u1|x1, . . . , xn) = 0, and

med(ut|x1, . . . , xn, u1, . . . , ut−1) = 0, t = 2, . . . , n. (2.6)

Hence, we are in a median regression context. Our last remarkconcerns exogeneity. As
long as thext’s are strongly exogenous, the conditional mediangale concept is equivalent
to a martingale difference on signs with respect toFt = σ(W1, . . . , Wt), t = 1, 2, . . . .3

3X is strongly exogenous forβ if X is sequentially exogenous and ifY does not Granger causeX ; see
Gouriéroux and Monfort (1995, Volume 1).
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Proposition 2.1 MEDIANGALE EXOGENEITY. Suppose{xt : t = 1, 2, . . . } is a strongly
exogenous process forβ, P[u1 > 0] = P[u1 < 0] = 0.5, and

P[ut > 0|u1, . . . , ut−1, x1, . . . , xt] = P[ut < 0|u1, . . . , ut−1, x1, . . . , xt] = 0.5.

Then{ut : t = 1, 2, . . . } is a strict mediangale conditional onX.

Model (2.1) with the Assumption 2.1 allows for very general forms of the distur-
bance distribution, including asymmetric, heteroskedastic or dependent ones, as long as
conditional medians are 0. We stress that neither density nor moment existence are re-
quired. Indeed, what the mediangale concept requires is a form of independence in the
signs of the residuals. This extends results in Dufour (1981) and Campbell and Dufour
(1991, 1995, 1997).4

Asymptotic normality of the LAD estimator, which is presented in its most general way
in Fitzenberger (1997b), holds under some mixing concepts on{s(ut), σ(W1, . . . , Wt) :
t = 1, 2, . . . } and an orthogonality condition betweens(ut) andxt. Besides, it requires
additional assumptions on moments.5 With such a choice, testing is necessarily based on
approximations (asymptotic or bootstrap). Here, we focus on valid finite-sample inference
without any further assumption on the form of the distributions.

2.2. Special cases

The above framework obviously covers independence but alsoa large spectrum of
heteroskedasticity and dependence patterns. For example,it is satisfied if ut =
σt(x1, . . . , xn) εt, t = 1, . . . , n, whereε1, . . . , εn arei.i.d. conditional onX, which is rel-
evant for cross-sectional data. Many dependence schemes are also covered, especially any
model of the formu1 = σ1(x1, . . . , xt−1)ε1 , ut = σt(x1, . . . , xt−1 , u1, . . . , ut−1)εt , t =
2, . . . , n, where ε1, . . . , εn are independent with median0, σ1(x1, . . . , xt−1) and
σt(x1, . . . , xn , u1, . . . , ut−1), t = 2, . . . , n are non-zero with probability one. In time
series context, this includes models presenting robustness properties to endogenous dis-
turbance variance (or volatility) specification, such as: (1) ARCH(q) with non-Gaussian

4Assumption2.2can easily be extended to allow for another quantileq by settingP[ut < 0|Ft−1] = q,
∀t, which would lead toP[ut < 0|u1, . . . , ut−1, x1, . . . , xt] = q in Proposition 2.1. However, with
error heterogeneity of unknown form, such an assumption canplausibly hold only for a single quantile.
So little generality is lost by focusing on the median case. Aclassical result in nonparametric statistics
consists in using this Bernoulli distribution to build exact tests and confidence intervals on quantiles (fori.i.d.
observations); see Thompson (1936), Scheffé and Tukey (1945), and the review of David (1981, Chapter
2). For a recent econometric exploitation of this result, see Chernozhukov, Hansen and Jansson (2006).
Proposition 2.1 above provides general conditions under which such a result holds for non-i.i.d. observations.

5Fitzenberger (1997b) show that LAD and quantile estimators are consistent and asymptotically normal
whenE[xtsθ(ut)] = 0, ∀t, where(ut, xt) has a density and finite second moments.
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noisesεt’s,

σt(x1, . . . , xt−1 , u1, . . . , ut−1)
2 = α0 + α1u

2
t−1 + · · ·+ αqu

2
t−q ;

(2) GARCH(p, q) with non-Gaussian noisesεt’s,

σt(x1, . . . , xt−1 , u1, . . . , ut−1)
2 = α0 +α1u

2
t−1 + · · ·+αqu

2
t−q +γ1σ

2
t−1 + · · ·+γpσ

2
t−p ;

(3) stochastic volatility models with non-Gaussian noisesεt’s,

ut = exp(wt/2)ryεt ,

wt = a1wt−1 + · · ·+ a1wt−p + rwvt ; v1, . . . , vn are. i.i.d. random variables.

The mediangale property is more general because it does not specify explicitly the func-
tional form of the variance in contrast with an ARCH specification. Note again that the dis-
turbance process does not have to be second-order stationary. For nonstationary processes
that satisfy the mediangale assumption, sign-based inference will work whereas all infer-
ence procedures based on asymptotic behavior of estimatorsmay fail or require difficult
validity proofs.

3. Exact finite-sample sign-based inference

The most common procedure for developing inference on a statistical model can be de-
scribed as follows. First, one finds a (hopefully consistent) estimator; second, the asymp-
totic distribution of the latter is established, from whichconfidence sets and tests are de-
rived. Here, we shall proceed in the reverse order. We study first the test problem, then
build confidence sets, and finally estimators.6 Hence, results on the valid finite-sample test
problem will be adapted to obtain valid confidence intervalsand estimators.

3.1. Motivation

In econometrics, tests are often based ont or χ2 -statistics, which are derived from asymp-
totically normal statistics with a consistent estimator ofthe asymptotic covariance matrix.
Unfortunately, in finite samples, these first-order approximations can be misleading. Test
sizes can be quite far from their nominal level: both the probability that an asymptotic test
rejects a correct null hypothesis and the probability that acomponent ofβ is contained in an
asymptotic confidence interval may differ considerably from assigned nominal levels. One
can find examples of such distortions in the dynamic literature [see for example Dufour

6For the estimation theory, the reader is referred to Coudin and Dufour (2007).
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(1981), Mankiw and Shapiro (1986) and Campbell and Dufour (1995, 1997)]; on infer-
ence based onL1-estimators [see Dielman and Pfaffenberger (1988a, 1988b), Buchinsky
(1995) and De Angelis et al. (1993)]. This remark usually motivates the use of bootstrap
procedures. In a sense, bootstrapping (once bias corrected) is a way to make approximation
closer by introducing artificial observations. However, the bootstrap still relies on asymp-
totics and yields no guarantee that the level condition be satisfied in finite samples.

Another way to appreciate the unreliability of asymptotic methods in finite samples is
to recall the theorem established by Lehmann and Stein (1949). Consider testing whether
n observations are independent with common zero median:

H0 : X1 , . . . , Xn are independent observations
each one with a distribution symmetric about zero.

(3.1)

TestingH0 turns to check whether the joint distributionFn of the observations belongs to
the setH0 = {Fn ∈ Fn : Fn satisfiesH0} without any other restriction. In other words,H0

allows for heteroskedasticity of unknown form. For this setup, Lehmann and Stein (1949)
established the following theorem [see also Pratt and Gibbons (1981, Chap. 4, Sect. 3, p.
218)].

Theorem 3.1 If a test has levelα for H0, where 0 ≤ α < 1, then it must satisfy
P[ RejectingH0 | |X1| , . . . , |Xn| ] ≤ α underH0 .

The level of a valid test must equalα conditional on the observation absolute values.
Theorem3.1also implies that any procedure that does not satisfy the above condition has
size one. It is not clear that least square-based procedurestypically designated as “robust
to heteroskedasticity” or “HAC” [see White (1980), Newey and West (1987), Andrews
(1991), etc.] do satisfy Theorem3.1 condition. For some examples of size distortion in
some specific setups, see the simulation study in section 7.

Sign-based procedures do satisfy this condition. Besides,as we will show in section 4,
distribution-free sign-based statistics are available even in finite samples. They have been
used in the statistical literature to derive nonparametricsign tests. The combination of both
remarks give the theoretical basis for developing an exact inference method.

3.2. Distribution-free pivotal functions and nonparametric tests

When the disturbance process is a conditional mediangale, the joint distribution of the signs
of the disturbances is completely determined. These signs are i.i.d. and take the values1
and−1 with equal probability1/2. This result is stated more precisely in the following
proposition. The case with a mass at zero can be covered provided a transformation in the
sign operator definition.
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Proposition 3.2 SIGN DISTRIBUTION. Under model(2.1), suppose the errors
(u1, . . . , un) satisfy a strict mediangale conditional onX = [x1, . . . , xn]′. Then the vari-
abless(u1), . . . , s(un) are i.i.d. conditional onX according to the distribution

P[s(ut) = 1 |x1, . . . , xn] = P[s(ut) = −1 |x1, . . . , xn] =
1

2
, t = 1, . . . , n . (3.2)

More generally, this result holds for any combination oft = 1, . . . , n. If there is a
permutationπ : i → j such that mediangale property holds forj, then the signs arei.i.d.
From Proposition3.2, it follows that the residual sign vector

s(y − Xβ) = [s(y1 − x′
1β), . . . , s(yn − x′

nβ)]′ (3.3)

has a nuisance-parameter-free distribution (conditionalonX), i.e. it is apivotal function .
Its distribution is easy to simulate from a combination ofn independent uniform Bernoulli
variables. Furthermore, any function of the formT = T

(

s(y − Xβ), X
)

is pivotal condi-
tional onX. Once the form ofT is specified, the distribution of the statisticT is totally
determined and can also be simulated.

Using Proposition3.2, it is possible to construct tests for which the size is fullycon-
trolled in finite samples. Consider testingH0(β0) : β = β0 againstH1(β0) : β 6= β0.
UnderH0(β0), s(yt − x′

tβ0) = s(ut), t = 1, . . . , n. Thus, conditional onX,

T
(

s(y − Xβ0), X
)

∼ T (Sn, X) (3.4)

whereSn = (s1, . . . , sn) ands1, . . . , sn
i.i.d.∼ B(1/2). A test with levelα rejectsH0(β0)

when
T
(

s(y − Xβ0), X
)

> cT (X, α) (3.5)

wherecT (X, α) is the(1−α)-quantile of the distribution ofT (Sn, X). This extends results
in Dufour (1981) and Campbell and Dufour (1991, 1995, 1997).

This method can be extended to error distributions with a mass at zero,i.e., P[ut =
0 |X, u1, . . . , ut−1] = pt(X, u1, . . . , ut−1) > 0 where thept(·) are unknown and may
vary between observations. A way out consists in modifying the sign functions(x) as
s̃(x, V ) = s(x) +

[

1 − s(x)2
]

s(V − 0.5), where V ∼ U(0, 1). If Vt is independent of
ut then, irrespective of the distribution ofut,

P[s̃(ut, Vt) = +1] = P[s̃(ut, Vt) = −1] =
1

2
. (3.6)

This yields the following proposition.

Proposition 3.3 RANDOMIZED SIGN DISTRIBUTION. Suppose(2.1) holds with the
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assumption thatu1, . . . , un belong to a weak mediangale conditional onX. LetV1, . . . , Vn

be i.i.d. random variablesU(0, 1) distributed and independent ofu1, . . . , un andX. Then
the variables̃st = s̃(ut, Vt) are i.i.d. conditional onX with the distribution

P[s̃t = 1 |X] = P[s̃t = −1 |X] =
1

2
, t = 1, . . . , n . (3.7)

All the procedures described in the paper can be applied by replacings by s̃. When
the error distributions possess a mass at zero, the test statistic T

(

s̃(y −Xβ0, X)
)

has to be
used instead ofT

(

s(y − Xβ0,X)
)

.

4. Regression sign-based tests

In this section, we present sign-based test statistics thatare pivots and provide power against
alternatives of interest. This will enable us to build MonteCarlo tests relying on their exact
distribution. Therefore, the level of those tests is exactly controlled for any sample size.

4.1. Regression sign-based statistics

The class of pivotal functions studied in the previous section is quite general. So, we wish
to choose a test statistic (the form of theT function) that can have power against alternatives
of interest. Unfortunately, there is no uniformly most powerful test ofH0(β0) : β = β0

againstH1(β0) : β 6= β0. Hence, for testingH0(β0) againstH1(β0) in model (2.1), we
consider test statistics of the following form:

DS(β0, Ωn) = s(y − Xβ0)
′XΩn

(

s(y − Xβ0), X
)

X ′s(y − Xβ0) (4.1)

whereΩn

(

s(y − Xβ0), X
)

is a p × p weight matrix that depends on theconstrained
signs s(y − Xβ0) underH0(β0). The latter feature of the weight matrix allows one
to obtain a finite-sample distributional theory forDS(β0, Ωn). The weighting matrix
Ωn

(

s(y − Xβ0),X
)

provides a standardization that can be useful for power considera-
tions as well as to account for dependence schemes that cannot be eliminated by the sign
transformation. Further,Ωn

(

s(y − Xβ0), X
)

would normally be selected to be positive
definite [although this is not essential to show the pivotality of the test statistic under the
null hypothesis].7

7Under more restrictive assumptions, statistics which exploit other robust functions ofy − Xβ
0

[such as
ranks or signed ranks] can lead to more powerful tests. However, the fact we allow for both heteroskedasticity
and nonlinear serial dependence of unknown forms appears tobreak the required pivotality result and makes
the use of such statistics quite difficult if not impossible in the context of our setup. For discussion of
such alternative statistics (applicable under stronger assumptions), see Hallin and Puri (1991, 1992), Hallin,
Vermandele and Werker (2006, 2008), Hallin and Werker (2003) and the references therein.
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Statistics of the formDS(β0, Ωn) include as special cases the ones studied by Boldin
et al. (1997) and Koenker and Bassett (1982). Namely, on taking Ωn = Ip andΩn =
(X ′X)−1, we get:

SB(β0) = s(y − Xβ0)
′XX ′s(y − Xβ0) = ‖X ′s(y − Xβ0)‖2

, (4.2)

SF (β0) = s(y − Xβ0)
′P (X)s(y − Xβ0) = ‖X ′s(y − Xβ0)‖2

M , (4.3)

whereP (X) = X(X ′X)−1X ′. In Boldin et al. (1997), it is shown thatSB(β0) andSF (β0)
can be associated with locally most powerful tests in the case of i.i.d. disturbances under
some regularity conditions on the distribution function [especiallyf ′(0) = 0].8 Their proof
can easily be extended to disturbances that satisfy the mediangale property and for which
the conditional density at zero is the sameft(0|X) = f(0|X), ∀t.

SF (β0) can be interpreted as a sign analogue of the Fisher statistic. More precisely,
SF (β0) is a monotonic transformation of the Fisher statistic for testingγ = 0 in the re-
gression ofs(y−Xβ0) onX: s(y−Xβ0) = Xγ + v. This remark holds also for a general
sign-based statistic of the form 4.1, whens(y − Xβ0) is regressed onΩ−1/2

n X.
Wald, Lagrange multiplier (LM) and likelihood ratio (LR) asymptotic tests for M-

estimators, such as the LAD estimator, inL1-regression are developed by Koenker and
Bassett (1982). They assumei.i.d. errors and a fixed design matrix. In that setup, the
LM statistic for testingH0(β0) : β = β0 turns out to be theSF (β0) statistic. The same
authors also remarked that this type of statistic is asymptotically nuisance-parameter-free.
It does not require one to estimate the density of the disturbance at zero contrary to LR and
Wald-type statistics.

The Boldin et al. (1997) local optimality interpretation can be extended to heteroskedas-
tic disturbances. In such a case, the locally optimal test statistic associated with the mean
curvature –i.e., the test with the highest power near the null hypothesis according to a trace
argument – will be of the following form.

Proposition 4.1 In model(2.1), suppose the mediangale Assumption 2.1 holds, and the
disturbances are heteroskedastic with conditional densities ft( · |X), t = 1, 2, . . . , that
are continuously differentiable around zero and such thatf ′

t(0|X) = 0. Then, the locally
optimal sign-based statistic associated with the mean curvature is

S̃B(β0) = s(y − Xβ0)
′X̃X̃ ′s(y − Xβ0) (4.4)

8The power function of the locally most powerful sign-based test has the faster increase when departing
from β

0
. In the multiparameter case, the scalar measure required toevaluate that speed is the curvature of the

power function. Restricting to unbiased tests, Boldin et al. (1997) introduced different locally most powerful
tests corresponding to different definitions of curvature.SB(β

0
) maximizes the mean curvature, which is

proportional to the trace of the shape; see Dubrovin, Fomenko and Novikov (1984, Ch. 2, pp. 76-86) or Gray
(1998, Ch. 21, pp. 373-380) for a discussion of various curvature notions.
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whereX̃ = diag
(

f1(0|X), . . . , fn(0|X)
)

X.

When thefi(0|x)’s are unknown, the optimal statistic is not feasible. The optimal
weights must be replaced by approximations, such as weightsderived from the normal
distribution.

Sign-based statistics of the form (4.1) can also be interpreted as GMM statistics which
exploit the property that{st ⊗ x′

t,Ft} is a martingale difference sequence. We saw in the
first section that this property is induced by the mediangaleAssumption 2.1. However,
these are quite unusual GMM statistics. Indeed, the parameter of interest is not defined by
moment conditions in explicit form. It is implicitly definedas the solution of some robust
estimating equations (involving constrained signs):

n
∑

t=1

s(yt − x′
tβ) ⊗ xt = 0.

For i.i.d. disturbances, Godambe (2001) showed that these estimatingfunctions are optimal
among all the linear unbiased (for the median) estimating functions

∑n
t=1 at(β)s(yt−x′

tβ).
For independent heteroskedastic disturbances, the set of optimal estimating equations is
∑n

t=1 s(yt − x′
tβ) ⊗ x̃t = 0. In those cases,X (resp.X̃) can be viewed as optimal instru-

ments for the linear model.
We now turn to linearly dependent processes. We propose to use a weighting matrix

directly derived from the asymptotic covariance matrix of1√
n
s(y−Xβ0)⊗X. Let us denote

it by Jn

(

s(y − Xβ0), X
)

. We considerΩn

(

s(y − Xβ0),X
)

= 1
n
Ĵn

(

s(y − Xβ0),X
)−1

whereĴn

(

s(y −Xβ0),X
)

stands for a consistent estimate ofJn

(

s(y −Xβ0), X
)

that can
be obtained using kernel-estimators, for example [see Parzen (1957), White (2001), Newey
and West (1987), Andrews (1991)]. This leads to

DS(β0,
1

n
Ĵ−1

n ) =
1

n
s(y − Xβ0)

′XĴ−1
n X ′s(y − Xβ0). (4.5)

Jn

(

s(y − Xβ0), X
)

accounts for dependence among signs and explanatory variables.
Hence, by using an estimate of its inverse as weighting matrix, we perform a HAC cor-
rection. Note that the correction depends onβ0.

In all cases,H0(β0) is rejected when the statistic evaluated atβ = β0 is large:
DS(β0, Ωn) > cΩn(X, α) wherecΩn(X, α) is a critical value which depends on the level
α. Since we are looking at pivotal functions, the critical values can be evaluated to any
degree of precision by simulation. However, as the distribution is discrete, a test based on
cΩn(X, α) may not exactly reach the nominal level. A more elegant solution consists in
using the technique ofMonte Carlo testswith a randomized tie-breaking procedure which
do not suffer from this shortcoming.
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4.2. Monte Carlo tests

Monte Carlo tests can be viewed as a finite-sample version of the bootstrap. They have
been introduced by Dwass (1957) [see also Barnard (1963)] and can be adapted to any
pivotal statistic whose distribution can be simulated. Fora general review and for exten-
sions in the case of the presence of a nuisance parameter, thereader is referred to Dufour
(2006). It proceeds as follows. Let us consider a statisticT whose conditional distribution
givenX is continuous and free of nuisance parameters, and a test which rejects the null
hypothesis whenT ≥ c(α). We denote byG(x) = P [T ≥ x] the survival function, and
by F (x) = P [T ≤ x] the distribution function. LetT (0) be the observed value ofT , and
T (1), . . . , T (N), N independent replicates ofT . The empiricalp-value is given by

p̂N(x) =
NĜN (x) + 1

N + 1
(4.6)

whereĜN(x) = 1
N

∑N
i=1 1[0,∞)(T

(i) − x). Then we have

P[p̂N(T (0)) ≤ α] =
I[α(N + 1)]

N + 1
, for 0 ≤ α ≤ 1,

whereI[x] stands for the largest integer less than equal tox; see Dufour (2006). IfN is
such thatα(N + 1) ∈ N, thenP[p̂N(T (0)) ≤ α] = α: the test level is exactly controlled.

In the case ofdiscrete distributions, the method must be adapted to deal with ties.
Indeed, the usual order relation onR is not appropriate for comparing discrete realiza-
tions that have a strictly positive probability to be equal.9 Here, we use a randomized tie-
breaking procedure for evaluating empirical survival functions. The latter is based on re-
placing the usual order relation by a lexicographic order relation [see Dufour (2006)]. Each
replicationT (j) is associated with a uniform random variableW (j) ∼ U(0, 1) to produce
the pairs(T (j), W (j)). The vector(W (0), . . . ,W (n)) is independent of(T (0), . . . , T (n)).
(T (i),W (i))’s are ordered according to:

(T (i), W (i)) ≥ (T (j), W (j)) ⇔ {T (i) > T (j) or (T (i) = T (j) and W (i) ≥ W (j))}.

This leads to the followingp-value function:

p̃N(x) =
NG̃N (x) + 1

N + 1

9Different procedures have been presented in the literature. They can be classified between randomized
and nonrandomized procedures, both aiming to exactly control back the level of the test. For a good review
of this problem, the reader is referred to Coakley and Heise (1996).
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whereG̃N(x) = 1 − 1
N

∑N
i=1 s+(x − T (i)) + 1

N

∑N
i=1 δ(T (i) − x)s+(W (i) − W (0)), with

s+(x) = 1[0,∞)(x), δ(x) = 1{0}. Then

P[p̃N (T (0)) ≤ α] =
I[α(N + 1)]

N + 1
, for 0 ≤ α ≤ 1.

The randomized tie-breaking allows one to exactly control the level of the procedure. This
may also increase the power of the test.

To illustrate the method, consider testingH0(β0) in (2.1) under a mediangale assump-
tion on the errors, and usingDS(β, X ′X−1). After computingSF (0) = DS(β0, X

′X−1)
from the data, chooseN the number of replicates, such thatα(N + 1) is an integer,
whereα is the desired level. Then, generateN replicatesSF (j) = S(j)′X(X ′X)−1X ′S(j)

whereS(j) is a realization of an-vector of independent uniform Bernoulli random vari-
ables, and computẽpN(SF (0)). Finally, the Monte Carlo test rejectsH0(β0) with levelα if
p̃N(SF (0)) < α.

5. Regression sign-based confidence sets

In the previous section, we have shown how to obtain Monte Carlo sign-based joint tests for
which we can exactly control the level, for any given finite number of observations. In this
section, we discuss how to use such tests in order to build confidence sets forβ with known
level. This can be done as follows. For each valueβ0 ∈ R

p, perform the Monte Carlo
sign test forH0(β0) and get the associated simulatedp-value. The confidence setC1−α(β)
that contains anyβ0 with p-value higher thanα has, by construction, level1 − α [see
Dufour (2006)]. From this simultaneous confidence set forβ, it is possible, byprojection
techniques, to derive confidence intervals for the individual components. More generally,
we can obtain conservative confidence sets for any transformationg(β) whereg can be any
kind of real functions, including nonlinear ones. Obviously, obtaining a continuous grid of
R

p is not realistic. We will instead requireglobal optimization search algorithms.

5.1. Confidence sets and conservative confidence intervals

Projection techniques yield finite-sample valid confidenceintervals and confidence sets
for general functions of the parameterβ.10 The basic idea is the following one. Sup-
pose a simultaneous confidence set with level1 − α for β, C1−α(β), is available. Since
β ∈ C1−α(β) ⇒ g(β) ∈ g

(

C1−α(β)
)

, we haveP[β ∈ C1−α(β)] ≥ 1 − α ⇒
P[g(β) ∈ g

(

C1−α(β)
)

] ≥ 1 − α . Thus, g
(

C1−α(β)
)

is a conservative confidence set

10For examples of use in different settings and for further discussion, see Dufour (1990, 1997), Ab-
delkhalek and Dufour (1998), Dufour and Kiviet (1998), Dufour and Jasiak (2001), Dufour and Taamouti
(2005).
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for g(β). If g(β) is scalar, the interval (in the extended real numbers)Ig[C1−α(β)] =
[

inf
β∈C1−α(β)

g(β) , sup
β∈C1−α(β)

g(β)
]

has level1 − α :

P

[

inf
β∈C1−α(β)

g(β) ≤ g(β) ≤ sup
β∈C1−α(β)

g(β)

]

> 1 − α.

Hence, to obtain valid conservative confidence intervals for the individual componentβk

in the model (2.1) under mediangale Assumption 2.1, it is sufficient to solve the following
numerical optimization problems where s.c. stands for “subject to the constraint”. The
optimization problems are stated here for the statisticSF :

min
β∈Rp

βk s.c. p̃N

(

SF (β)
)

≥ α, max
β∈Rp

βk s.c. p̃N

(

SF (β)
)

≥ α,

wherep̃N is computed usingN replicatesSF (j) of the statisticSF under the null hypoth-
esis. In practice, we usesimulated annealingas optimization algorithm [see Goffe et al.
(1994), and Press, Teukolsky, Vetterling and Flannery (1996)].

In the case of multiple tests, projection techniques allow to perform tests on an arbitrary
number of hypotheses without ever loosing control of the overall level: rejecting at least
one true null hypothesis will not exceed the specified levelα.

5.2. Numerical illustration

This part reports a numerical illustration. We generate thefollowing normal mixture
process, forn = 50,

yt = β0 + β1xt + ut , t = 1, . . . , n, ut
i.i.d.∼

{

N [0, 1] with probability0.95
N [0, 1002] with probability0.05.

We conduct an exact inference procedure withN = 999 replicates. The true process is
generated withβ0 = β1 = 0. We perform tests ofH0(β

∗) : β = β∗ on a grid forβ∗ =
(β∗

0, β
∗
1) and retain the associated simulatedp-values. Asβ is a2-vector, we can provide

a graphical illustration. To each value of the vectorβ is associated the corresponding
simulatedp-value. Confidence region with level1 − α contains all the values ofβ with
p-values greater thanα. Confidence intervals are obtained by projecting the simultaneous
confidence region on the axis ofβ0 or β1, see Figure 1 and Table 1.

The confidence regions so obtained increase with the level and cover other confidence
regions with smaller level. Confidence regions are highly nonelliptic and thus may lead to
different results than an asymptotic inference. Concerning confidence intervals, sign-based
ones appear to be largely more robust than OLS and White CI andare less sensitive to
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Figure 1. Confidence regions provided by SF-based inference

Table 1. Confidence intervals
OLS White SF

β
0

95%CI [-4.57, 0.82] [-4.47, 0.72] [-0.54, 0.23]
98%CI [-5.10, 1.35] [-4.98, 1.23] [-0.64, 0.26]

β
1

95%CI [-2.50, 3.22] [-1.34, 2.06] [-0.42, 0.59]
98%CI [-3.07, 3.78] [-1.67, 2.39] [-0.57, 0.64]

outliers.

6. Asymptotic theory

This section is dedicated to asymptotic results. We point out that the mediangale Assump-
tion 2.1 excludes some common processes, whereas usual asymptotic inference still can be
conducted on them. We relax Assumption 2.1 to allow randomX that may not be inde-
pendent ofu. We show that the finite-sample sign-based inference remains asymptotically
valid. For a fixed number of replicates, when the number of observations goes to infinity,
the level of a test tends to the nominal level. Besides, we stress the ability of our methods
to cover heavy-tailed distributions including infinite disturbance variance.
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6.1. Asymptotic distributions of test statistics

In this part, we derive asymptotic distributions of the sign-based statistics. We show that
the HAC-corrected version of the sign-based statisticDS(β0,

1
n
Ĵ−1

n ) in (4.5) allows one to
obtain an asymptotically pivotal function. The set of assumptions we make to stabilize the
asymptotic behavior will be needed for further asymptotic results. We consider the linear
model (2.1), with the following assumptions.

Assumption 6.1 M IXING . {(x′
t, ut) : t = 1, 2, . . .} is α-mixing of size−r/(r − 2),

r > 2.11

Assumption 6.2 MOMENT CONDITION. E[s(ut)xt] = 0, t = 1, . . . , n, ∀n ∈ N.

Assumption 6.3 BOUNDEDNESS. xt = (x1t, . . . , xpt)
′ andE[|xht|r] < ∆ < ∞, h =

1, . . . , p, t = 1, . . . , n, ∀n ∈ N.

Assumption 6.4 NON-SINGULARITY. Jn = var[ 1√
n

∑n
t=1 s(ut)xt] is uniformly positive

definite.

Assumption 6.5 CONSISTENT ESTIMATOR OFJn. Ωn(β0) is symmetric positive definite
uniformly overn andΩn − 1

n
J−1

n

p→ 0.

We can now give the following result on the asymptotic distribution of DS(β0, Ωn)
underH0(β0).

Theorem 6.1 ASYMPTOTIC DISTRIBUTION OF SIGN-BASED STATISTICS. In model
(2.1), with Assumptions 6.1- 6.5, we have, underH0(β0), DS(β0, Ωn) → χ2(p).

In particular, when the mediangale condition holds,Jn reduces toE(X ′X/n) and
(X ′X/n)−1 is a consistent estimator ofJ−1

n . This yields the following corollary.

Corollary 6.2 In model(2.1), suppose the mediangale Assumption 2.1 and boundedness
Assumption 6.3 are fulfilled. IfX ′X/n is positive definite uniformly overn and converges
in probability to a definite positive matrix, then, underH0(β0), SF (β0) → χ2(p).

6.2. Asymptotic validity of Monte Carlo tests

We first state some general results on asymptotic validity ofMonte Carlo based inference
methods. Then, we apply these results to sign-based inference methods.

11See White (2001) for a definition ofα-mixing.
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6.2.1. Generalities

Let us consider a parametric or semiparametric model{Mβ, β ∈ Θ}. Let Sn(β0) be a
test statistic forH0(β0). Let cn be the rate of convergence. UnderH0(β0), the distribution
function of cnSn(β0) is denotedFn(x). We suppose thatFn(x) converges almost every-
where to a distribution functionF (x). G(x) andGn(x) are the corresponding survival
functions. In Theorem6.3, we show that if a sequence of conditional survival functions
G̃n

(

x|Xn(ω)
)

givenX(ω) satisfiesG̃n

(

x|Xn(ω)
)

→ G(x) with probability one, whereG
does not depend on the realizationX(ω), thenG̃n

(

x|Xn(ω)
)

can be used as an approxima-
tion of Gn(x). It can be seen as apseudosurvival function ofcnSn(β0).

Theorem 6.3 GENERIC ASYMPTOTIC VALIDITY. LetSn(β0) be a test statistic for testing
H0(β0) : β = β0 againstH1(β0) : β 6= β0 in model(2.1). Suppose that, underH0(β0),

P[cnSn(β0) ≥ x|Xn] = Gn(x|Xn) = 1 − Fn(x|Xn) →
n→∞

G(x) a.e.,

where{cn} is a sequence of positive constants and suppose thatG̃n(x|Xn(ω)) is a sequence
of survival functions such that̃Gn

(

x|Xn(ω)
)

−→
n→∞

G(x) with probability one. Then

lim
n→∞

P[G̃n(cnSn(β0), Xn(ω)) ≤ α] ≤ α. (6.1)

This theorem can also be stated in a Monte Carlo version. Following Dufour (2006), we
use empirical survival functions and empiricalp-values adapted to discrete statistics in a
randomized way, but the replicates are not drawn from the same distribution as the observed
statistic. However, both distribution functions resp.Fn andF̃n converge to the same limit
F . Let U(N + 1) = (U (0), U (1), . . . , U (N)) be a vector ofN + 1 i.i.d. real variables drawn
from aU(0, 1) distribution,S(0)

n is the observed statistic, andSn(N) = (S
(1)
n , . . . , S

(N)
n ) a

vector ofN independent replicates drawn from̃Fn. Then, the randomizedpseudo empirical
survival function underH0(β0) is

G̃(N)
n

(

x, n, S(0)
n , Sn(N), U(N + 1)

)

= 1 − 1

N

N
∑

j=1

s+(x − cnS
(j)
n )

+
1

N

N
∑

j=1

δ(cnS
(j)
n − x)u(U (j) − U (0)).

G̃
(N)
n

(

x, n, S
(0)
n , Sn(N), U(N + 1)

)

is in a sense an approximation ofG̃n(x). Thus it de-
pends on the number of replicates,N , and the number of observations,n. The randomized
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pseudo empiricalp-value function is defined as

p̃(N)
n (x) =

NG̃
(N)
n (x) + 1

N + 1
. (6.2)

We can now state the Monte Carlo-based version of Theorem6.3.

Theorem 6.4 MONTE CARLO TEST ASYMPTOTIC VALIDITY. Let Sn(β0) be a test
statistic for testingH0(β0) : β = β0 againstH1(β0) : β 6= β0 in model(2.1) andS

(0)
n the

observed value. Suppose that, underH0(β0),

P[cnSn(β0) ≥ x|Xn] = Gn(x|Xn) = 1 − Fn(x|Xn) →
n→∞

G(x) a.e.,

where{cn} is a sequence of positive constants. LetS̃n be a random variable with condi-
tional survival functionG̃n(x|Xn) such that

P[cnS̃n ≥ x|Xn] = G̃n(x|Xn) = 1 − F̃n(x|Xn) →
n→∞

G(x) a.e.,

and(S
(1)
n , . . . , S

(N)
n ) be a vector ofN independent replicates of̃Sn where(N + 1)α is an

integer. Then, the randomized version of the Monte Carlo test with levelα is asymptotically
valid, i.e. limn→∞ P[p̃

(N)
n (β0) ≤ α] ≤ α.

These results can be applied to the sign-based inference method. However, Theorems
6.3 and6.4 are much more general. They do not exclusively rely on asymptotic normal-
ity: the limiting distribution may be different from a Gaussian one. Besides, the rate of
convergence may differ from

√
n.

6.2.2. Asymptotic validity of sign-based inference

In model (2.1), suppose that conditions 6.1- 6.5 hold and consider the testing problem:
H0(β0) : β = β0 againstH1(β0) : β 6= β0. Let DS(β, Ĵ−1

n ) be the test statistic as de-
fined in (4.5). ObserveSF (0) = DS(β0, Ĵ

−1
n ). Draw N independent replicates of sign

vector, each one havingn independent components, from aB(1, .5) distribution. Compute
(SF (1), SF (2), . . . , SF (N)), theN pseudoreplicates ofDS(β0, X

′X−1) underH0(β0). We
call them “pseudo” replicates because they are drawn as if observations were independent.
DrawN +1 independent replicates(W (0), . . . , W (N)) from aU(0, 1) distribution and form
the couple(SF (j), W (j)). Computep̃(N)

n (β0) using (6.2). From Theorem6.4, the confi-
dence region{β ∈ R

p|p̃(N)
n (β) ≥ α} is asymptotically conservative with level at least

1 − α. H0(β0) is rejected wheñp(N)
n (β0) ≤ α.

Contrary to usual asymptotic tests, this methoddoes not require the existence of mo-
ments nor a density on the{ut : t = 1, 2, . . . } process. Usual Wald-type inference is
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based on the asymptotic behavior of estimators and consequently is more restrictive. More
moments existence restrictions are needed, see Fitzenberger (1997b) and Weiss (1991).
Besides, asymptotic variance of the LAD estimator involvesthe conditional density at zero
of the disturbance process{ut : t = 1, 2, . . . } as unknown nuisance parameter. The ap-
proximation and estimation of asymptotic covariance matrices constitute a large issue in
asymptotic inference. This usually requires kernel methods. We get around those problems
by adopting the finite-sample sign-based procedure.

7. Simulation study

In this section, we study the performance of sign-based methods compared to usual as-
ymptotic tests based on OLS or LAD estimators with differentapproximations for their
asymptotic covariance matrices. We consider the sign-based statisticsDS

(

β, (X ′X)−1
)

andDS(β, Ĵ−1
n ) when a correction is needed for linear serial dependence. Weconsider a

set of general DGP’s to illustrate different classical problems one may encounter in prac-
tice. Results are presented in the way suggested by the theory. First, we investigate the
performance of tests, then, confidence sets. We use the following linear regression model:

yt = x′
tβ0 + ut, t = 1, . . . , n, (7.1)

wherext = (1, x2, t, x3, t)
′ andβ0 are3 × 1 vectors. We denote the sample sizen. We

investigate the behavior of inference and confidence regions for 13 general DGP’s that are
presented in Table 2. For the first 7 ones,{ut : t = 1, 2 . . .} is i.i.d. or depends on the
explanatory variables and its past values in amultiplicativeheteroskedastic or dependent
and stationary way,ut = h(xt, ut−1, . . . , u1)ǫt, t = 1, . . . , n. In those cases, the error term
constitutes a strict conditional mediangale givenX (see Assumption 2.1). Correspondingly,
the levels of sign-based tests and confidence sets are perfectly controlled. Next, we study
the behavior of the sign-based inference (involving a HAC correction) when inference is
only asymptotically valid. In cases C8-C10,xt and ut are such thatE(utxt) = 0 and
E[s(ut)xt] = 0 for all t. Finally, cases C11 and C12 illustrate two kinds of second-order
nonstationary disturbances. As we noted previously, sign-based inference does not require
stationary assumptions in contrast with tests derived fromCLT.

Cases C1 and C2 presenti.i.d. normal observations without and with conditional het-
eroskedasticity. Case C3 involves outliers in the error term. This can be seen as an example
of measurement error in the observedy. Cases C4 and C5 involve other heteroskedas-
tic schemes with stationary GARCH and stochastic volatility disturbances. Case C6 is
a very unbalanced design matrix (where the LAD estimator performs poorly). Case C6
BIS combines the previous unbalanced scheme in the design matrix with heteroskedas-
tic disturbances. Case C7 is an example of heavy-tailed errors (Cauchy). Cases C8, C9
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Table 2. Simulated models

C 1: NormalHOM : (x2, t, x3, t, ut)
′ i.i.d∼ N (0, I3), t = 1, . . . , n

C 2: NormalHET : (x2, t, x3, t, ũt)
′ i.i.d∼ N (0, I3)

ut = min{3, max[0.21, |x2, t|]} × ũt, t = 1, . . . , n

C 3: Outlier: (x2, t, x3, t)
′ i.i.d.∼ N (0, I2),

ut
i.i.d.∼

{

N [0, 1] with p = 0.95
N [0, 10002] with p = 0.05

xt, ut, independent,t = 1, . . . , n.

C 4: Stat. (x2, t, x3, t)
′ i.i.d.∼ N (0, I2), ut = σtǫt with

GARCH(1,1): σ2
t = 0.666u2

t−1 + 0.333σ2
t−1 whereǫt

i.i.d.∼ N (0, 1),
xt, ǫt, independent,t = 1, . . . , n.

C 5: Stoc. (x2, t, x3, t)
′ i.i.d.∼ N (0, I2), ut = exp(wt/2)ǫt with

Volatility: wt = 0.5wt−1 + vt, whereǫt
i.i.d.∼ N (0, 1), vt

i.i.d.∼ χ2(3),
xt, ut, independent,t = 1, . . . , n.

C 6: Deb. x2, t ∼ B(1, 0.3), x3, t
i.i.d.∼ N (0, .012),

design mat.: ut
i.i.d.∼ N (0, 1), xt, ut independent,t = 1, . . . , n.

C 6 BIS: Deb. design matrix x2t
i.i.d∼ N (0, 1), x3t

i.i.d∼ χ2(1),

+ HET. dist.: ut = x3tǫt, ǫt
i.i.d∼ N (0, 1), xt, ǫt independent,t = 1, . . . , n.

C 7: Cauchy (x2, t, x3, t)
′ ∼ N (0, I2),

disturbances: ut
i.i.d.∼ C,xt, ut, independent,t = 1, . . . , n.

C 8: AR(1)-HOM , (x2, t, x3, t, ν
u
t )′ ∼ N (0, I3), t = 2, . . . , n,

ρu = .5 : ut = ρuut−1 + νu
t ,

(x2, 1, x3, 1)
′ ∼ N (0, I2), νu

1 insures stationarity.

C 9: AR(1)-HET , xj, t = ρxxj, t−1 + νj
t , j = 1, 2,

ρu = .5, : ut = min{3, max[0.21, |x2, t|]} × ũt,
ρx = .5 ũt = ρuũt−1 + νu

t ,

(ν2
t , ν

3
t , ν

u
t )′

i.i.d∼ N (0, I3), t = 2, . . . , n
ν2

1, ν
3
1 andνu

1 chosen to insure stationarity.

C 10: AR(1)-HOM , (x2, t, x3, t, ν
u
t )′ ∼ N (0, I3), t = 2, . . . , n,

ρu = .9 : ut = ρuut−1 + νu
t ,

(x2, 1, x3, 1)
′ ∼ N (0, I2), νu

1 insures stationarity.

C 11: Nonstat. (x2, t, x3, t, ǫt)
′ i.i.d.∼ N (0, I3), t = 1, . . . , n,

GARCH(1,1): ut = σtǫt, σ2
t = 0.8u2

t−1 + 0.8σ2
t−1.

C 12: Exp. Var.: (x2, t, x3, t, ǫt)
′ i.i.d.∼ N (0, I3), ut = exp(.2t)ǫt.
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and C10 illustrate the behavior of sign-based inference when the error term involves lin-
ear dependence at different levels. Finally, cases C11 and C12 involve disturbances that
are not second-order stationary (nonstationary GARCH and exponential variance) but for
which the mediangale assumption holds. The design matrix issimulated once for all the
presented cases. Hence, results are conditional. Cases C1-2, C8-10 have been used by
Fitzenberger (1997b) to study the performance of block bootstrap (MBB).

7.1. Size

We first study level distortions. We consider the testing problem: H0(β0) : β0 =
(1, 2, 3)′ againstH1 : β0 6= (1, 2, 3)′. We compare exact and asymptotic tests based on
SF = DS

(

β, (X ′X)−1
)

andSHAC = DS(β, Ĵ−1
n ), whereĴ−1

n is estimated by a Bartlett
kernel, with various asymptotic tests. Wald and LR-type tests are considered. We consider
Wald tests based on the OLS estimate with 3 different covariance estimators: the usual
under homoskedasticity and independence (IID), White correction for heteroskedastic-
ity (WH), and Bartlett kernel covariance estimator with automaticbandwidth parame-
ter [BT, Andrews (1991)]. Concerning the LAD estimator, we study Wald-type tests
based on several covariance estimators: order statistic estimator (OS),12 Bartlett kernel
covariance estimator with automatic bandwidth parameter [BT, Powell (1984), Buchinsky
(1995)], design matrix bootstrap centering around the sample estimate [DMB, Buchinsky
(1998)], moving block bootstrap centering around the sample estimate [MBB, Fitzen-
berger (1997b)].13 Finally, we consider the likelihood ratio statistic (LR) assumingi.i.d.
disturbances with anOS estimate of the error density [Koenker and Bassett (1982)].When
errors arei.i.d. andX is fixed, the LM statistic for testing the joint hypothesisH0(β0) turns
out to be theSF sign-based statistic. Consequently, the three usual forms(Wald, LR, LM)
of asymptotic tests are compared in our setup.

In Tables 3 and 4, we report the simulated sizes for a conditional test with nominal
level α = 5% given X. N replicates are used for the bootstrap and the Monte Carlo
sign-based method andN = 2999. All bootstrapped samples are of sizen = 50. We
simulateM = 5000 random samples to evaluate the sizes of these tests. For bothsign-
based statistics, we also report the asymptotic level whenever processes are stationary.

Table 3 contains models when the mediangale condition 2.1 holds. Sizes of tests de-
rived from sign-based finite-sample methods are exactly controlled, whereas asymptotic
tests may greatly overreject or underreject the null hypothesis. This remark especially
holds for cases involving strong heteroskedasticity (cases C4, C6 BIS). The asymptotic
versions of sign-based tests suffer from the same under-rejection than other asymptotic
tests, suggesting that, for small samples (n = 50), the distribution of the test statistic is

12This assumesi.i.d. residuals; an estimate of the residual density at zero is obtained from a confidence
interval constructed for then/2th residual [Buchinsky (1998)].

13The block size is 5.
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Table 3. Linear regression under mediangale errors: empirical sizes of conditional tests
for H0 : β = (1, 2, 3)′

yt = xtβ + ut, SIGN LAD OLS
t = 1, . . . , 50. SF SHAC OS DMB MBB BT LR IID WH BT

Stationary models
C 1: HOM .052 .050 .086 .050 .089 .047 .068 .060 .096 .113
ρǫ = ρx = 0, .047* .019*
C 2: HET .052 .057 .300 .037 .059 .051 .137 .162 .100 .118
ρǫ = ρx = 0, .045* .023*
C 3: .047 .048 .088 .043 .083 .039 .066 .056 .008 .009
Outlier .044* .015*
C 4: .042 .046 .040 .005 .005 .004 .012 .080 .046 .046
St. GARCH(1,1) .040* .013*
C 5: .043 .041 .063 .006 .014 .006 .031 .054 .014 .014
Stoch. Volat. .045* .021*
C 6: .047 .049 .080 .048 .084 .043 .064 .085 .060 .095
Debalanced .043* .022*
C 7: .058 .059 .069 .013 .033 .012 .044 .061 .023 .023
Cauchy .049* .021*

Nonstationary models
C 6 BIS: .044 .042 .687 .020 .044 .152 .307 .421 .171 .173
Deb.+ Het. .040* .018*
C 11: Nonst. .054 .057 .003 .000 .001 .000 .002 .060 .016 .016
GARCH(1,1)
C 12: Exp. Var. .049 .051 .017 .000 .000 .000 .000 .132 .014 .014

∗ Sizes using asymptotic critical values based onχ2(3).

really far from its asymptotic limit. Hence, the sign-basedmethod that deals directly with
this distribution has clearly an advantage on asymptotic methods. When the dependence
in the disturbance process is highly nonlinear (case C6 BIS), the kernel estimation of the
LAD asymptotic covariance matrix is not reliable anymore.

In Table 4, we illustrate behaviors when the error term involves linear serial depen-
dence. The Monte CarloSHAC sign-based test does not control exactly the level but is
still asymptotically valid, and yields the best results. Weunderscore its advantages com-
pared to other asymptotically justified methods. Whereas the Wald and LR tests overreject
the null hypothesis, the latter test seems to better controlthe level than its asymptotic ver-
sion, avoiding under-rejection. There exists important differences between using critical
values from the asymptotic distribution ofSHAC statistic and critical values derived from
the distribution of theSHAC statistic for a fixed number of independent signs. Besides,
we underscore the dramatic over-rejections of asymptotic Wald tests based on HAC es-
timation of the asymptotic covariance matrix when the data set involves a small number
of observations. These results suggest, in a sense, that when the data suffer from both
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Table 4. Linear regression with serial dependence: empirical sizes of conditional tests for
H0 : β = (1, 2, 3)′

yt = xtβ + ut, SIGN LAD OLS
t = 1, . . . , 50. SF SHAC OS DMB MBB BT LR IID WH BT

Serial dependence (cases when mediangale condition fails)

C 8: HOM .126 .022 .171 .124 .118 .085 .151 .201 .240 212
ρǫ = .5, ρx = 0 - .019*
C 9: HET .218 .026 .440 .131 .097 .108 .308 .407 .328 .276
ρǫ = ρx = .5 - .017*
C 10: HOM .521 .012 .553 .516 .339 .355 .551 .649 .677 .534
ρǫ = .9, ρx = 0** - .003*

∗ Sizes using asymptotic critical values based onχ2(3).

∗∗ Automatic bandwidth parameters are restricted to be< 10 to avoid invertibility problems.

a small number of observations and linear dependence, the first problem to solve is the
finite-sample distortion, which is not what is usually done.

7.2. Power

Then, we illustrate thepower of these tests. We are particularly interested in comparing
the sign-based inference to kernel and bootstrap methods. We consider the simultaneous
hypothesisH0 as before. The true process is obtained by fixingβ1 andβ3 at the tested value,
i.e. β1 = 1 andβ3 = 3, and letting varyβ2. Simulated power is given by a graph with
β2 in abscissa. The power functions presented here (figures 2 and 3) are locally adjusted
for the level, which allows comparisons between methods. However, we should keep in
mind that only the sign-based methods lead to exact confidence levels without adjustment.
Other methods may overreject the null hypothesis and do not control the level of the test,
or underreject it, and then, loose power.

Sign-based inference has a comparable power performance with usual methods in cases
C1, C2, C3, C6, C9 with the advantage that the level is exactlycontrolled, which leads
to great difference in small samples. In heteroskedastic orheterogenous cases (C4, C5,
C7, C11, C12), sign-based inference greatly dominates other methods: levels are exactly
controlled and power functions largely exceed others, evenmethods that are size-corrected
with locally adjusted levels. In the presence of linear serial dependence, the Monte Carlo
test based onDS

(

β, Ĵ−1
n

)

, which is still asymptotically valid, seems to lead to good power
performance for a mild autocorrelation, along with a bettersize control (cases C9 and
C10).14 Only for very high autocorrelation (close to unit root process), the sign-based
inference is not adapted.

14The power functions for case C8 are not reported here as they lead to similar results as case C9.
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Figure 2. Power functions (1)
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(a) C 1: normal
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(b) C 2: normal HET
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(c) C 3: outliers
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(d) C 4: stationary GARCH
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(e) C 5: stochastic volatility
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(f) C 6: DEB

Powers are level corrected. Sign:SF = DS(β, X ′X−1), SHAC = DS(β, Ĵ−1

n ); LAD/OLS: DMB =

design matrix boot.,MBB = moving block boot.;BT = Bartlett kern.,IID = homo.,WH = White cor.,

OS = order stat.
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Figure 3. Power functions (2)
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(a) C 6BIS: DEB+HET
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(b) C 7: Cauchy
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(c) C 9:AR(1) HET, ρx = ρu = .5
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(d) C 10:AR(1) HOM, ρu = .9
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(e) C 11 : Nonstationary GARCH
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(f) C 12: exponential variance

Powers are level corrected. Sign:SF = DS(β, X ′X−1), SHAC = DS(β, Ĵ−1

n ); LAD/OLS: DMB =

design matrix boot.,MBB = moving block boot.;BT = Bartlett kern.,IID = homo.,WH = White cor.,

OS = order stat.
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7.3. Confidence intervals

As the sign-based confidence regions are by construction of level higher that1 − α when-
ever inference is exact, a performance indicator for confidence intervals may be their width.
Thus, we wish to compare the width of confidence intervals obtained by projecting the sign-
based simultaneous confidence regions to those based ont-statistics on the LAD estimator.
We useM = 1000 simulations, and report average width of confidence intervals for each
βk and coverage probabilities in Table 5. We only consider the stationary examples. In
the nonstationary cases, inference based ont-statistics may not mean anything. Spreads
of confidence intervals obtained by projection are larger than asymptotic confidence inter-
vals. This is due to the fact that they are by construction conservative confidence intervals.
However, it is not clear that valid confidence intervals without this feature can even be built.

8. Examples

In this section, two illustrative applications of the sign-based inference are presented. One
on financial data, one in growth theory. First, we consider testing a drift on the Standard and
Poor’s composite price index (S&P) 1928-1987, which is known to involve a large amount
of heteroskedasticity. We consider robust tests on the whole period and on the 1929 Krach
subperiod. In the second illustration, we test for the presence ofβ-convergence across the
U.S. States during the 1880-1988 period using the Barro and Sala-i-Martin (1991) data set.
Finite-sample sign-based inference is also particularly adapted to regional data sets, which
have by nature fixed sample size.

8.1. Standard and Poor’s drift

We test the presence of a drift on the Standard and Poor’s composite price index (SP ),
1928-1987. That process is known to involve a large amount ofheteroskedasticity and
have been used by Gallant, Hsieh and Tauchen (1997) and Dufour and Valéry (2008) to fit
a stochastic volatility model. Here, we are interested in robust testing without modeling
the volatility in the disturbance process. The data set consists in a series of 16,127 daily
observations ofSPt, converted to price movements,yt = 100[log(SPt) − log(SPt−1)] and
adjusted for systematic calendar effects. We consider a model with a constant and a drift:

yt = a + bt + ut, t = 1, . . . , 16127, (8.1)

where we let the possibility that{ut : t = 1, . . . , 16127} presents a stochastic volatility or
any kind of nonlinear heteroskedasticity of unknown form. White and Breusch-Pagan tests
for heteroskedasticity both reject homoskedasticity at1%.15

15White: 499 (p-value=.000) ; BP: 2781 (p-value=.000).
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Table 5. Width of confidence intervals (for stationary cases)

yt = xtβ + ut, t = 1, . . . , T Proj. based SF Proj. based SHAC LADt-stat. with DMB LAD t-stat. with MBB LAD t-stat. with BT
T = 50 β

1
β

2
β

3
β

1
β

2
β

3
β

1
β

2
β

3
β

1
β

2
β

3
β

1
β

2
β

3

(β
1
, β

2
, β

3
) = (1, 2, 3) Models which satisfy the mediangale condition

C 1: av. spread 1.29 1.52 1.40 1.16 1.36 1.02 .81 .90 .89 .79 .88 .85 .82 .88 .87
ρu = ρx = 0 (st. dev.) (.21) (.27) (.29) (.14) (.28) (.29) (.23) (.21) (.22) (.21) (.24) (.24) (.15) (.19) (.22)
HOM cov. lev. 1.0 1.0 1.0 1.0 1.0 1.0 .97 .97 .97 .95 .96 .95 .97 .96 .96
C 2: .76 1.43 .74 .66 1.26 .48 .43 .94 .43 .42 .90 .41 .50 .92 .50
ρu = ρx = 0 (.14) (.29) (.17) (.15) (.28) (.18) (.09) (.24) (.11) (.10) (.27) (.12) (.11) (.29) (.11)
HET 1.0 1.0 1.0 1.0 1.0 1.0 .98 .97 .99 .97 .95 .97 .99 .95 .99
C 3: 1.26 1.37 1.05 1.15 1.24 .91 .92 .94 .98 .88 .98 1.04 .88 .88 .88
Outlier (.26) (.31) (.30) (.25) (.29) (.30) (.80) (.79) (1.29) (.67) (1.36) (2.73) (.17) (.20) (.24)

1.0 1.0 .98 1.0 .99 .96 .98 .98 .98 .97 .97 .97 .97 .98 .97
C 4: 50.4 58.5 57.3 49.5 55.9 56.1 30.6 33.4 25.9 35.0 38.3 41.5 29.3 32.6 32.3
Stat. (101) (118) (122) (100) (115) (117) (64.6) (74.6) (61) (76.7) (82.6) (84) (70.3) (76.9) (78)
GARCH(1,1) 1.0 1.0 .93 .99 .99 .94 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
C 5: 27.3 30.4 33.1 22.8 29.4 27 13.3 15.9 15.5 15.1 20.7 19.1 15.7 15.4 15.6
Stoc. Vol.: (14.4) (16.7) (18.1) (12.2) (17.6) (15.8) (6.4) (15.9) (15.5) (9.6) (28.0) (19.3) (7.5) (7.8) (7.5)

1.0 .98 1.0 1.0 1.0 1.0 .99 1.0 .99 .98 1.0 .99 .99 1.0 .99
C 6: 1.64 2.82 188.5 1.42 2.48 162.9 1.01 1.70 108.7 .99 1.64 104.2 1.03 1.68 105.67
Deb. des. mat.: (.29) (.50) (32.3) (.32) (.51) (34.4) (.26) (.36) (25.6) (.31) (.43) (27.7) (.21) (.33) (24.5)

1.0 1.0 1.0 1.0 1.0 1.0 .96 .98 .97 .94 .96 .96 .96 .96 .96
C 7: 2.20 2.75 2.59 1.88 2.33 1.95 1.25 1.47 1.47 1.21 1.41 1.42 1.39 1.52 1.53
Cauchy dist.: (.59) (.82) (.82) (.56) (.78) (.74) (.32) (.46) (.45) (.38) (.57) (.53) (.37) (.49) (.47)

1.0 1.0 1.0 1.0 1.0 .99 .98 .98 .98 .97 .98 .97 .99 .98 .99
Models which do not satisfy the mediangale condition

C 8: 1.59 1.71 1.46 1.63 1.47 1.05 .99 1.00 .94 1.17 .96 .86 1.23 .91 .81
ρu = .5, ρx = 0 (.30) (.32) (.30) (.38) (.31) (.28) (.25) (.26) (.24) (.34) (.26) (.23) (.36) (.23) (.21)
HOM .99 1.0 1.0 .99 1.0 .99 .86 .98 .99 .90 .97 .97 .91 .96 .95
C 9: 1.25 1.46 1.56 1.23 1.64 .99 .68 1.12 .96 .79 1.23 .96 .94 1.11 1.01
ρu = ρx = .5 (.31) (.40) (.40) (.41) (.51) (.35) (.17) (.33) (.24) (.24) (.42) (.26) (.33) (.55) (.36)
HET 1.0 .99 1.0 .98 .97 .94 .93 .88 .98 .95 .89 .98 .97 .83 .97
C 10: 2.46 2.42 2.69 3.00 2.00 2.41 1.52 1.41 1.51 2.46 1.56 1.53 2.89 1.21 1.27
ρu = .9, ρx = 0 (.84) (.82) (.95) (1.06) (.68) (.96) (.57) (.56) (.61) (1.00) (.60) (.63) (1.46) (.47) (.61)
HOM .68 .99 1.0 .74 1.0 .99 .47 .95 .98 .66 .97 .98 .71 .87 .91
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We derive confidence intervals for the two parameters with the Monte Carlo sign-based
method and we compare them with the ones obtained by Wald techniques applied to LAD
and OLS estimates. Then, we perform a similar experiment on two subperiods, the whole
year 1929 (291 observations) and on the last 90 opened days of1929, which roughly cor-
responds to the 4 last months of 1929 (90 observations), to investigate behaviors of the dif-
ferent methods in small samples. Due to the financial crisis,one may expect data to involve
heavy heteroskedasticity during this period. Let us remindthe Wall Street krach occurred
between October 24 (Black Thursday) and October 29 (Black Tuesday). Hence, the second
subsample corresponds to September, October with the krachperiod, and November and
December with the early beginning of the Great Depression. Heteroskedasticity tests reject
homoskedasticity for both subsamples.16

In Table 6, we report95% confidence intervals fora andb obtained by various methods:
finite-sample sign-based method (forSF andSHAC which involves a HAC correction);
LAD and OLS with different estimates of their asymptotic covariance matrices (order sta-
tistic, bootstrap, kernel...). If the mediangale Assumption 2.1 holds, the sign-based con-
fidence interval coverage probabilities are controlled. First, results on the drift are very
similar between methods. The absence of a drift cannot be rejected with5% level. But
results concerning the constant differ greatly between methods and time periods. In the
whole sample, the conclusions of Wald-tests based on the LADestimator differ depending
on the choice of the covariance matrix estimate. Concerningthe test of a positive constant,
Wald tests with bootstrap or with an estimate derived if observations arei.i.d. (OS covari-
ance matrix) which is totally illusory in that sample, reject, whereas Wald test with kernel
(so as sign-based tests) cannot reject the nullity ofa. This may lead the practitioner in a
perplex mind. Which is the correct test?

In all the considered samples, Wald tests based on OLS appearto be unreliable. Either,
confidence intervals are huge (see OLS results on both subperiods) either some bias is
suspected (see OLS results on the whole period). Take the constant parameter, on the one
hand, sign-based confidence intervals and LAD confidence intervals are rather deported to
the right, on the other hand, OLS confidence intervals seem tobe biased toward zero. This
may due to the presence of some influential observations. Moreover, the OLS estimate for
the whole sample is negative. In settings with arbitrary heteroskedasticity, least squares
methods should be avoided.

Sign-based tests seem really adapted for small samples settings. Let us examine the
third column of Table 6. The tightest confidence intervals for the constant parameter is
obtained for sign-based tests based on theSHAC statistic, whereas LAD (and OLS) ones
are larger. Note besides the gain obtained by usingSHAC instead ofSF in that setup. This
suggests the presence of autocorrelation in the disturbance process. In such a circumstance,

161929: White: 24.2,p-values: .000 ; BP: 126,p-values: .000; Sept-Oct-Nov-Dec 1929: White: 11.08,
p-values: .004; BP: 1.76,p-values: .18.
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finite-sample sign-based tests remain asymptotically valid such as Wald methods. However,
they are also corrected for the sample size and yield very different results.

8.2. β-convergence across U.S. States

With the neoclassical growth model as theoretical background, Barro and Sala-i-Martin
(1991) testedβ convergence between the levels of per capita output across 48 U.S. States
for different time periods between 1880 and 1988. They used nonlinear least squares to
estimate equations of the form

(1/T ) ln(yi, t/yi, t−T ) = a − [ln(yi, t−T )] × [(1 − e−βT )/T ] + x′
iδ + ǫt, T

i ,

i = 1, . . . , 48, T = 8, 10 or 20, t = 1900, 1920, 1930, 1940, 1950, 1960, 1970, 1980,
1988. Their basic equationdoes not include any other variables but they also consider a
specification with regional dummies (Eq. with reg. dum.). Thebasic equationassumes that
the 48 States share a common per capita level of personal income at steady state while the
second specification allows for regional differences in steady state levels. Their regressions
involve 48 observations and are run for each 20-year or 10-year period between 1880 and
1988. They tended to accept a positiveβ and concluded on a convergence between levels
of per capita personal income across U.S. States. However, both the NLLS method and
the Wald-type tests they performed are only asymptoticallyjustified and can be unreliable
for only 48 observations. This unreliability is strengthened here because the data suffer
from heteroskedasticity, departure from normality, presence of outliers and observations
with possibly high influence. Indeed, residual analysis show that departures from a normal
standard case are present in most periods (see Table 7).17 Only, the outstanding growth
period of 1960-1970 does not seem to show potential data problems. Similar results hold
for the equation with regional dummies. This survey highly reduces the validity of least
squares methods and suggests the need of a test, valid in finite samples and robust to het-
eroskedasticity of unknown form.

Hence, we propose to perform finite-sample based sign tests to see whether the conclu-
sion ofβ-convergence still holds. We consider the linear equation:

(1/T ) ln(yi, t/yi, t−T ) = a + γ[ln(yi, t−T )] + x′
iδ + ǫt, T

i (8.2)

wherexi contains regional dummies when included, and compute projection-based CI for
γ, a, and forβ = −(1/T ) ln(γT + 1) as a bijective transformation ofγ, in both specifi-
cations. We compare projection-based valid95%-confidence intervals forβ based on the
sign-based statisticSF with Barro and Sala-i-Martin nonlinear least squares asymptotic

17Omitted variables, misspecification of the model can also lead to similar conclusions, we do not consider
those problems here, which leads to entirely rethink the growth theory and the model.
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95%-confidence intervals (Table 8).
The results we find for the basic regression are close to thoseof Barro and Sala-i-Martin

(1991). We fail to rejectβ = 0 at5%-level, for the 1880-1900, 1920-1930, 1980-1988 pe-
riods, whereas Barro and Sala-i-Martin (1991) fail to reject β = 0 at5% (asymptotic)-level
for the 1920-1930 and 1980-1988 periods. Our results differonly for the 1880-1900 period.
That may be due to the strong heteroskedasticity and departure from normality affecting
least squares methods as we show in Table 7. When regional dummies are included, we
fail to rejectβ = 0 at 5%-level 7 times over 9 whereas Barro and Sala-i-Martin (1991)
fail to reject 3 times over 9. Finally, a positiveβ convergence seems to pass both NLLS-
based asymptotic tests and finite sample-based robust sign tests with the basic specification,
yielding to a strong argument in favor of the theory. However, that is no longer true for the
specification with regional dummies, which reduces the ideaof a strictly positiveβ conver-
gence with possibly different regional steady state levels. This also may in part be due to
the conservativeness of the projection-based method but there is no evidence that smaller
exact confidence intervals can be constructed.

9. Conclusion

In this paper, we have proposed an entire system of inferencefor the β parameter of a
linear median regression that relies on distribution-freesign-based statistics. We show that
the procedure yields exact tests in finite samples for mediangale processes and remains
asymptotically valid for more general processes includingstationary ARMA disturbances.
Simulation studies indicate that the proposed tests and confidence sets are more reliable
than usual methods (LS, LAD) even when using the bootstrap. Despite the programming
complexity of sign-based methods, we advocate their use when arbitrary heteroskedasticity
is suspected in the data and the number of available observations is small. Finally we have
presented two practical examples: we test the presence of a drift on the S&P price index,
for the whole period 1928-1987 and for shorter subsamples. And, we reinvestigate whether
aβ-convergence between levels of per capita personal income across U.S. States occurred
between 1880 and 1988.
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Appendix

A. Proofs

Proof of Proposition 2.1. We use the fact that, as{Xt : t = 1, 2, . . . } is strongly exoge-
nous,{ut : t = 1, 2, . . . } does not Granger cause{Xt : t = 1, 2, . . . }. It follows directly
that l(st|ut−1, . . . , u1, xt, . . . , x1) = l(st|ut−1, . . . , u1, xn, . . . , x1) wherel stands for the
density ofst = s(ut).

Proof of Proposition 3.2. Consider the vector[s(u1), s(u2), . . . , s(un)]
′ ≡

(s1, s2, . . . , sn)
′. From Assumption 2.1, we derive the two following equalities:

P[ut > 0|X] = E(P[ut > 0|ut−1, . . . , u1, X]) = 1/2,

P[ut > 0|st−1, . . . , s1, X] = P[ut > 0|ut−1, . . . , u1, X] = 1/2, ∀t ≥ 2.

Further, the joint density of(s1, s2, . . . , sn)
′ can be written:

l(s1, s2, . . . , sn|X) =
n
∏

t=1

l(st|st−1, . . . , s1, X)

=

n
∏

t=1

P[ut > 0|ut−1, . . . , u1, X](1−st)/2{1 − P[ut > 0|ut−1, . . . , u1, X]}(1+st)/2

=

n
∏

t=1

(1/2)(1−st)/2[1 − (1/2)]](1+st)/2 = (1/2)n.

Hence, conditional onX, s1, s2, . . . , sn
i.i.d.∼ B(1/2).

Proof of Proposition 3.3. Consider model (2.1) with{ut : t = 1, 2, . . .} satisfying a weak
mediangale conditional onX. Let show that̃s(u1), s̃(u2), . . . , s̃(un) can have the same
role in Proposition3.2ass(u1), s(u2), . . . , s(un) under Assumption 2.1. The randomized
signs are defined bỹs(ut, Vt) = s(ut) + [1 − s(ut)

2]s(Vt − .5), hence

P[s̃(ut, Vt) = 1|ut−1, . . . , u1, X] = P[s(ut)+[1−s(ut)
2]s(Vt−.5) = 1|ut−1, . . . , u1, X].

As (V1, . . . , Vn) is independent of(u1, . . . , un) andVt ∼ U(0, 1), it follows

P[s̃(ut, Vt) = 1] = P[ut > 0|ut−1, . . . , u1, X] +
1

2
P[ut = 0|ut−1, . . . , u1, X]. (A.1)
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The weak conditional mediangale assumption givenX entails:

P[ut > 0|ut−1, . . . , u1, X] = P[ut < 0|ut−1, . . . , u1, X] =
1 − pt

2
, (A.2)

wherept = P[ut = 0|ut−1, . . . , u1, X]. Substituting (A.2) into (A.1) yields

P[s̃(ut, Vt) = 1|ut−1, . . . , u1, X] =
1 − pt

2
+

pt

2
=

1

2
. (A.3)

In a similar way,
P[s̃(ut, Vt) = −1|ut−1, . . . , u1, X] = 1/2. (A.4)

The rest is similar to the proof of Proposition3.2.

Proof of Proposition 4.1. Let us consider first the case of a single explanatory variable case
(p = 1) which contains the basic idea for the proof. The case withp > 1 is just an adapta-
tion of the same ideas to multidimensional notions. Under model (2.1) with the mediangale
Assumption 2.1, the locally optimal sign-based test (conditional onX) of H0(β) : β = 0
againstH1(β) : β 6= 0 is well defined. Among tests with levelα, the power function of
the locally optimal sign-based test has the highest slope around zero. The power function
of a sign-based test conditional onX can be writtenPβ[s(y) ∈ Wα|X], whereWα is the
critical region with levelα. Hence, we should include inWα the sign vectors for which
d
dβ

Pβ[S(y) = s|X]β=0, is as large as possible. An easy way to determine that derivative, is
to identify the terms of a Taylor expansion around zero. Under Assumption 2.1, we have

Pβ [S(y) = s|X] =
n
∏

i=1

[Pβ(yi > 0|X)](1+si)/2[Pβ(yi < 0|X)](1−si)/2 (A.5)

=
n
∏

i=1

[1 − Fi(−xiβ|X)](1+si)/2[Fi(−xiβ|X)](1−si)/2. (A.6)

Assuming that continuous densities at zero exist, a Taylor expansion at order one entails:

Pβ[S(y) = s|X] =
1

2n

n
∏

i=1

[1 + 2fi(0|X)xisiβ + o(β)] (A.7)

=
1

2n

[

1 + 2
n
∑

i=1

fi(0|X)xisiβ + o(β)

]

. (A.8)

All other terms of the product decomposition are negligibleor equivalent too(β). That

34



allows us to identify the derivative atβ = 0:

d

dβ
Pβ=0[S(y) = s|X] = 2−n+1

n
∑

i=1

fi(0|X)xisi . (A.9)

Therefore, the required test has the form

Wα =
{

s = (s1, . . . , sn)|
∣

∣

∣

∣

∣

n
∑

i=1

fi(0|X)xisi

∣

∣

∣

∣

∣

> cα

}

, (A.10)

or equivalently,Wα = {s|s(y)′X̃X̃ ′s(y) > c′α} , wherecα andc′α are defined by the signif-
icance level. When the disturbances have a common conditional density at zero,f(0|X),
we find the results of Boldin et al. (1997). The locally optimal sign-based test is given by
Wα = {s|s(y)′XX ′s(y) > c′α} . The statistic does not depend on the conditional density
evaluated at zero.

Whenp > 1, we need an extension of the notion of slope around zero for a multidimen-
sional parameter. Boldin et al. (1997) propose to restrict to the class of locally unbiased
tests with given levelα and to consider the maximal mean curvature. Thus, a locally unbi-

ased sign-based test satisfies,dPβ(Wα)

dβ

∣

∣

∣

β=0
= 0, and, asf ′

i(0) = 0, ∀i, the power function

around zero is determined by the quadratic term of its Taylorexpansion:

β ′1

2

(

d2Pβ(Wα)

dβ2

)

β =
1

2n−2

∑

1≤i6=

∑

j≤n

[fi(0|X)siβ
′xi][fj(0|X)sjx

′
jβ]. (A.11)

The locally most powerful sign-based test in the sense of themean curvature maximizes

the mean curvature which is, by definition, proportional to the trace ofd
2Pβ(Wα)

dβ2

∣

∣

∣

β=0
; see

Boldin, Simonova, and Tiurin (p. 41, 1997), Dubrovin, Fomenko, and Novikov (ch. 2, pp.
76-86, 1984) or Gray (ch. 21, pp. 373-380,1998). Taking the trace in expression (A.11),
we find (after some computations) that

tr

(

d2Pβ(Wα)

dβ2

∣

∣

∣

∣

β=0

)

=
∑

1≤i6=

∑

j≤n

fi(0|X)fj(0|X)sisj

p
∑

k=1

xikxjk . (A.12)

By adding the independent ofs quantity
∑n

i=1

∑p
k=1 x2

ik to (A.12), we find

p
∑

k=1

(

n
∑

i=1

xikfi(0|X)si

)2

= s′(y)X̃X̃ ′s(y) . (A.13)
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Hence, the locally optimal sign-biased test in the sense developed by Boldin et al. (1997) for
heteroskedastic signs, isWα = {s : s′(y)X̃X̃ ′s(y) > c′α} . Another quadratic test statistic
convenient for large-sample evaluation is obtained by standardizing byX̃ ′X̃: Wα = {s :
s′(y)X̃(X̃ ′X̃)−1X̃ ′s(y) > c′α}.

Proof of Theorem 6.1. This proof follows the usual steps of an asymptotic normality result
for mixing processes [see White (2001)]. Consider model (2.1). In the following,st stands
for s(ut). Under Assumption 6.4,V −1/2

n exists for anyn. SetZnt = λ′V
−1/2
n x′

ts(ut), for
someλ ∈ R

p such thatλ′λ = 1. The mixing property 6.1 of(x′
t, ut) gets transmitted

to Znt; see White (2001), Theorem 3.49. Hence,λ′V
−1/2
n s(ut) ⊗ xt is α-mixing of size

−r/(r − 2), r > 2. Assumptions 6.2 and 6.3 imply

E[λ′V −1/2
n x′

ts(ut)] = 0, t = 1, . . . , n, ∀n ∈ N . (A.14)

E|λ′V −1/2
n x′

ts(ut)|r < ∆ < ∞, t = 1, . . . , n, ∀n ∈ N . (A.15)

Note also that

Var

(

1√
n

n
∑

t=1

Znt

)

= Var

[

1√
n

n
∑

t=1

λ′V −1/2
n s(ut) ⊗ xt

]

= λ′V −1/2
n VnV −1/2

n λ = 1 .

(A.16)
The mixing property ofZnt and equations (A.14)-(A.16) allow one to apply a central limit
theorem [see White (2001), Theorem 5.20] that yields

1√
n

n
∑

t=1

λ′V −1/2
n s(ut) ⊗ xt → N (0, 1) . (A.17)

Sinceλ is arbitrary withλ′λ = 1, the Cramér-Wold device entails

V −1/2
n n−1/2

n
∑

t=1

s(ut) ⊗ xt → N (0, Ip) . (A.18)

Finally, Assumption 6.5 states thatΩn is a consistent estimate ofV −1
n . Hence,

n−1/2Ω1/2
n

n
∑

t=1

s(ut) ⊗ xt → N (0, Ip) (A.19)

andn−1s′(y − Xβ0)XΩnX ′s(y − Xβ0) → χ2(p).
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Proof of Corollary 6.2. Let Ft = σ(y0, . . . , yt, x
′
0, . . . , x′

t). When the mediangale
Assumption 2.1 holds,{s(ut) ⊗ xt,Ft : t = 1, . . . , n} belong to a martingale dif-

ference with respect toFt . Hence,Vn = Var
[

1√
n
s ⊗ X

]

= 1
n

∑n
t=1 E(xtsts

′
tx

′
t) =

1
n

∑n
t=1 E(xtx

′
t) = 1

n
E(X ′X), andX ′X/n is a consistent estimate ofE(X ′X/n). The-

orem6.1yieldsSF (β0) → χ2(p).

In order to prove Theorem6.3, we will use the following lemma on the uniform con-
vergence of distribution functions [see Chow and Teicher (1988, sec. 8.2, p. 265)].

Lemma A.1 Let (Fn)n∈N andF be right continuous distribution functions. Suppose that
Fn(x) →

n→∞
F (x), ∀x ∈ R. Then, sup

−∞<x<+∞
|Fn(x) − F (x)| →

n→∞
0.

Proof of Theorem 6.3. G(−∞) = G̃n(−∞) = 0, G(+∞) = G̃n(+∞) = 1, and
G̃n

(

x|Xn(ω)
)

→ G(x) a.e.. By LemmaA.1, (G̃n)nN converges uniformly toG. The
same holds forGn. Moreover,G̃n can be rewritten as

G̃n

(

cnSn(β0)|Xn

)

=
[

G̃n

(

cnSn(β0)|Xn(ω)
)

− G
(

cnSn(β0)
)]

+
[

G
(

cnSn(β0)
)

− Gn

(

cnSn(β0)|Xn(ω)
)]

+ Gn

(

cnSn(β0)|Xn

)

,

hence
Gn

(

cnSn(β0)|Xn

)

= G̃n

(

cnSn(β0)|Xn

)

+ op(1). (A.20)

As cnS
n
0 is a discrete positive random variable andGn, its survival function is also discrete.

It directly follows from properties of survival functions,that for eachα ∈ Im
(

Gn(R+)
)

,
i.e. for each point of the image set, we have

P
[

Gn

(

cnSn(β0)
)

≤ α
]

= α. (A.21)

Consider now the case whenα ∈ (0, 1)\Im
(

Gn(R+)
)

. α must be between the two values
of a jump of the functionGn. SinceGn is bounded and decreasing, there existα1, α2 ∈
Im
(

Gn(R+)
)

, such thatα1 < α < α2 and

P
[

Gn

(

cnSn(β0)
)

≤ α1

]

≤ P
[

Gn

(

cnSn(β0)
)

≤ α
]

≤ P
[

Gn

(

cnSn(β0)
)

≤ α2

]

.

More precisely, the first inequality is an equality. Indeed,

P
[

Gn

(

cnSn(β0)
)

≤ α
]

= P
[

{Gn

(

cnSn(β0)
)

≤ α1} ∪ {α1 < Gn

(

cnSn(β0)
)

≤ α}
]

= P
[

Gn

(

cnSn(β0)
)

≤ α1

]

+ 0,
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as{α1 < Gn

(

cnSn(β0)
)

≤ α} is a zero-probability event. Applying (A.21) toα1,

P
[

Gn

(

cnSn(β0)
)

≤ α
]

= P
[

Gn

(

cnSn(β0)
)

≤ α1

]

= α1 ≤ α. (A.22)

Hence, forα ∈ (0, 1), we haveP
[

Gn

(

cnSn(β0)
)

≤ α
]

≤ α. The latter combined with
equation (A.20) allows us to conclude

P
[

G̃n

(

cnSn(β0)
)

≤ α
]

= P
[

Gn

(

cnSn(β0)
)

≤ α
]

+ op(1) ≤ α + op(1).

Proof of Theorem 6.4. Let S(0)
n be the observed statistic andSn(N) = (S

(1)
n , . . . , S

(N)
n ),

a vector ofN independent replicates drawn from̃Fn(x). Usually, validity of Monte Carlo
testing is based on the fact the vector(cnS

(0)
n , . . . , cnS

(N)
n ) is exchangeable. Indeed, in that

case, the distribution of ranks is fully specified and yieldsthe validity of empiricalp−value
[see Dufour (2006)]. In our case, it is clear that(cnS

(0)
n , . . . , cnS

(N)
n ) is not exchange-

able, so that Monte Carlo validity cannot be directly applied. Nevertheless, asymptotic
exchangeability still holds, which will enable us to conclude. To obtain that the vector
(cnS

(0)
n , . . . , cnS

(N)
n ) is asymptotically exchangeable, we show that for any permutation

π : [1, N ] → [1, N ],

lim
n→∞

P[S(0)
n ≥ t0, . . . , S(N)

n ≥ tN ] − P[Sπ(0)
n ≥ t0, . . . , Sπ(N)

n ≥ tN ] = 0.

First, let rewrite

P[S(0)
n ≥ t0, . . . , S(N)

n ≥ tN ] = EXn{P[S(0)
n ≥ t0, . . . , S(N)

n ≥ tN , Xn = xn]}.

The conditional independence of the sign vectors (replicated and observed) entails:

P[S(0)
n ≥ t0, . . . , S(N)

n ≥ tN , Xn = xn] = P[Xn = xn]
N
∏

i=0

P[S(i)
n ≥ ti|Xn = xn]

= Gn(t0|Xn = xn)

N
∏

i=1

G̃n(ti|Xn = xn).

As each survival function converges with probability one toG(x), we finally obtain

P[S(0)
n ≥ t0, S(1)

n ≥ t1, . . . , S(N)
n ≥ tN , Xn = xn] →

N
∏

i=0

G(ti)with probability one.
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Moreover, it is straightforward to see that forπ : [1, N ] → [1, N ], we have asn → ∞:

P[S(0)
n ≥ tπ(0), Sπ(1)

n ≥ t1, . . . , Sπ(N)
n ≥ tN , Xn = xn] →

N
∏

i=0

G(ti)with probability one.

Note that asG(t) is not a function of the realizationX(ω) so that

lim
n→∞

P[S(0)
n ≥ t0, . . . , S(N)

n ≥ tN ] − P[Sπ(0)
n ≥ t0, . . . , Sπ(N)

n ≥ tN ] = 0.

Hence, we can apply an asymptotic version of Proposition 2.2.2 in Dufour (2006) that
validates Monte Carlo testing for general possibly noncontinuous statistics. The proof of
this asymptotic version follows exactly the same steps as the proofs of Lemma 2.2.1 and
Proposition 2.2.2 of Dufour (2006). We just have to replace the exact distributions of
randomized ranks, the empirical survival functions and theempiricalp−values by their
asymptotic counterparts and this is sufficient to conclude.Suppose thatN , the number of
replicates is such thatα(N + 1) is an integer. Then,limn→∞ p̃N

n (cnS
(0)
n ) ≤ α.
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B. Detailed analysis of Barro and Sala-i-Martin data set

This appendix contains additional results for the Barro andSala-i-Martin application. Table
9 contains results of heteroskedasticity tests. Complementary sign-based inference results
for the model parameters are reported in Table 10.
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Table 6. S&P price index: 95 % confidence intervals

Whole sample Subsamples
Constant parameter (a) (16120 obs) 1929 (291 obs) 1929 (90 obs)
Methods
Sign

SF statistics [-.007, .105] [-.226, .522] [-1.464, .491]
SHAC statistics [-.007, .106] [-.135, .443] [-.943, .362]

LAD (estimate) (.062) (.163) (-.091)
with OS cov. matrix est. [.033, .092] [-.144, .470] [-1.015, .832]
with DMB cov. matrix est. [.007, .117] [-.139, .464] [-1.004, .822]
with MBB cov. matrix est. (b=3) [.008, .116] [-.130, .456] [-1.223, 1.040]
with kernel cov. matrix est. (Bn=10) [-.019, .143] [-.454, -.780] [-1.265, 1.083]

OLS (-.005) (.224) (-.522)
with iid cov. matrix est. [-.041, .031] [-.276, .724] [-2.006, .962]
with DMB cov. matrix est. [-.054, .045] [-.142, .543] [-1.335, .290]
with MBB cov. matrix est. (b=3) [-.056, .046] [-.140, .588] [-1.730, .685]

Drift parameter ( b)
Methods ×10−5 ×10−2 ×10−1

Sign
SF statistics [-.676, .486] [-.342, .344] [-.240, .305]
SHAC statistics [-.699 , .510] [-.260, .268] [-.204, .224]

LAD (.184) (.000) (-.044)
with OS cov. matrix est. [-.504 , .320 ] [-.182, .182] [-.220, .133]
with DMB cov. matrix est. [-.688 , .320 ] [-.256, .255] [-.281, .194]
with MBB cov. matrix est. (b=3) [-.681 , .313] [-.236, .236] [-.316, .229]
with kernel cov. matrix est. [-.671, -.104] [-.392, .391] [-.303, .215]

OLS (.266) (-.183) (.010)
with iid cov. matrix est. [-.119 , .651] [-.480, .113] [-.273, .293]
with DMB cov. matrix est. [-.213 , .745 ] [-.544, .177] [-.148, .169]
with MBB cov. matrix est. (b=3) [-.228 , .761] [-.523, .156] [-.250, .270]
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Table 7. Regressions for personal income across U.S. States: regression diagnostics

Period Heteroskedasticity.* Nonnormality** Influent. obs.** Possible outliers**
Basic eq. Eq Reg.

Dum.
1880-1900 yes - yes - yes yes no no
1900-1920 yes yes yes yes yes yes yes (MT) yes
1920-1930 - - - - yes - no no
1930-1940 - - yes - yes yes no no
1940-1950 - - - - yes yes yes (VT) yes (VT)
1950-1960 - - - yes yes yes yes (MT) yes (MT)
1960-1970 - - - - - - no no
1970-1980 - - yes yes yes yes yes (WY) yes (WY)
1980-1988 yes - - yes yes yes yes (WY) yes (WY)

* White and Breusch-Pagan tests for heteroskedasticity areperformed. If at least one test rejects at5%

homoskedasticity, a “yes” is reported in the table, else a “-” is reported, when tests are both nonconclusive.

** Scatter plots, kernel density, leverage analysis, Studentized or standardized residuals> 3, DFbeta and

Cooks distance have been performed and lead to suspicions for nonnormality, outlier or high influential

observation presence.

Table 8. Regressions for personal income across U.S. States: 95% -confidence intervals

Period Basic equation Eq. with reg. dum.

β SIGN (SF) NLLS* SIGN (SF) NLLS*
1880-1900: [95%CI] [-.0010, .0208] [.0058, .0532] [-.0033, .0251] [.0146, .0302]

(βNLLS) (.0101) (.0224)
1900-1920: [.0092, .0313] [.0155, .0281] [ -.0081, .0558] [.0086, .0332]

(.0218) (.0209)
1920-1930: [-.0301, .0018] [-.0249, -.0049] [-.0460, .0460] [-.0267, .0023]

(-.0149) (-.0122)
1930-1940: [.0043, .0234] [.0082, .0200] [ -.0187, .0377] [.0027, .0227]

(.0141) (.0127)
1940-1950: [.0291, .0602] [.0372, .0490] [.0082, .0620] [.0314, .0432]

(.0431) (.0373)
1950-1960: [.0084, .0352] [.0121, .0259] [.0007, .0506] [.0100, .0304]

(.0190) (.0202)
1960-1970: [.0099, .0377] [.0170, .0322] [-.0112, .0431] [.0047, .0215]

(.0246) (.0131)
1970-1980: [.0021, .0346] [.0076, .0320] [-.0227, .0721] [-.0016, .0254]

(.0198) (.0119)
1980-1988: [-.0552, .0503] [-.0315, .0195] [-.0467, .0754] [-.0273, .0173]

(-.0060) (-.0050)

* Barro and Sala-i-Martin (1991) NLLS results are reported in those two columns.
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Table 9. Regressions for personal income across U.S. States, 1880-1988: tests for
heteroskedasticity.

Period Basic equation Eq. with reg. dum.
p-values White test Breusch-Pagan test White test Breusch-Pagan test

1880-1900 .018 .652 .249 .830

1900-1920 .023 .043 .069 .050

1920-1930 .723 .398 .435 .557

1930-1940 .673 .633 .537 .601

1940-1950 .243 .943 .513 .272

1950-1960 .595 .223 .740 .221

1960-1970 .205 .247 .236 .441

1970-1980 .641 .675 .777 .264

1980-1988 .058 .022 .080 .226
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Table 10. Regressions for personal income across U.S. States, 1880-1988: complementary
results.

Period Basic equation Eq. with reg. dum.

Variable: constant (a) 95% projection-based CI(a)

1880-1900 [-.0147, -.0020] [.0206, .0005]

1900-1920 [-.0205, -.0084] [-.0431, .0095]

1920-1930 [-.0018, .0328] [-.0351, .0589]

1930-1940 [-.0232, -.0042] [-.0443, .0221]
1940-1950 [-.0452, -.0258] [-.0517, -.0070]

1950-1960 [-.0297, -.0080] [-.0435, .0043]

1960-1970 [-.0314, .0088] [-.0345, .0119]

1970-1980 [-.0296, -.0020] [-.0478, .0288]

1980-1988 [-.0414, .0695] [-.0563, .0566]

Variable: ln(y) (γ) 95% projection-based CI(a)

1880-1900 [-.0170, .0010] [-.0197, .0034]

1900-1920 [-.0233, -.0084] [-.0336, .0088]

1920-1930 [-.0018, .0351] [-.0369, .0584]

1930-1940 [-.0209, -.0042] [-.0314, .0206]

1940-1950 [-.0452, -.0253] [-.0462, .0079]
1950-1960 [-.0297, -.0080] [-.0397, -.0007]

1960-1970 [-.0314, -.0094] [-.0350, .0119]

1970-1980 [-.0292, -.0020] [-.0514, .0255]

1980-1988 [-.0414, .0695] [-.0566, .0566]
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C. Compared inference methods in simulations

Two sign-based statisticsare studied ins Section 7: one adapted for the mediangale process,

SF (β0) = DS(β0, (X ′X)−1) = s(y − Xβ0)
′X(X ′X)−1X ′s(y − Xβ0) (C.1)

and one corrected for serial dependence,

SHAC = DS(β0, Ĵ−1
n ) = s(y − Xβ0)

′XĴ−1
n X ′s(y − Xβ0) (C.2)

where

Ĵn =
n

n − p

n−1
∑

j=−n+1

k

(

j

Bn

)

Γ̂n(j), (C.3)

with

Γ̂n(j) =

{

1
n

∑n
t=j+1 Vt(β0)V

′
t−j(β0) for j ≥ 0

1
n

∑n
t=−j+1 Vt+j(β0)V

′
t (β0) for j < 0,

(C.4)

andVt(β0) = s(yt−x′
tβ0)×xt, t = 1, . . . , n andk(·) is a real-valued kernel, here Bartlett

kernel is used with an automatically adjusted bandwidth parameterBn [Andrews (1991)].
Sign-based tests are compared to LR and Wald-type tests based on OLS andLAD

estimators with different covariance matrix estimators. Wald-type statistics for testing
H0(β0) : β = β0 are of the formn(β̂ − β0)D̂

−1
n (β̂ − β0) whereD̂n is an estimate of

the asymptotic covariance matrix forβ̂.
TheOLS estimator is computed in GAUSS:β̂OLS = (X ′X)−1X ′y. Both classic i.i.d.

andWhite covariance matrix estimatorsare considered.WH asymptotic covariance matrix
estimator is corrected for heteroskedasticity but not for linear dependence:

D̂WH(β̂OLS) =

(

1

T

∑

xtx
′
t

)−1(
1

T (T − k)

∑

û2
txtx

′
t

)(

1

T

∑

xtx
′
t

)−1

.

TheLAD estimator is computed in GAUSS by the qreg procedure, which uses a mini-
mization by interior point method:̂βLAD = arg min

∑n
t=1 |yt − x′

tβ|. The followingLAD
covariance matrix estimators are considered:
The order statistic estimator (OS) [see Chamberlain (1994), Buchinsky (1995, 1998)],
which is valid for i.i.d observations, is used as a benchmark. Fori.i.d observations, the
LAD covariance matrix reduces to

D(β̂LAD) =
1

4f 2
u(0)

(E[xx′])−1 = σ2
LAD(E[xx′])−1,

wherefu stands for the density ofut. An estimate forσLAD can be constructed from a
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confidence interval for the sample median,i.e., then/2-th order statistic. lety1, y2, . . . , yn

be independent random observations with distribution functionFy(.) andy(j), y(k), thej−th
and thek−th order statistics ofy1, y2, . . . , yn. Note thatP[y(j) ≤ ξ1/2] =

∑n
i=j Ci

n(1/2)n,
which entails

P[y(j) ≤ ξ1/2 ≤ y(k)] = P[y(j) ≤ ξ1/2] − P[y(k) < ξ1/2] =
k−1
∑

i=j

Ci
n(1/2)n.

A symmetric confidence interval with level1 − α can be constructed as follows. Letj =
int(n/2− l), k = int(n/2+ l) andX ∼ B(n, 1/2), with E[X] = n/2 andvar(X) = n/4.
Then,

P[Yint(n/2−l) ≤ ξ1/2 ≤ Yint(n/2+l)] = P[int(n/2) − l ≤ X ≤ int(n/2) + l]

= P

[

X − n/2
√

n/4
≤ l
√

n/4

]

.

A central limit theorem,X−n/2√
n/4

→ N (0, 1) entails thatl = Z1−α/2

√

n/4 whereZ1−α/2

is the1 − α/2th quantile of a standard normal distribution. Approachingthe width of
the exact confidence interval by that of asymptotic confidence interval givesσ̂2

LAD =
n(Yint(n/2+l)−Yint(n/2−l))

2

4Z2
1−α/2

. Finally,D(β̂LAD) can be estimated by,

D̂OS(β̂LAD) = σ̂2
LAD

(

1

n

n
∑

i=1

xix
′
i

)−1

.

Design matrix bootstrap centering around the sampleLAD estimate (DMB) is also con-
sidered [see Buchinsky (1995, 1998)]. Let(y∗

i , x
∗
i ), i = 1, . . . , m be a randomly drawn

sample from the empirical distribution functionFnxy. Let β̂
∗
LAD be the bootstrap estimate

obtained from a LAD regression ofy∗ on X∗. This process is carried outB times and
yieldsB bootstrap estimates,̂β

∗
LAD1, β̂

∗
LAD2, . . . , β̂

∗
LADB. The design matrix bootstrap

asymptotic covariance matrix estimator is given by,

D̂DMB =
m

n

{

n

B

B
∑

j=1

(β̂
∗
LADj − β̂LAD)(β̂

∗
LADj − β̂LAD)′

}

. (C.5)

The moving block bootstrap centering around the sample estimate (MBB) was pro-
posed by Fitzenberger (1997b). Basically, blocks of fixed sizeb are bootstrapped in-
stead of individual observations.q = T − b + 1 blocks of observations of sizeb,
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Bi = ((yi, xi), . . . , (yi+b, xi+b)) are defined.m blocks, drawn from the initial sample,
constitute a bootstrapped sampleZj of sizem × b. From eachZj, j = 1, . . . , B, aLAD

regression is performed yielding the estimateβ̂
∗j
LAD. The MBB estimator of theLAD

asymptotic covariance matrix can then be approached thanksto the bootstrap paradigm, by

D̂MBB(β̂LAD) =
mb

B

{

B
∑

j=1

(β̂
∗
LADj − β̂LAD)(β̂

∗
LADj − β̂LAD)′

}

. (C.6)

Both forOLS andLAD estimatorsBartlett kernel covariance matrix estimators with auto-
matic bandwidth parameter(BT ) are also considered [see Parzen (1957), Newey and West
(1987), Andrews (1991)] with a methodology similar to the one presented previously for
deriving theSHAC-sign statistic.

Finally, theLR statistic[see Koenker and Bassett (1982)] has the following form:

4f̂u(0)
[

∑

|yi − x′
iβ0| −

∑

|yi − x′
iβ̂LAD|

]

(C.7)

where anOS estimate is used for̂fu(0).
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