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Abstract 

This article derives necessary and sufficient conditions for noncausality between two 
vectors of variables in stationary invertible ARMA processes. Earlier conditions 
proposed by Boudjellaba, Dufour, and Roy (1992a) are shown to hold under weaker 
regularity assumptions and then generalized to cover the important case where the two 
vectors do not necessarily embody all the variables considered in the analysis. The 
conditions so obtained can be considerably simpler and easier to implement than earlier 
ones. Testing of the conditions derived is also discussed and the results are applied to 
a model of Canadian money, income, and interest rates. 

Kq brords: Granger causality; Multivariate ARMA process; Causality test 
JEL classification: C22; C5; E4; E3 

1. Introduction 

Granger (1969) has proposed a definition of causality between time series 
which has been applied frequently. Most of the literature on this topic is 
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concerned with bivariate relationships or uses finite-order autoregressive (AR) 
specifications; see the reviews of Pierce and Haugh (1977), Newbold (1982) 
Geweke (1984), Gourieroux and Monfort (1990, Ch. X), and Liitkepohl (1991). 
In this paper, we study causality in the more general framework of multivariate 
autoregressive moving average (ARMA) models. While AR models are relatively 
easy to estimate (hence their popularity), ARMA models have two important 
advantages. First, ARMA models can be considerably more parsimonious than 
AR models, and may thus lead to more efficient forecasts as well as more 
powerful tests. For example, it is easy to see that a large number of parameters 
may be required for an AR model to approximate even a low-order moving 
average model (which is autoregressive of infinite order). For earlier work on 
causality based on finite-order AR specifications, the reader may consult Sims 
(1980a, b), Hsiao (1979, 1982) Litterman and Weiss (1985) and Liitkepohl 
(1991). Second, any subvector of a stationary ARMA process still follows an 
ARMA process (of possibly different order), while a subvector of an AR process 
does not generally follow an AR process (but an ARMA): the class of ARMA 
models is invariant to disaggregation, while AR models are not, and thus 
provides a more coherent modelling framework.’ 

Earlier work on the analysis and testing of causality in the context of 
multivariate ARMA models can be found in Boudjellaba, Dufour, and Roy 
(1992a) hereafter referred to as BDR, Eberts and Steece (1984), Kang (1981), 
Newbold (1982), Newbold and Hotopp (1986) Osborn (1984) and Taylor 
(1989). Kang (1981) derived a necessary and sufficient condition for non- 
causality in a general bivariate ARMA model and suggested that a likelihood 
ratio test could be based on this condition. Similarly, Newbold (1982) suggested 
using a likelihood ratio to test a sufficient condition for noncausality in a bivari- 
ate ARMA model, while Eberts and Steece (1984) and Taylor (1989) studied 
Wald, likelihood ratio, and Rao score tests for the Kang’s conditions. In the 
multivariate case with more than two variables, Osborn (1984) examined Gran- 
ger causality by rewriting the model so that the autoregressive polynomials are 
the same for all variables. This approach, however, does not take into account 
all the constraints implied by the ARMA specification and may easily lead to the 
estimation of an unduly large number of parameters. After giving a formulation 
of the concept of causality in a multivariate situation which is equivalent but 
more convenient than the one given by Tjostheim (1981) BDR derived a neces- 
sary and sufficient condition for noncausality between two vectors in linear 
invertible processes and applied it to stationary invertible ARMA processes (see 
also Boudjellaba, 1988). For ARMA processes, they also obtained simpler 
conditions in two special cases: (1) the case where the two 

’ For further discussion of the relationship between AR specifications, disaggregation, and causality, 
see Florens, Mouchart, and Rolin (1993). 
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vectors reduce to two variables and (2) the case where the two vectors embody 
all the variables considered in the analysis. These conditions are considerably 
more tractable from the point of view of implementing tests and take into 
account all the constraints typically imposed by an ARMA specification. 

The main purpose of this paper is to derive simplified conditions, similar to 
those in BDR, for the general case where the two vectors of variables do not 
necessarily embody all the variables considered in the analysis. By the same 
occasion, we also show that two of the theorems already provided in the latter 
paper (Theorems 2 and 3) are valid under weaker regularity conditions, where 
an invertibility condition associated with the moving average operator has been 
suppressed. 

The organization and main results of the paper are as follows. In Section 2, we 
first report slightly less restrictive versions of two theorems obtained in BDR, 
and then provide generalizations of these results by giving new and relatively 
simple necessary and sufficient conditions for noncausality between subvectors 
inside of a system of arbitrary dimension. Section 3 discusses the empirical 
testing of the conditions derived. In particular, we point out that the multilinear 
form of the restrictions may lead to nonregular asymptotic distributions (for 
certain points of the parameter space), a difficulty similar to the one observed in 
BDR. Such problems can be dealt with by considering subsets of the restrictions 
(necessary conditions) or by using sequential test strategies. Finally, in Section 4, 
we present an application of our results to data on two Canadian monetary 
aggregates (Ml and M2), income, and interest rates. Contrary to the results in 
BDR, which did not use an interest rate variable and suggested unidirectional 
causality from the monetary aggregates to income, the analysis presented here 
strongly suggests the presence of bidirectional causality (feedback) between 
money and income. We also find feedback between money and interest rates. 

2. Causality in multivariate ARMA processes 

Let {X,: t E Z} be a n x 1 multivariate stochastic process on the integers Z, 
with finite second moments, and write X, = (Xi,, Xi,, Xi,)‘, where Xi, is a vector 
of dimension nix 1 (nl 3 1, n2 3 1, n3 > 0), X1, = (Xl,, . . . ,X,,,)‘, and 

x2t = (X nl+l.t, “’ 3 X n,+nz,t)‘; when n3 = 0, we set X, = (X;,, Xi,)’ and 
(Xi,, Xi,)’ = Xzt. The vectors X1, and X2, contain variables of interest between 
which we want to study causality relationships, while X3t is a (possibly empty) 
vector of auxiliary variables that are also used as information to obtain 
forecasts. Further, let Ix(t) be the Hilbert space generated by the components of 
X, for z < t (with covariance as the inner product, and let Ix, - (t) be the closed 
subspace of Ix(t) generated by the components of (Xi,, Xi,) for 7 < t. The sets 
Ix(t) and Ix,-(t) may be described as ‘information sets’. For any subspace I,_ 1 of 
Ix(t - 1) and for nl + 1 d id nl + n2, we denote P(Xi, 1 Ztml) the affine 
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projection of Xi, on 1,-i (i.e., the best linear prediction of Xi, based on the 
variables in I,_, and a constant variable), ei,(Xi, 1 I,_ ,) = Xi, - P(Xi, 1 I,_ i), 

a’(Xi, I I,- 1) = E(ait(Xit I I,- t )‘) the variance of air(Xit I It- I) and 
P(XD I I,-I) = (P(~,,+I,, I I,-I), , P(Xn,+n2,f I I,-I))‘. Noncausality from 
X1 to X2 is then defined as follows. 

Definition 1. The vector X1 does not cause X2 (given X3), denoted Xi + X2 1 X3, 
if each component of the error vector X2, - P(X,, ) IX2.(t - 1)) is orthogonal to 

Ix(t - l),for all t. 

Note that this definition is equivalent to stating (as in BDR) that 
a2(Xi, 1 I,(t - 1)) = a2(Xi, 1 I,, . (t - 1)) i = n, + 1, . . . ,n, + n2, for all t, i.e., 
the mean squared linear prediction error of X,, based on the past of X, and X, is 
not improved by taking into account the past of Xi; for further discussion of 
causality in terms of orthogonality conditions, see Florens and Mouchart (1985). 
Of course, the qualification ‘given X, ’ is irrelevant when Xxt is empty; for such 
cases, we will write Xi + X,. In this paper, ‘X1 does not cause XZ’ will always 
mean that Xi does not cause XZ given the other variables in X, (if any). 

Suppose now that {X,} is a n-dimensional stationary and invertible 
ARMA (p, 4) process with zero mean and regular innovations, i.e., 

@,(B)X, = O(B)a,, (2.1) 

where B is the usual backshift operator, Q(z) = I,, - cD,z - .‘. - cD,zp, 
O(z)= I,--oiz - .‘. - 0,~” are matrix polynomials, with I, denoting the 
identity matrix of order n, and {a,: t E Z} is a white noise process with 
nonsingular convariance matrix V. We also assume that the parameters in U)(B) 
and O(B) are identified (uniquely defined) as functions of the autocovariance 
matrices of X,, so that m(B) and O(B) have no common factor. There is no loss 
of generality in the assumption that E(X,) = 0. 

Let us consider first the case where X, is partitioned into two subvectors: 
X, = (X;,, Xi,)’ where Xi, has dimension n, x 1, i = 1,2, and n, + n2 = n, so 

that the model (2.1) can be rewritten as 

where ~ij(z) and Oij(z) are ni x nj matrix polynomials, i,j = 1,2. In other words, 
X,, and XZt include all the variables considered in the information set I,(t). In 
this case, necessary and sufficient conditions for noncausality between Xi and 
X2 are given by the two following theorems, which improve two earlier results 
given in BDR (Theorems 2 and 3). The symbol det ( . ) refers to the determinant of 
a matrix. 
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Theorem 1. Suppose that the stationary ARMA process (2.2) is invertible. Then 

X1 does not cause Xz if and only if 

@z~(z)- 021(z)@ll(z)~1~11(z) = 0 for Izl < 6, (2.3) 

where 6 is some positive constant. 

Theorem 2. Suppose that the stationary ARMA process (2.2) is invertible. Then 

X1 does not cause Xz if and only ij 

det 

[ 

ql (z) @11(z) 

4n* +i. jtz) @f; tz) 1 = O’ vz EC, (2.4) 

jtir i=l, . . . . n2 and j= 1, . . . . n,, where Q;{(z) is the jth column of 

Qll(z), O;;(Z) is the ith row of Ozl(z), and 4n,+i,j(~) is the (i,j)-element 

OfQ)ZI(Z). 

The proofs of the theorems appear in the Appendix. Theorems 1 and 
2 provide extensions of Theorems 2 and 3 in BDR because the assumption that 
det(O1 I (z)) # 0 for IzI < 1 has now been dropped. Note that IzI < 6 is added to 
(2.3) only to ensure that the power series on the right-hand side converges. The 
latter converges provided det(@,, (z)) # 0 for IzI < 6 and some 6 > 0. Since 

@II(O) = I,,> it is clear that such a 6 always exists. To see that the generalization 
provided by Theorem 1 above is substantial, consider the simple case where 
n, = nz = 1 with OI1(z) = 1 - l.lz, 012(z) = - 0.5z, O,,(z) = l.lz, and 
0Z2(z) = 1 + 0.5~. Then we see easily that det(O(z)) = 1 - 0.62 so that the 
equation det(O(z)) = 0 has all its roots outside the unit circle; further 
det(O(z)) = 1 - 1.1~ # 0 for IzI < 6 = (1.1))’ < 1, but det(Orr(z)) = 0 for 
z = (1.1) ‘. This example shows that det (0, 1 (z)) = 0 may have a root inside the 
unit circle, while det(O(z)) = 0 has all its roots outside, so that dropping the 
assumption det(0, 1 (z)) = 0 for \zI 9 1 provides a substantial extension of 
Theorem 3 in BDR. The appropriate noncausality restrictions on the 
parameters of CD(B) and O(B) are obtained by setting the coefficients of the 
power series (or polynomials) defined in (2.3) or (2.4) equal to zero. Theorem 
1 gives a matrix generalization of the condition given by Kang (1981) for 
noncausality between X, and X2 when n1 = n2 = 1: O,,(Z)@~~(Z) - 
O,, (z)@r r(z) = 0. Theorem 2, on the other hand, yields a more convenient 
necessary and sufficient condition to be used in applications, because it only 
involves a finite number of polynomials. 

Consider now the case where X1, and XZ, do not include all the variables 
considered in the analysis, but a third vector of ‘auxiliary variables’ XJt is also 
used to forecast XZt. In this case, we suppose that X, is partitioned into three 
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subvectors X, = (Xi,, Xi,, Xi,)’ where Xi, has dimension ni x 1, i = 1,2, 3, with 
n1 + n, + n3 = n and n, 3 1, i = 1,2, 3. In this case, (2.1) can be written as 

where cDij(z) and Oij(z) are n, x nj matrices, i, j = 1, 2, 3. Let also 

Gij(Z) = Oij(Z) - Oi3(2)033(2)~'03j(Z)r i,j= 1,2, (2.6) 

~ij(Z) = ~ij(Z) - 0i3(Z)033(Z)m ‘@)3j(Z), i,j = 1, 2, (2.7) 

A2(~)=&(z) - O,,(Z)~~~(Z)~~O~~(~). (2.8) 

Clearly the matrices oij(z) and gij(z) are ni xn, matrices, while AZ(z) has 
dimension nz x n,. By the argument used in the proofs of Theorems 1 and 2, it is 
also easy to see that O33(~) and 6, i(z) are invertible when 1~1 < 6, for some 
6 > 0. We now give a generalization of Theorem 1 for the case where a third set 
of variables X, is present in the analysis and is used to compute forecasts. 

Theorem 3. Suppose that the stationary ARMA process (2.5) is invertible. Then 

Xl does not cause X, (given X,) if and only [f 

6,,(z) - O,,(Z)~~~(Z)~‘~~,(Z) = 0 ,fbr IzI < 6, (2.9) 

where 6 is some positive constant. 

By using the convention &ij(~) = Qij(z) and oij(z) = Oij(z) when n3 = 0 (no 
vector of auxiliary variables), we see clearly that the condition (2.9) includes (2.3) 
as a special case. Theorem 3 however may lead one to consider an infinity of 
(possibly redundant) restrictions. In the following theorem, we generalize 
Theorem 2 and provide a more convenient characterization of noncausality 

between X 1 and X2. 

Theorem 4. Suppose that the stationarql iiRMA process (2.5) is invertible. Then 

X1 does not cause Xl (given X,) (f and only if 
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for i = 1, , n, andj = 1, , n,, where @,2(z) is the jth column of the matrix 

mlk(z), O,‘;(z) is the ith row of’the matrix C&(Z), and c$,,~+~,~(z) is the (i, j)-element 

d%l (z). 

Compared with Theorem 1 in BDR, Theorem 4 above reduces the dimension 
of the determinants to be evaluated. For example, consider the case where 
X, = (X, f, XZr, X3t, X4,)’ is a four-dimensional stationary and invertible 
ARMA process as defined in (2.1). Then, from Theorem 1 of BDR, XI does not 
cause (X,, X,)’ if and only if 

where $ij(z) and Oij(z) are the (i, j)-elements of a,(z) and O(z) respectively. On 
the other hand, from Theorem 4 above, we see that XI does not cause (X2, X,)’ 
if and only if 

1 411(z) 01 I (z) Q*,(z) 1 
I-Ii(z) = det 41+i,l(z) L ul+i.l(z) Hl+i,4(z) =O, 1 i= 1,2. 

041 (z) Q41 (z) 044 (z) 

The latter condition leads to the evaluation of 3 x 3 determinants, while the 
former requires the evaluation of 4 x 4 determinants. More generally, the 
determinants involved in Theorem 4 have dimension n, + n3 + 1 instead of 
nl + n2 + n3. So to take a more extreme example, if n1 = n3 = 1 and n2 = 8, the 
dimension is 3 x 3 instead of 10 x 10, a very sizable reduction in complexity. 

In Theorems 1 to 4, we have assumed that the stationary ARMA process X, is 
invertible, i.e., the polynomial det(O(z)) has no roots on the unit circle ( JzJ = 1). 
Without loss of generality, we can assume that det(O(z)) # 0 for IzI < 1 since 
for any stationary and invertible ARMA process, it is always possible to choose 
a representation such that det(O(z)) has no roots inside the unit circle (lzl < 1); 
see Nsiri and Roy (1993, Sect. 3.1). However, for a noninvertible ARMA process, 
roots on the unit circle cannot be eliminated; see Hannan and Deistler (1988, Ch. 
1). Thus the invertibility condition (which implies that the process admits an 
autoregressive representation) entails restrictions on the covariance structure of 
the process. Note that the above results can also be applied to an invertible 



ARIMA(p, d, q) process, provided X, is replaced by (1 - B)dXt. The 
noncausality conditions given then apply to (1 - B)dXt instead of X,. It is 
important to note here that the invertibility assumption precludes the presence 
of cointegrating relationships among the components of X,; see GouriCroux and 
Monfort (1990, Ch. XI). There is no incompatibility between an ARIMA 
specification and the presence of cointegrating relationships, but the latter 
imply that the polynomial det(O(z)) associated with the representation 
@(B)(l - EQdXr = @@?)a, has roots on the unit circle and so the process X, is 
not invertible. Though it appears quite plausible that the characterizations in 
Theorems 1 to 4 remain valid when the polynomial det(O(z)) has roots on the 
unit circle, Proposition 1 in BDR relies heavily on the invertibility assumption 
and important modifications appear required to extend the results to 
noninvertible processes. Furthermore, the distributional theory of the test 
statistics is likely to be more complicated in such cases. Both these problems go 
beyond the scope of the present paper. 

3. Testing 

The conditions given in Section 2 can be used in two different ways. First, 
given a theoretical (or estimated) ARMA(p, q) model that involves a number of 
parameter restrictions (such as zero restrictions), it is possible that the model 
satisfies exactly certain noncausality properties. Since it is not typically easy to 
see these properties when q 3 1, conditions such as those in Theorems 2 and 
4 provide a simple way of checking whether noncausality restrictions hold 
exactly in a given model. For an example of this type of application, the reader 
may consult the empirical section of BDR. Second, when the restrictions for 
a given noncausality property do not hold exactly, one is led to the problem of 
testing these restrictions. The general problem of testing conditions of the type 
considered in Theorems 2 and 4 has already been discussed in BDR (Section 5), 
so there is no need to describe it in detail here. Nevertheless, it will be useful to 
outline succinctly the approach followed. There are three main steps for 
assessing empirically causality properties in the context of multivariate ARMA 
modelling. 

(1) Build a multivariate ARMA model for the series, for example by following 
the procedure of Tiao and Box (1981). 

(2) Using the results of Section 2, derive the noncausality conditions and express 
them in terms of the autoregressive and moving average parameters of the 
estimated model. Denoting p the vector of all AR and MA parameters, the 
noncausality conditions lead to (possibly nonlinear) constraints on an I x 1 
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subvector, fir of /?. We will denote these restrictions by H,: Rj(PI) = 0, 

j= 1, . . . . k,wherek<l. 
(3) If the restrictions do not hold exactly, choose a test criterion. The most 

convenient ones are typically the likelihood ratio (LR) and the Wald 
test statistics. The LR statistic for testing Ho is LR = 2[L,(p) - LN(p”)], 

where LN(/?) is the log-likelihood function, N is the sample size, i is the un- 
restricted maximum likelihood (ML) estimator of j?, and p is the restricted 
estimator of /I (under HAO). On_the other hand, the W_ald statistic for test- 

ing HO is W= NR(P,)‘CT(P,)~‘,(P)T(BI)‘I-‘R(B~),, where WI) = 
CRIVI), . . . , RL(P1)]‘, T(j?,) = ~R(/?,)/~8;, and V!(p) is a consistent 

estimate of the asymptotic covariance matrix of fi (/I1 - /II). We assume 
that ?r (j?) is invertible. Under usual regularity conditions, the asymptotic 
distribution of LR or W is chi-square with k degrees of freedom. 

Note that specification procedures may impose causality restrictions by 
setting various coefficients to zero so that some causality testing is implicitly 
incorporated at the modelling stage. The formal causality tests performed after 
the specification stage of the ARMA modelling process consider only the 
restrictions which are not exactly imposed at the specification stage. 

It is easy to see from Theorems 2 and 4 that the restrictions to be tested are 
either linear or multilinear, i.e., the functions Rj(Pl) which define H, are either 
linear in fir or sums of products of the components of /II. Clearly, for the test 
criteria to follow x*(k) distributions asymptotically, it is important that 
R(P,) = 0 does not include redundant restrictions; if it did, the matrix of the first 
derivatives of R(jl,) would not have full row rank and the asymptotic 
covariance matrix of R (PI ) would be singular. 

As already observed in BDR, it is important to note also that the restrictions 
(3.1) may lead to situations where these regularity conditions do not hold (at 
least for certain points of the parameter space). The nature of these problems 
and the possible approaches to deal with them [e.g., separate tests of simpler 
necessary (or sufficient) conditions, sequential testing] are completely analogous 
to those discussed in BDR. The reader may see the latter article for further 
discussion. 

4. Causality tests between money, income, and interest rates 

Causality relations between money and income, and money and interest rates 
have been much debated in the economic literature; see Sims (1972, 1980b), 
Feige and Pearce (1979) Hsiao (1979) Osborn (1984), and BDR. To illustrate 
the causality conditions and tests given above, we will now study causality 



280 H. Boudjellda rt al. ! Journal of Gonomerric.v 63 I 1994) 271~ 287 

relations between money and income, as well as between money and interest 
rates in Canada. The money and income data are those of Hsiao (1979). They 
consist of quarterly seasonally adjusted nominal GNP, Ml, and M2 over the 
period 1955 to 1977 (92 observations). A listing of these data is available in the 
Appendix of Hsiao (1979). We also considered quarterly interest rates (INT) 
data on Canada Treasury bonds for the corresponding period. The latter series 
comes from a monthly series available in CANSIM (series B14007); monthly 
observations were aggregated into quarterly ones by taking the arithmetic mean 
over the corresponding months. 

The natural logarithm of GNP, Ml, and M2 was taken in order to stabilize 
variances, and all series were differenced to have stationary processes. 
Furthermore, the first differences of ln(GNP), ln(M l), and In(M2) were 
multiplied by 100 to ensure that their sample variances be of the same 
order of magnitude as the one of INT. In the following, we will denote ~1~ = 
lOO(1 - B)ln(GNP,), m,, = lOO(1 - B)ln(Ml,), mzt = lOO(1 - B)ln(M2,), 
rr = (1 - B) INT,. Using the approach of Tiao and Box (1981) and the SCA 
statistical package (see Liu and Hudak, 1986), a four-variable ARMA model was 
estimated. At the estimation stage, the full model was first estimated by 
a Gaussian maximum likelihood method (the ‘exact’ method available in SCA); 
then each parameter estimate smaller than one standard error in absolute value 
was set at zero. The modified model was reestimated until all the parameter 
estimates were greater than one standard error in absolute value. The final 
model is described in Table 1. It satisfies the diagnostic checks suggested by Tiao 
and Box (1981) to ensure model adequacy. We also checked that all the roots of 
det(&(z)) are outside the unit circle. 

Writing X, = (y,, mlr, m2,, r,)‘, a, = (u,,, al,, c12,, urt)‘, and % = (Oar, 00,. 
002, Ho,)‘, the model described in Table 1 can be represented by the 

equation 

aqB)X, = 00 + O(B)a,, (4.1) 

where Q(B) = [~ij(B)] and O(B) = [Oij(B)] are 4 x 4 matrices; 4:;’ and 0,:’ will 
denote the coefficients of Bk in ~ij(B) and oi,(B) respectively. 

Let us first analyze causality between money and income, with the interest 
rate being the auxilliary variable. Using Theorem 4. we find that 
y, + (ml,, mzr)' 1 r1 o ri, (z) 3 0, i = 1, 2, where 
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From Table 1, we see that 

rl 1 (z) = det 

Similarly, we have 

r2, (z) = det 

and using a symbolic manipulation program like MATHEMATICA (see 
Wolfram, 1991), the polynomial representation can be easily obtained. Here, we 

get 

where the ck’s are nonlinear functions of the parameters appearing in r2, (z). It is 
rather tedious algebra to write the necessary and sufficient conditions for 
r,, (z) = 0. However, it is immediately seen that 

Putting together (4.2) and (4.3), we find that 

4(l) = @l) = #3) = (j(4) = 0 
21 31 31 31 (4.4) 

are necessary conditions for yt not to cause (ml,, m2,)‘. The Wald and LR 
statistics for testing (4.4) take the values 62.3 and 37.7 respectively (causality tests 
are summarized in Table 2). Since the asymptotic null distribution of these test 
statistics is x’(4), the hypothesis (4.4) is strongly rejected at about any 
conventional significance level and we conclude that y, causes (m,,, Map)‘. 
Without taking into account interest rates, BDR found that ~1~ does not cause 

(m rt, mzr)' from a trivariate ARMA model. 
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Table 2 

Causality tests 

Null hypothesis 

!‘r ” (m,,. m,,)‘lr, 

Number of 

constrained 

parameters 

13 

(m,,. ’ ma) i* !‘,I’r 25 

First-order 

linear Wald L.R. 
constraints stat.” stat.* D.f. 

4:‘; z 4:‘; = 62.3 37.7 4 

cp;:’ = 0:; = 0 

4:‘; = 07’ = 71.2 102.1 6 

s:“; = 4:‘: = 

4’;; = 0’;; = 0 

fg; = 4:; = 73.6 41.5 5 

d:k’ = $q; = 

Q’4 = 34 0 

4:; = (by; = 56.5 41.3 5 

4;; = HZ = 

()‘4’ = () 43 

*All p-values are smaller than 0.0005. 

Coriversely, for causality running from money to income, we have: (ml f, mzt)’ 

+ ytJr, o T,,(z) = 0,j = 1,2, where 

= det 
2. *+jtz) HZ!(Z) c123(z) H24(Z) 

@32tz) u33(2) e34(z) 

4.1+jtz) H42(Z) 043izJ H44(Z) 
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With the help of MATHEMATICA. we find 

where the ck’s and the dk’s are again nonlinear functions of the parameters 
appearing in Fi 1 (z) and ri 2 (z) respectively. Therefore, a set of necessary 
restrictions for (m 1 t, mz,)’ not to cause yt is given by 

(4.5) 

The Wald and LR statistics for testing (4.5) are 77.2 and 102.1 respectively. Since 
the asymptotic null distribution of the test statistics is x2(6), the hypothesis (4.5) 
is strongly rejected and we conclude that (m,,, m21)’ causes yl. A similar 
conclusion was reached in BDR with a trivariate model. 

A causality analysis between money and interest rates was also performed 
when income is an auxilliary variable. The results are summarized in Table 
2 and the details of the analysis are given in Boudjellaba, Dufour, and Roy 
(1992b). 

The above results thus strongly suggest the presence of bidirectional causality 
(feedback) between money and income, when interest rates are also used to 
forecast, as well as between money and interests rates when income is also used 
to forecast. The first of these two conclusions appears to support the earlier 
finding of Sims (1980b) with American data. 

Appendix: Proofs 

Theorem 1. Since O(z) = I, - Olz - ... - O,zq, we have det(O,,(O)) = 1 SO 

that, by the continuity of the function det(Oii(z)), det(Oii(z)) # 0 for 
z sufficiently close to zero, say IzI < 6 where 6 > 0. The rest of the proof is 
identical to the proof of Theorem 2 in BDR, with IzI < (5 instead of IzI d 1. 

Theorem 2. By the same argument as in Theorem 1, det (0, i (z)) # 0 for IzI < ii, 
where 6 > 0. The rest of the proof is identical to the proof of Theorem 3 in BDR, 
with IzI < 6 instead of IzI < 1. 

Theorem 3. The process (2.5) being invertible can be expressed as an (infinite) 
autoregressive process: TI(B)X, = a, where rI(B) = O(B) l@(B) = 

[nij(B)li.j=1,2,3. From Proposition 1 of BDR, we know that X, does not cause 
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Xz if and only if IIzl (z) = 0, Vz EC. We thus need to evaluate lT,, (z). Let us set 
(the argument z will be omitted for simplicity) 

Since O(0) = I, # 0 and using procedure (a) of Searle and Hausman (1970, 
p. 113) for partitioned inversion, we can write 

64.1) 

for JzI < 6, where 6 > 0 is some positive constant, Aoo = (/too - 

&3&5430)~1~ 
,403 = - AooAo3 Am’ 

33 7 A3’ = - A,; A30Aoo Aj3 = 

A,: - A30A03 A ii, and O’j is a n, x nj matrix for i,j = 1, 2, 3. Furiher, using 
the inverse of a partitioned matrix from procedure (b) of Searle and Hausman 
(1970, p. 114) Aoo can be written 

64.4 

where 0” = o;,‘(I,, + 6,,A;‘6,,6;,‘), @12 = - 6;,‘6,,A;‘, 021 = 
- Ai1621 o,,’ and @!I22 = Ayl. Using (A.l) and (A.2) we can then evaluate 

easily the other components of O- ‘: 

Ao3 = 
[ 

- @11@13@;; - @r2@23@;; 

- @21@13@;; _ @22@23@;; ] = [:::I> 

_4jo = [ - 0;; @31 01 1 _ 0,: @32 021, _ 0;; @,, 0’2 _ 0,; @32 (3221, 

= [@I, @--I ) 

_433 = 0-1 _ ,430A 
33 

0-1 
03 33 

Consequently, we can also compute II,,: 

II21 = 021@r, + 022@2r + 023m31 

_ 

= - A,1~210,11~11 + A;1Q)2l 

+ A~~(021 O,,‘O13 - @23)@,: a31 

= A;1[62l - O,,O,,‘~,,]. 

Thus, since A2(0) = I,, # 0, we have II,,(z) = 0 for IzI < 6 o 621 - 
0210,,‘&ll = 0 for IzJ < 6. Q.E.D. 
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Theorem 4. The argument z will be omitted for simplicity. By Theorem 3, 
X 1 does not cause X, if and only if condition (2.9) holds, where 6 is some positive 
constant and det(aj3) # 0 for IzI < 6. From now on, we shall assume that 
Iz/ < 6. By an argument similar to the one used in the proof of Theorem 2 in 
BDR, we have: 

621 - O,,O,,‘@,, E 0 odet(Dij) E 0, l<i<nl, l<j<n,, 

(A.3) 

where Dij is the (nI + 1) x (nI + 1) matrix defined by 

J,,, +i,j is the (i,j)-element of azl, and ‘ = ’ refers to an identity that holds for all 

IzI < 6. Now, let 

and let & = (ril, cxiz, . . . , Clin2) be the ith row of O,,O;:, 1 < i < n2. Clearly 
det(DG) = det(Dij)det(@,,). Further, since @ii = (D;‘, - 013@~~(D;jl, 6, I = 
01, - o~~o~:o~~, 6,;; = a;‘, - 02,0;:a$ ozl = a,, - o,30~~031, 
013 = o,,o,;‘o 33, and Oz3 = 0230~~033, the matrix fiij, can be obtained 
from DC by adding 0, 3 0;: [a,;‘, , O3 1, Cl331 to the first n, rows of D$, and 

G@;j,,@,,, 0331 to the (nl + 1)th row [&nnl+i.j, 6;;, 01. Thus the rows of 
Dij are obtained by adding to the first n, + 1 rows of D$ linear combinations 

of other rows of D$, so that the determinants of Dij and D$ are identical: 
Tij = det(Dij) = det(D$). Since det(@,,) # 0, we can conclude from condition 
(2.9) and (A.3) that X1 does not cause Xz if and only if Tij = 0, for IzI < 6, 
l<i<nz, l<j<n,. Further, since Tij = rij(z) is a polynomial in z 

(1 < i < n,, 1 d j < n,), i.e., rij(S) is a linear combination of a finite number of 
powers of z, the latter condition is equivalent to Tij = 0, t/z E@, for 1 < i < n,, 
1 < j < n,. Q.E.D. 
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