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Abstract/Résumé 
 
Factor models based on Arbitrage Pricing Theory (APT) characterize key parameters jointly and 
nonlinearly, which complicates identification. We propose simultaneous inference methods 
which preserve equilibrium relations between all model parameters including ex-post sample-
dependent ones, without assuming identification. Confidence sets based on inverting joint tests 
are derived, and tractable analytical solutions are supplied. These allow one to assess whether 
traded and nontraded factors are priced risk-drivers, and to take account of cross-sectional 
intercepts. A formal test for traded factor assumptions is proposed. Simulation and empirical 
analyses are conducted with Fama-French factors. Simulation results underscore the information 
content of cross-sectional intercept and traded factor restrictions. Three empirical results are 
especially noteworthy: (1) the Fama-French three factors are priced before 1970; thereafter, we 
find no evidence favoring any factor relative to the market; (2) heterogeneity is not sufficient to 
distinguish priced momentum from profitability or investment risk; (3) after the 1970s, factors 
are rejected or appear to be weak, depending on intercept restrictions or test portfolios. 
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1 Introduction

Arbitrage Pricing Theory (APT) and its concepts are core components of financial economics. Despite enduring

disagreements about risk factors and the measurement of risk premiums, related factor models are workhorse

tools for asset pricing; for some references which illustrate these debates, see Harvey, Liu and Zhu (2016),

Gagliardini, Ossola and Scaillet (2016), Ahmed, Bu and Tsvetanov (2019), Hou, Mo, Xue and Zhang (2018),

and Chib and Zeng (2019). This paper addresses an aspect of such models not broadly recognized: weak iden-

tification. If identification can be arbitrarily weak, conventional methods deliver tests and confidence intervals

that are invalid even asymptotically and thereby yield misleading empirical decisions. Motivated by these con-

siderations and the abundance of available candidate factors, this paper proposes econometric methods that: (i)

reveal weak factors when present and deliver valid inference on pricing; (ii) detect misspecification including

assumptions on tradable factors; and (iii) preserve APT fundamentals with traded and nontraded factors.

Our analysis is based on equilibrium specifications that characterize the risk premiums jointly, along with

the zero-beta rate, factor expectations and the unknown factor loadings (the so-called factor betas). Formally,

the APT stipulates that the unconditional expectation of returns, denoted thereafter as the n-dimensional vector

µr, is linear in factor loadings:

µr = ιnγc +b′Γ (1.1)

where Γ is the vector of risk premiums, the scalar γc is the so-called cross-sectional intercept or the zero-beta

rate, b = [b1 · · · bn] is the q× n matrix of loadings and q is the number of relevant risk factors. All of these

parameters including b are unknown.

This explains why factor models based on (1.1) have traditionally been estimated using so-called two-pass

methods [as reviewed e.g. by Shanken and Zhou (2007)], where: (i) the first pass uses time series regressions

of returns on factors, in order to estimate b; and (ii) the second pass involves cross-sectional regressions of

returns on the estimated b, in order to identify Γ. Consequently, measurement errors arising from estimated

betas have long been considered as a major identification threat. A recent research strand also highlights deeper

problems resulting from insignificant or homogenous betas; see Kan and Zhang (1999), Beaulieu, Dufour and

Khalaf (2009), Kleibergen (2009), Beaulieu, Dufour and Khalaf (2013), Kan, Robotti and Shanken (2013),

Gospodinov, Kan and Robotti (2014), Kleibergen and Zhan (2015, 2020), and Kleibergen, Lingwei and Zhan

(2019).

More broadly, it is clear from (1.1) that Γ is not identified unless the true and unknown b matrix has full rank.

Identification problems thus affect multiple parameters and may have several sources. Sorting out these multiple

influences may be difficult, due to the nonlinear structure of (1.1). Instead, our aim is to present measures of

estimation uncertainty that preserve the APT-based association between all model parameters including realized

or sample dependent random ones. In particular, an alternative parameter introduced by Shanken (1985) and

Shanken (1992) as the ex-post risk premium has recently regained interest:

Γ∗ = Γ+ R̄−µR (1.2)

where R̄ is the empirical factor mean and µR is its expectation; see Khalaf and Schaller (2016), Jegadeesh,

Noh, Pukthuanthong, Roll and Wang (2019), and Kim and Skoulakis (2018).

Given the importance of alphas and betas for assessing the quality of an asset pricing model, we first

propose simultaneous confidence intervals for (in turn) the unrestricted components of the time-series intercepts

and each one of the loading vectors. Next, we construct level-correct confidence sets for the zero-beta rate and

the risk premiums again viewed jointly and using traditional first-pass estimates, yet accounting for estimation

error regardless of whether factor betas are jointly informative or heterogenous enough. In particular, these

confidence sets serve to robustly assess whether candidate factors are priced risk-drivers. This approach extends
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the single-benchmark identification-robust method proposed by Beaulieu et al. (2013) to multivariate beta-

pricing models.

In doing so, a framework is required in the presence of traded and non-traded factors. Despite well-known

advantages, restricting focus to traded factors is unduly restrictive; see Shanken and Weinstein (2006), Shanken

and Zhou (2007), and the above cited literature on competing risk factors; for a discussion on some advantages

of traded factors, see Gospodinov, Kan and Robotti (2019), Barillas and Shanken (2017, 2018), and Pukthuan-

thong, Roll and Subrahmanyam (2019). Concretely, implications of traded factors have been operationalized

by restrictions involving the zero-beta rate [Barone-Adesi, Gagliardini and Urga (2004), Penaranda and Sen-

tana (2016)]. While this principle is well accepted, empirical analysts often sidestep cross-sectional intercepts

[Lewellen, Nagel and Shanken (2010)], thereby forfeiting important equilibrium relations. In contrast, we

provide simultaneous confidence sets with both traded and nontraded factors. In addition, and crucially, our

empirical approach exploits the information content of the cross-sectional intercept to uncover links that would

likely be lost when returns are considered in deviation from some asset, as in Kleibergen (2009), Kleibergen

and Zhan (2015), Kleibergen et al. (2019), Kleibergen and Zhan (2020). Simultaneous inference ensures that

equilibrium restrictions are jointly maintained, which as emphasized, is a fundamental equilibrium requirement.

This is however not the whole story, since identification concerns provide compelling statistical rationale for

simultaneous methods.

Indeed, to control statistical coverage without assuming identification, we proceed by inverting joint model

tests. These include: (i) the joint regression intercept test statistic by Gibbons, Ross and Shanken (1989)

and its counterparts pertaining to each factor [see e.g. Dufour and Khalaf (2002) and Beaulieu, Dufour and

Khalaf (2010)], and (ii) the cross-sectional statistics discussed by Shanken and Zhou (2007) and Lewellen

et al. (2010). When underlying parameters are fixed, all these statistics are of the Hotelling form [Hotelling

(1947)]. We show that the resulting inversion requires multi-dimensional quadratic inequalities. We provide

a unified and tractable analytical solution to these inequalities and supportive finite sample and simulation

assessments in non i.i.d. and non Gaussian settings, all of which are new to both asset pricing and econometric

literatures. Analytical computations rely on the mathematics of quadrics [Dufour and Taamouti (2005), Dufour

and Taamouti (2007)].1

Features of our methodology which are worth emphasizing – as well as illustrated in an extensive simulation

study – include the following. The first one is a joint treatment of factors viewed simultaneously rather than

individual proxies. The second feature is our reliance on set rather than just point estimates for parameters of

interest. In contrast with Kan et al. (2013) and Gospodinov et al. (2014), the statistics we invert to derive these

sets are not t-type measures and can be empty or unbounded, reflecting misspecified information or lack thereof.

The third notable feature is our analytical solution to both point and set estimates. In contrast with Kleibergen

(2009), Kleibergen et al. (2019) and Kleibergen and Zhan (2020) who propose numerical test inversion methods,

our analytical solutions cover the zero-beta rate and control for factors that are traded portfolios. In addition,

we propose a formal test for traded factors assumptions, which to the best of our knowledge is new to the

literature. Our simulation results underscore the information content of cross-sectional intercepts and traded

factor restrictions.

Our main empirical finding concerns the potential weakness (from an identification viewpoint) of the Fama-

French-Carhart factors [Fama and French (1992), Fama and French (1993), Carhart (1997), Fama and French

(2015)]. Using NYSE data from 1961-2010, we find the Fama-French three factors are priced concurrently

before 1970 with equally weighted industry portfolios, as well as with size-sorted portfolios in the 1970s (only).

Evidence of pricing weakens thereafter, as the model is either rejected or weakly identified, depending on

intercept restrictions or test portfolios. Interestingly, we do not find evidence favouring size and book-to-

1For further quadric based solutions in different contexts, see Bolduc, Khalaf and Yelou (2010) for inference on multiple ratios, and

Khalaf and Urga (2014) for inference on cointegration vectors.
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market risk over the market risk. For instance, with size portfolios, in all subperiods except the 1980s and

2000s in which our confidence sets on the market risk are uninformative, the market is significantly priced. The

Carhart and the recent Fama and French (2015) factors are affected by weak-identification problems. Finally,

the considered models do not fare well when test assets are used jointly, and data is generally less informative

after 2000.

The paper is organized as follows. Section 2 sets the asset pricing and statistical framework. Section 3

provides our inference methodology. Our simulation and empirical results are reported in section 4. Section 5

concludes the paper, and proofs are presented in a technical appendix.

2 Model and identification framework

Let ri, i = 1, . . . , n, be a vector of T returns on n assets, over the period t = 1, . . . , T , and R = [R1 · · · Rq ] a

T ×q matrix of observations on a set of q risk factors that potentially explain returns. It is now generally agreed

that candidate models should also attempt to price proposed factors and include both traded and nontraded

factors. To describe how to do so, assume that R1 is a vector of returns on a tradable factor, for example a

market benchmark, so that R = [R1 F ] where F =[R2 · · · Rq ] is a T × (q− 1) matrix of observations on

(q−1) nontraded factors.2

The APT equilibrium condition leads one to consider regressions of the form

ri = aiιT +R1bi1 +FbiF +ui , i = 1, . . . , n , (2.1)

ai = γ0(1−bi1)− γ ′F biF , [restricted] (2.2)

ai = γc − γ0bi1 − γ ′F biF , [unrestricted] (2.3)

where bi1 is a scalar, biF is a (q−1)×1 vector, γ0 and γF incorporate the risk premiums as follows:

θ =
(

γ0, γ ′F
)′
≡ µR −Γ, (2.4)

where Γ and γc are as in (1.1) and µR = (µR1
, . . . , µRq

)′ is the vector of unknown factor means as in (1.2); see

Campbell, Lo and MacKinlay (1997, Chapter 6), Shanken and Zhou (2007) and references therein.3

2.1 APT conditions, traded and nontraded factors

Condition (2.3) introduces the APT risk premiums as free parameters, hence we denote it as the unrestricted

APT specification. In contrast, condition (2.2) that we describe as the restricted specification further allows

the traded factor R1 to price itself [Lewellen et al. (2010, Prescription 4)] if it is added to the set of left-hand

side test assets. In other words, since R1 itself should satisfy (1.1) then it should be that Γ1 = µR1
− γc, which

in view of (2.4) implies that γ0 = γc. Clearly, setting γ0 = γc in (2.3) gives (2.2). This restriction and the

information content of γc matter importantly for model assessment [Barone-Adesi et al. (2004), Lewellen et al.

(2010) and Penaranda and Sentana (2016)].

Estimating and testing this model confront enduring hurdles since the b matrix is unobserved. Indeed, from

(2.2) or (2.3), it is clear that the components of θ cannot be identified, e.g. when the corresponding components

of bi = [bi1, b′iF ]′ do not differ enough over i (i.e., in cross-section), and in particular, are jointly close to one

2We consider a single traded factor for notational ease. Extensions to multiple tradable factors follow straightforwardly. Our main

empirical analysis considers this restriction for the market benchmark only, hence this notation.
3Taking unconditional expectations of the unconstrained (2.1) regression with a time invariant perspective implies µR =

(a1, . . . , an)
′ +b′µR , which equated with (1.1) yields (2.3).
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or to zero. Possibly non-informative factors and reliance on portfolios which tends to equalize betas imply that

identification cannot be taken for granted.

Furthermore, (2.4) evinces the fundamental difficulty of identifying Γ, as µR is unknown. This fact has long

been exploited to justify two-pass methodologies [as reviewed in e.g. Shanken and Zhou (2007)].4 Instead,

Shanken (1985) provides economic motivation for using the ex-post risk premium Γ∗ defined in (1.2) as a

function of the factors’ empirical mean R̄. In the present regression context, Γ∗ = R̄ −θ . Empirically, it has

long been recognized [see e.g. Shanken (1992), Campbell et al. (1997, Chapters 5 & 6)] that θ can be estimated

even though µR is unknown. From there on, Γ∗ can be estimated conditioning on the factors. The gains from

using Γ∗ are especially notable in finite samples as R̄ can deviate markedly from µF in some subperiods. We

thus focus on this parameter given our finite sample perspective, to exploit the statistical properties of (2.1).

It is also important to note that (2.2) or (2.3) are jointly determined by the elements of the vector θ , so

a change in one element of θ may be “cancelled” by a change on another element of θ . Consequently, it is

crucial to make joint inference of the vector θ . Formally, we derive a joint confidence region for θ conditioning

on the factors (imposing or relaxing γ0 = γc) and project this region to obtain simultaneous confidence sets for

each of the components of θ . We next assess pricing reflecting zero-restrictions on the components of R̄ −θ :

each factor is considered not priced if its empirical mean is not covered by the confidence set associated with

the corresponding component of θ . Our confidence intervals are simultaneous, which implies that decisions on

pricing will also be simultaneous.

As emphasized above, γc also holds important information on model fit, and so does the restriction γ0 = γc.

Our method will produce a confidence interval for γc in addition to each component of
(

γ0, γ ′
F

)

. Testing

γc = γ0 can be conducted via the following reparameterization:

γc − γ0bi1 − γ ′F biF = γ∗c − γ0 (bi1 −1)− γ ′F biF , γ∗c = γc − γ0 . (2.5)

The intercept can be “partialled-out” if we rewrite the regressions in deviation from one of them, leading to

n−1 equations, in which case we will obtain another confidence interval for each component of
(

γ0, γ ′
F

)

, at the

expense of foregoing information on γc. The statistic we consider to do this is a monotonic transformation of

the LR-based criterion [the so-called FAR test] introduced by Kleibergen (2009). Interpretations on pricing are

unchanged, and as in Kleibergen (2009), Kleibergen et al. (2019) and Kleibergen and Zhan (2020), the statistic

is invariant to the equation chosen as the deviation basis. We formally assess the pros and cons of evacuating

γc, for estimation and fit purposes.

For further reference, the frameworks we consider are categorized as follows: model (2.1)-(2.2) is denoted

RAPT where R stands for “restricted” which refers to traded factor constraints; model (2.1)-(2.3) which relaxes

the latter constraints is denoted UAPT where U stands for “unrestricted”, in which case we refer to partialling

γc out as the PAPT approach, where P stands for “partialling-out”. We will also refer to the hypothesis

H∗
c : γ∗c ≡ γc − γ0 = 0 (2.6)

which can be tested by checking whether the confidence set for γ∗c in (2.5) covers zero.

2.2 Reduced rank regressions

The above equilibrium models can be defined via rank restrictions on a multivariate regression of the form:

Y = XB+U, U = WJ′ ⇔ Yt = B′Xt +Ut , Ut = JWt , t = 1, . . . , T , (2.7)

4”An average return carries no information about the mean of the factor that is not already observed in the sample mean of the

factor.” [Cochrane (2005, p. 245)]. See also Penaranda and Sentana (2016), on including moment conditions on factors means with

GMM.
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where Y is a T × n matrix of observations on n endogenous variables, X is a T × k full-column rank matrix

of exogenous variables, Y ′
t and X

′

t are, respectively, the t-th row of Y and X so that Yt and Xt provide the t-th

observation on the dependant variables and regressors, J is unknown, non-singular and possibly random, U
′

t is

the t-th row of U , W is a T × n matrix of random errors, W
′

t is the t-th row of W , and the joint distribution of

W1, . . . , WT is either fully specified, or specified up to a nuisance parameter µ . Finite sample results assume

we can condition on X for statistical analysis.

Throughout the paper, we maintain the following assumptions and notation. D(d1, . . . , dm) refers to an

m-dimensional diagonal matrix with diagonal elements d1, . . . , dm. ι j refers to a j-dimensional vector of ones.

The number of factors is q = k− 1. DIAG(A) refers to a column vector from the diagonal of a matrix A. For

any N ×K matrix A, vec(A) returns an NK × 1 vector, with the columns of A stacked on top of each other;

M [A] = I −A(A′A)−1A′ for any full column rank matrix A. We refer to a 1−α level CS for a parameter as

CSα(.). Let

B̂ = (X ′X)−1X ′Y , Ŝ = Û ′Û , Û = Y −XB̂. (2.8)

For presentation ease, we use the following matrix partitions:

(X ′X)−1 =

[

x11 x12

x21 x22

]

(2.9)

where x11 is a scalar, x21 = x12′ is q×1 and x22 is q×q, and

B =

[

a′

b

]

, B̂ =

[

â′

b̂

]

, b =
[

b1 · · · bn

]

=







β ′
2

...

β ′
k






, b̂ =









β̂
′

2
...

β̂
′

k









(2.10)

where a = (a1, . . . , an)
′
is the vector of n intercepts, and b is q×n.

The rank restrictions in question can be written as:

HRAPT : (1, θ ′)B = 0, for some unknown vector θ , (2.11)

HUAPT : (1, θ ′)B = φι ′n, for some unknown vector (θ ′, φ)′, (2.12)

where θ is q× 1 and φ is an unknown scalar.5 Indeed, rewriting (2.1)-(2.2) with left-hand side returns in

deviation from R1 yields, for i = 1, . . . , n :

ri −R1 = (R1 − ιT γ0) [bi1 −1]+
(

F − ιT γ ′F
)

biF +ui, i = 1, . . . , n ,

or alternatively

ri −R1 = aiιT +R1di +FbiF +ui , , i = 1, . . . , n (2.13)

ai = −γ0di − γ ′F biF , di = bi1 −1 , (2.14)

which is a special case of (2.7) where Y stacks the matrix of returns in deviation from the tradable benchmark,

imposing (2.11) with

θ =
(

γ0, γ ′F
)′

. (2.15)

The non-tradable case (2.1)-(2.3) is the regression

ri = aiιT +R1bi1 +FbiF +ui, i = 1, . . . , n , (2.16)

ai = γc − γ0bi1 − γ ′F biF (2.17)

5Typically, (2.11) and (2.12) assume that k ≤ n.
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which again is a special case of (2.7) where Y stacks the matrix of returns, imposing (2.12) with

θ =
(

γ0, γ ′F
)′

, and φ = γc.

Regression (2.1)-(2.3) can also be re-expressed as

ri −R1 = aiιT +R1di +FbiF +ui, i = 1, . . . , n , (2.18)

ai = γ∗c − γ0di − γ ′F biF , di = bi1 −1, γ∗c = γc − γ0, (2.19)

in which imposing (2.12) with φ = γ∗c provides a test of (2.6). Finally, it is also straightforward to see that the

model in deviation from one of the returns yields a system of n−1 equations conformable with (2.11).

This paper focuses on estimating and testing θ and φ . Furthermore, we provide cross-equation simultaneous

confidence sets for the parameters of the unrestricted asset pricing regression. Formally, we invert the test that

fixes each row of B, in turn, to a fixed vector; the associated hypotheses takes the form

H j : sk[ j]′B = β̄
′
j, j ∈ {1, . . . , k} , β̄ j known (2.20)

where sk[ j] denotes a k-dimensional selection vector with all elements equal to zero except for the j-th element

which equals 1. To interpret H j, recall that the classical zero restriction hypothesis underlying the Hotelling

statistic which is viewed as the multivariate extension of the Student-t based significance test corresponds to

H0 j : sk[ j]′B = 0, j ∈ {1, . . . , k} (2.21)

so for example using sk[1] provides inference on the unrestricted regression intercept, and in the context of

an unrestricted regression in deviation from the tradable factor [(2.13) above, ignoring the constraints], sk[2]
allows one to assess the betas on the tradable factor in deviation from one. Assembling the β̄ j vectors that

are not rejected at a given level yields a joint confidence set for the corresponding row of B which contain, in

turn for j = 1, . . . , k, the n-dimensional vector of intercepts, and the n-dimensional vector of betas (possibly in

deviation from one) on each factor over all considered assets.

In addition to useful information on underlying assets, the unrestricted regression intercepts and betas

underlie identification of the above defined risk premiums. Formally, for θ to be recoverable with no further

data and information (in particular in the absence of other instruments), the betas per factor need to vary enough

across equation. Concrete identification failure problems discussed in Beaulieu et al. (2013) (and the reference

therein) relate to benchmark betas jointly [across i] equal to one. Kleibergen (2009) discusses the case of small

betas in the sense of jointly [across i] equal to zero, which may be traced back to Kan and Zhang (1999).

Regardless of the source, identification of θ is driven by the joint cross-equation nature of the information

conveyed by each factor. Our simultaneous approach for inference on θ as well as for the underlying reduced

form betas thus zooms in on the core of the financial problem. Concretely, using portfolios rather than individual

assets as test assets (i.e., for ri in our notation) tends to equalize betas across equations; whether moving away

from portfolios to individual assets which calls for alternative information reduction technique is an answer to

this problem remains an open question which is beyond the scope of the bulk of the this literature as well as the

present paper which requires T − k− n > 0. Our methodology is presented in the next section for the general

(2.7) regression.

3 Confidence sets for factor loadings and risk premiums

Following Beaulieu et al. (2013) and Kleibergen (2009), we focus on inverting identification-robust statistics,

i.e., statistics whose null distributions are provably invariant to whether identification holds or not. We focus
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on Hotelling-type statistics

Λ(θ , φ) =
[(1, θ ′)B̂−φι ′n]Ŝ

−1[B̂′(1, θ ′)′−φιn]

(1, θ ′)(X ′X)−1(1, θ ′)′
(3.1)

Λ(θ) =
(1, θ ′)B̂Ŝ−1B̂′(1, θ ′)′

(1, θ ′)(X ′X)−1(1, θ ′)′
(3.2)

where θ ′ and φ are given. These statistics serve to assess the special cases of HRAPT and HUAPT [in (2.11)) -

(2.12] respectively

HR : (1, θ ′)B = 0, θ known. (3.3)

HU : (1, θ ′)B = φι ′n, (θ ′, φ)′ known, (3.4)

In addition, we invert the series of statistics associated with each of the H j (2.20):

Λ(β̄ j) =
(β̂ j − β̄ j)

′Ŝ−1(β̂ j − β̄ j)

sk[ j]′(X ′X)−1sk[ j]

τn

n
(3.5)

where and β̂
′

j is the jth row of B̂. These statistics are also of the Hotelling form [see Dufour and Khalaf (2002)];

note that the classical Hotelling statistics to assess each of H0 j (2.21) are

Λ0 j =
sk[i]

′B̂Ŝ−1B̂′sk[i]

sk[i]′(X ′X)−1sk[i]
. (3.6)

When errors are normal then

Λ(θ)
τn

n
∼ F (n, τn) , Λ(θ , φ)

τn

n
∼ F (n, τn) , Λ(β̄ j)

τn

n
∼ F (n, τn) (3.7)

where τn = T − k− n + 1. The latter distributional results do not require any identification restriction.6 Λ0 j

also follow the same null distribution. Underlying finite sample theory is discussed in section 3.3. Simulations

reported in 4.1 show that for the problem under consideration corresponding to 5 or 10 year subsamples, the

normal cut-off controls size whether errors are multivariate Student-t or in the presence of GARCH effects.

Prior to these analyses, we discuss in the next section how inverting the proposed tests can be performed

analytically.

3.1 Analytical solution

Inverting the above tests requires solving in turn, over (θ , φ), θ and β̄ j respectively, the inequalities

Λ(θ , φ)
τn

n
≤ fn,τn,α , Λ(θ)

τn

n
≤ fn,τn,α , Λ(β̄ j)

τn

n
≤ fn,τn,α , (3.8)

where fn,τn,α denotes the α-level cut off point from the F (n, τn) distribution. The following unified analysis

using the mathematics of Quadrics generalizes the Beaulieu et al. (2013) solution to: (ii) the multi-factor

context, and (iii) the estimation of factor loadings and Jensen-type alphas.

Each inequation in (3.8) is rewritten as

(1, ζ ′)A(1, ζ ′)′ ≤ 0 (3.9)

6Other than the usual Least Squares assumptions on X ′X and Ŝ of course.
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where ζ is the m×1 vector of unknown parameters and A is an (m+1)× (m+1) data dependent matrix. Next,

inequality (3.9) is re-expressed as

ζ ′
A22ζ +2A12ζ +A11 ≤ 0 (3.10)

which leads to the set-up of Dufour and Taamouti (2005) so projections based CSs for any linear transformation

of ζ of the form ω ′ζ can be obtained as described in these papers. The solution is reproduced in the Appendix

for completion.

Moving from (3.9) to (3.10) requires partitioning A as follows

A =

[

A11 A12

A21 A22

]

(3.11)

where A11 is a scalar, A22 is m×m, and A12 = A′
21 is 1×m. Simple algebraic manipulations suffice to show that

for the test defined by (3.2), we have:

A = B̂Ŝ−1B̂′− (X ′X)−1 (n/τn) fn,τn,α (3.12)

setting ζ = θ . Using the partitionings (2.10) and (2.9), A11 = â′Ŝ−1â − ((n/τn) fn,τn,α)x11, A12 = A′
21 =

â′Ŝ−1b̂′− [(n/τn) fn,τn,α ]x12 and

A22 = b̂Ŝ−1b̂′− [(n/τn) fn,τn,α ]x22. (3.13)

In the case of (3.1), we have ζ =
(

θ ′, φ
)′

and

A =

[

B̂Ŝ−1B̂′− (X ′X)−1 fn,τn,α
n
τn

−B̂Ŝ−1ιn

−ι ′nŜ−1B̂′ ι ′nŜ−1ιn

]

. (3.14)

Finally, inverting (3.5) yields ζ = β̄
′
i and the quadric form (3.10) with

A22 = Ŝ−1, A12 = −β̂ i
′Ŝ−1, A11 = −n

(

sk[i]
′(X ′X)−1sk[i]

)

/τn. (3.15)

The outcome of resulting projections can be empty, bounded, or the union of two unbounded disjoint sets.

Dufour and Taamouti (2005) discuss such outcomes depending importantly on the A22 matrix. In particular, the

confidence set is unbounded if A22 is not positive definite. It is thus clear that inverting (3.5) produces bounded

sets as Ŝ is assumed invertible. The following Theorem further shows that if any of the Hotelling tests based on

Λ0 j, j = 2, . . . , k is not significant then the A22 matrix will not be positive definite and the confidence set will

be unbounded. That is, if any of the factors is redundant from a joint significance perspective, then information

on risk prices for all factors is compromised.

Theorem 3.1 In the context of (2.7), if

(τn/n)Λ j < fn,τn,α , j ∈ {2, . . . , k} (3.16)

where Λi are the Hotelling statistics defined in (3.5), then the CS for θ as defined in (2.11)] which inverts the

statistic (3.2) at the α-level is unbounded.

The above condition is sufficient but not necessary. It follows that although Hotelling tests on each factor

are useful, they remain insufficient, and perhaps more importantly, are embedded in our methodology without

compounding type-I errors. This characterization also holds when inverting the test defined in (3.1) and (3.7).
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3.2 Empty confidence sets and minimum distance statistics

The confidence set for factor loadings cannot be empty. Indeed, Dufour and Taamouti (2005) show that in the

context of (3.10) and a positive definite A22, the confidence set is empty i f D̃ = A12A−1
22 A12 −A11 < 0. Here,

from (3.15) we have

D̃ = β̂ i
′Ŝ−1β̂ i +n

(

sk[i]
′(X ′X)−1sk[i]

)

/τn ≥ 0.

Moving on to the case of Λ(θ), we proceed by generalizing the single-beta results in Beaulieu et al. (2013).

Because the cut-off point underlying test inversion denoted fn,τn,α above is the same for all θ values, an empty

set would result when minθ Λ(θ) ≥ fn,τn,α . It can be shown that minimizing Λ(θ) produces the Gaussian-LR

statistic to test the nonlinear restriction which defines θ , namely (2.11); general derivation are available in e.g.

Gouriéroux, Monfort and Renault (1996).

Theorem 3.2 In the context of (2.7) and the nonlinear hypothesis (2.11) the confidence set estimate for θ

which inverts the statistic Λ(θ) defined in (3.2) at the α-level is empty if and only if

ΛRAPT = minθ Λ(θ) = Λ(θ̂ RAPT) = ĝ/(1− ĝ) ≡ ρ̂ ≥ fn,τn,α (3.17)

where ĝ is the minimum non-zero root of C (X , Y ) = (X ′X)−1X ′Y (Y ′Y )−1Y ′X and

θ̂ RAPT = −
(

b̂Ŝ−1b̂′− γ̂x22
)−1(

b̂Ŝ−1â− γ̂x21
)

. (3.18)

In other words, the confidence set estimate for θ is empty if and only if the minimum distance LR-based

Hotelling statistic associated with (2.11) is significant when referred to the fn,τn,α cut-off which can be viewed

as a finite-sample bound cut-off point for this test. Observe that ρ̂ coincides with the minimum root of both

determinantal equations:

|B̂Ŝ−1B̂′−ρ(X ′X)−1| = 0 , (3.19)

|B̂′
(

X ′X
)

B̂−ρ Ŝ| = 0 . (3.20)

Since the underlying eigenvector solution is not unique, we provide a proof for (3.18) in the Appendix which

easily extends to the less restricted (2.12) definition and will allow us to link our results to existing related

works namely Kandel (1984) and Kandel (1986), and more recently to Kleibergen (2009). Our approach is

general and relates to important applications of reduced rank regression based inference in econometrics; these

include limited information simultaneous equation and cointegration models; see Dhrymes (1974, Chapter 7),

Davidson and MacKinnon (2004, Chapter 12), or Johansen (1995). We rely on the following matrix algebra

result pertaining to an equation of the form

Σ(1, ζ ′)′ = 0, |Σ| = 0, Σ =

[

Σ11 Σ12

Σ21 Σ22

]

(3.21)

where ζ is the m-dimensional unknown given an (m+1)× (m+1) matrix Σ, and Σ11 is a scalar, Σ12 = Σ′
21 is

1×m and Σ22 is m×m and is invertible. As summarized in the Appendix,

ζ̂ = −Σ−1
22 Σ21 (3.22)

provides a unique solution to this system.
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Theorem 3.3 In the context of (2.7) and the nonlinear hypothesis (2.12), the minimum distance estimators

associated with the criterion Λ(θ , φ) defined in (3.1) can be derived as

ΛUAPT = min
θ ,φ

Λ(θ , φ) = Λ(θ̂ UAPT, φ̂ UAPT) = ν̂ (3.23)

where ν̂ is the minimum root of

|B̂R̂nB̂′−ν(X ′X)−1| = 0 (3.24)

where R̂n := Ŝ−1 − Ŝ−1ιn

(

ι ′nŜ−1ιn

)−1
ι ′nŜ−1 and

θ̂ UAPT = −
[

b̂R̂nb̂′− ν̂x22
]−1[

b̂R̂nâ− ν̂x21
]

, (3.25)

φ̂ UAPT =
(1, θ̂

′
UAPT)B̂Ŝ−1ιn

ι ′nŜ−1ιn

. (3.26)

The formulas in (3.25)-(3.26) coincide with the solution obtained (using another method of proof) by

Shanken and Zhou (2007).

3.3 Finite-sample distributional theory

For some though not all inferential problems considered, we will assume the following mixture distributional

setting:

W = V Z (3.27)

where V is T ×T , unknown and possibly random (in which case it is independent of Z), and Z is a T ×n matrix

of i.i.d. n-dimensional standard normal variables i.e. if we denote the t-th row of Z as Z′
t , then

Zt
i.i.d.
∼ N[0, In]. (3.28)

Assumption (3.27) is sufficiently general and includes various n-dimensional elliptically contoured distributions

and skew-elliptical distributions. Special cases of (3.27) include the normal distribution

Wt = Zt
i.i.d
∼ N[0, In] (3.29)

and the multivariate Student-t distribution with µ degrees-of freedom [denoted as t(µ)].
The hypotheses associated with all statistics we aim to invert as introduced in the previous section fall

within the uniform linear class [see Dufour and Khalaf (2002), Beaulieu, Dufour and Khalaf (2007) and the

references therein] of the form:

H̃[C, G, D] : CBG = D for known C, G and D (3.30)

where C is c× k with rank c, 0 ≤ c ≤ k, and G is n× g, with rank g. The restricted estimators in this case are:

B̃(C, G, D) = B̂−
(

X ′X
)−1

C′[C(X ′X)−1C′]−1(CB̂G−D)(G′ŜG)−1G′Ŝ, (3.31)

S̃ (C, G, D) = Ũ (C, G, D)′Ũ (C, G, D) , (3.32)

Ũ (C, G, D) = Y −XB̃(C, G, D) , (3.33)

where

S̃ (C, G, D) = Ŝ + ŜG(G′ŜG)−1(CB̂G−D)′[C(X ′X)−1C′]−1(CB̂G−D)(G′ŜG)−1G′Ŝ. (3.34)
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Commonly used statistics including the LR and Wald criteria [see Berndt and Savin (1977), Gouriéroux,

Monfort and Renault (1995), Dufour and Khalaf (2002) and the references therein] to test H̃[C, G, D] can be

expressed as

L (C, G, D) = T ln
(

|S̃(C, G, D)|/|Ŝ|
)

= −T
l

∑
i=1

ln
(

1−λ i(C, G, D)
)

, (3.35)

W (C, G, D) = T tr
(

Ŝ−1[S̃(C, G, D)− Ŝ]
)

= T
l

∑
i=1

λ i(C, G, D)

1−λ i(C, G, D)
, (3.36)

where l = min{c, g} and λ 1(C, G, D) ≥ ·· · ≥ λ n(C, G, D) are the eigenvalues of S̃(C, G, D)−1[S̃(C, G, D)− Ŝ].
Clearly, λ i(C, G, D), i = 1, . . . , l coincide with the roots of S−1(C, G, D)[S(C, G, D)−G′ŜG] where

S(C, G, D) = G′ŜG+
(

CB̂G−D
)′ [

C(X ′X)−1C′
]−1 (

CB̂G−D
)

. (3.37)

Solving for eigenvalues in question thus requires considering the determinantal equation
∣

∣(S(C, G, D)−G′ŜG)−λS(C, G, D)
∣

∣ = 0 . (3.38)

Theorem 3.4 In the context of (2.7) and the null hypothesis H̃[C, In, D], the LR criterion simplifies to following

form L (C, In, D) = T ln
(∣

∣Ic + Λ̃(C, In, D)
∣

∣

)

where

Λ̃(C, In, D) = [C(X ′X)−1C′]−1(CB̂−D)Ŝ−1(CB̂−D)′. (3.39)

The latter Theorem covers the linear hypotheses relevant to the APT introduced above since

HR ≡ H̃[(1, θ ′), In, 0], HU ≡ H̃[(1, θ ′), In, φι ′n], H j ≡ H̃[sk[ j]′, In, β̄ j], H0 j ≡ H̃[sk[ j]′, In, 0] (3.40)

leading to

Λ(θ , φ) = Λ̃
(

(1, θ ′), In, φι ′n
)

, Λ(θ) = Λ̃
(

(1, θ ′), In, 0
)

, (3.41)

Λ(β̄ j) = Λ̃
(

sk[ j]′, In, β̄ j

)

, Λ0 j = Λ̃
(

sk[ j]′, In, 0
)

. (3.42)

Furthermore, the PAPT approach amounts to a convenient selection of the postmultiplying matrix G in (3.30).

Via this matrix, our analysis extends to any non-redundant combination of returns one may wish to consider.

The following Theorem establishes the finite sample distribution for the above eigenvalue based statistics with

emphasis on the role of G, which was not discussed in (Dufour and Khalaf (2002)).

Theorem 3.5 In the context of (2.7) and under the null hypothesis H̃[C, G, D] in (3.30), the vector of the roots

of (3.38) is distributed like the vector of the roots of
∣

∣G
′W ′ (M0[X , C])WG −λG

′W ′ (M [X ]+M0[X , C])WG
∣

∣ = 0 (3.43)

where G is the orthogonal n×g matrix which includes the eigenvectors associated with the non-zero eigenvalues

of J′GG′J and

M0[X , C] = X(X ′X)−1C′[C(X ′X)−1C′]−1C(X ′X)−1X ′. (3.44)

Furthermore, under assumption (3.27), the distribution in question follows that of the roots of
∣

∣Z
′V ′ (M0[X , C])VZ −λZ

′V ′ (M [X ]+M0[X , C])VZ
∣

∣ = 0 (3.45)

where Z is a T ×g matrix of i.i.d. g-dimensional standard normal variables, and is thus invariant to B and J.

For the special case where G = In, i.e. hypothesis H̃[C, In, D], the distribution in question follows that of the

roots of
∣

∣W ′ (M0[X , C])W −λW ′ (M [X ]+M0[X , C])W
∣

∣ = 0 (3.46)

so invariance to B and J holds imposing or ignoring assumption (3.27).
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Two results emerging from Theorem 3.5 deserve discussion for the problem under consideration.

1. The pivotal characterization (3.45) may be used to obtain finite sample p-values using the Monte Carlo

test method [see e.g. Dufour and Khalaf (2002) and Dufour (2006)] if the variates underlying V can be

simulated.

2. Under assumption (3.27), the distribution of the roots will depend on C but not on D, and depends on G

only through its rank.

So for the family of mixture distributions (3.27), the fact that null distributions depend on G only through its

rank underlies and generalizes (beyond the deviation form) the invariance property noted by Kleibergen (2009).

The fact that null distributions do not depend on D imply that the null distribution of Λ(β̄ j) does not depend

on β̄ j, so extending the above defined test inversion beyond normality preserves its quadrics-based analytic

solution. Indeed, it suffices to obtain a simulation-based cut-off point depending on the assumed disturbance

distributions which will be the same for all β̄ j. Dependence on θ will not be evacuated in the same way,

since θ intervenes in the null distributions in questions via M0[X ,C]. These distributions do not depend on φ ,

which again supports partialling this parameter out at least from a statistical perspective. Recall however that

φ and whether it differs empirically from the hypothesized zero-beta rate γ0 [which in our notation is the first

component of θ ] is an important empirical question in finance. Simultaneous inference on θ and φ remains

relevant. Our empirical analysis sheds more light on this matter using a well-known prototypical data set.

To conclude, we review two useful approximations to the above finite sample distributions. Given normal

errors and if min(c, g) ≤ 2 [Rao (1973, Chapter 8), McKeon (1974)] then

κ1κ3 −2κ2

cg

1−
(

|Ŝ|/|S̃(C, G, D)|
)1/κ3

(

|Ŝ|/|S̃(C, G, D)|
)1/κ3

∼ F(cg , κ1κ3 −2κ2) (3.47)

κ1 = T − k− ((g− c+1)/2) , κ2 = (cg−2)/4, (3.48)

κ3 =

{

[(c2g2 −4)/(c2 +g2 −5)]1/2 if c2 +g2 −5 > 0

1 otherwise
. (3.49)

The latter result holds as a reliable approximation when min(c, g) > 2. The cutoffs we use to invert the statistics

considered in section 3 follow from these approximations. We also verify that deviations from the i.i.d. or

normal errors assumption do not lead to notable size distortions in empirically relevant multifactor simulation

designs.

4 Empirical analysis: Fama-French and momentum factors

In our empirical analysis of a multifactor asset pricing model, we conduct: (i) a simulation study calibrated to

observed returns and factors, and (ii) a data-based assessment of factor pricing.

We first produce results for industry portfolios for the US, as in Beaulieu et al. (2013). Following recom-

mendations of Lewellen et al. (2010), we also produce results for size portfolios, based on Fama and French’s

data base. We consider monthly returns of 25 value weighted and equally weighted portfolios from 1961 to

2010. The benchmark factors are: 1) MKT, the excess return on the market defined as the value-weighted

return on all NYSE, AMEX, and NASDAQ stocks (from CRSP) minus the one-month Treasury bill rate (from

Ibbotson Associates); 2) SMB (small minus big) defined as the average return on three small portfolios minus

the average return on three big portfolios; 3) HML (high minus low) defined as the average return on two value

portfolios minus the average return on two growth portfolios; 4) MOM (momentum), the average return on the
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two high prior return portfolios minus the average return on the two low prior return portfolios; 5) RMW (ro-

bust minus weak) operating profitability; and 6) CMA (conservative minus aggressive) investment, constructed

from conservative minus aggressive growth of assets for the fiscal year. Further information on this data is

provided in the supplementary Appendix.

4.1 Simulation evidence

The experiment reported in this section is designed to assess three issues. First, the above proposed CSs can

be conservative when k is large, so we aim to document their coverage properties. Second, we study the

performance of the inverted proposed tests when errors are fat-tailed. Third, we assess the implications of

imposing and relaxing tradability restrictions; see Lewellen et al. (2010) and Penaranda and Sentana (2016)

for theoretical and practical discussions in this regard. To the best of our knowledge, an identification-robust

assessment of this important equilibrium-based restriction is as yet unavailable.

We consider an empirically relevant design based on the above data set and the Fama-French three factor

model [with MKT, SMB and HML] in which returns are generated by (2.1) with (2.2) or (2.3). We calibrate

designs using observed data on value-weighted portfolios covering the full sample [n = 12 and T = 624], and

the last sub-period [n = 12, T = 120]. The full sample exercise allows us to analyze our results relative to the

literature, whereas the shorter sample documents performance as it applies to a standard sub-period analysis.

The factors are drawn as normal with means and variance/covariance calibrated to match the considered

sample. We set the factor loadings and the variance/covariance of disturbances to their OLS estimated coun-

terparts for the observed sample. J is obtained as the Cholesky root of this variance/covariance matrix. For

conformity, we also compute the cross-sectional two-pass OLS estimates of the zero-beta rate and risk price

[denoted θ ∗0], and their companion standard errors [denoted SE(θ ∗0)]. We use these cross-section estimates to

calculate θ as in Shanken and Zhou (2007) and from there on, to initialize the simulations underlying the size

study. To assess power, we set the parameter under the alternative as

θ ∗ = θ ∗0 + step×SE(θ ∗0) (4.1)

where step measures departure from the null hypotheses; the intercept term γc is calibrated in the same way. Of

course, for our empirical analysis, we do not compute confidence intervals using OLS estimates nor Wald-based

MLEs for that matter. All reported intervals invert the Hotelling-tests we proposed above. The cross-sectional

OLS estimates from the training samples, despite their imperfections, are used as well-understood prototypical

metric to initialize our data generating processes. For space considerations, the simulation values are not

reported here but are available from the authors upon request.

These settings are maintained for all analyzed tests, except in one case in which we provoke under-

identification by fixing the MKT betas jointly to zero or one. We report test sizes as a worst scenario check to

confirm that no over-rejections occur despite identification failure. The disturbances Wt are generated, in turn,

as i.i.d. normal, multivariate Student with 5 degrees of freedom, and multivariate GARCH using in this case

the data generating process

Wt = G
1/2
t Zt , Gt = (1−µ1 −µ2)In + µ1Wt−1W

′

t−1 + µ2Gt−1 (4.2)

where Zt are uncorrelated n-dimensional standard normal variables, so in this case the conditional variance of

JWt is given by Σt with

Σt = JGtJ
′ = (1−µ1 −µ2)JJ′ + µ1JWt−1W

′

t−1J′ + µ2JGt−1J′ (4.3)

= (1−µ1 −µ2)JJ′ + µ1JWt−1W
′

t−1J′ + µ2Σt−1
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Table 1: Designs underlying reported figures

Empirical True Data Generating Process

Model R1 Tradable R1 Non-Tradable

Inverted Statistic Inverted Statistic

RAPT PAPT UAPT RAPT PAPT UAPT

R1 Λ(θ) ΛD (θ) Λ(θ , φ) Λ(θ) ΛD (θ) Λ(θ , φ)

Tradable Fig. 1 & 7 NA NA Fig. 6 NA NA

Inverted Statistic Inverted Statistic

RAPT PAPT UAPT RAPT PAPT UAPT

R1 Λ(θ) ΛD (θ) Λ(θ , φ) Λ(θ) ΛD (θ) Λ(θ , φ)

Non-Tradable NA Fig. 3 Fig. 2 & 8 NA Fig. 5 Fig. 4

Note – This table summarizes designs and methods in reported figures below. The RAPT Λ(θ) [in (3.2)] and UAPT Λ(θ , φ) [in (3.1)]

statistics, where R and U stands for “restricted” and “restricted”, impose and relax the assumption that R1 is tradable, respectively. The

PAPT ΛD (θ) statistic, where P stands for “partialling-out”, denotes Λ(θ) applied to a system on n−1 returns in deviation from rn. In

this case, all factors are assumed non-tradable in estimating and testing the model but the resulting unrestricted constant is evacuated

from the statistical objective function as it is applied to ri − rn, i = 1, . . . , n−1.

which corresponds to a special case proposed by Engle and Kroner (1995). We use (µ1, µ2) = (.15, .80). The

considered inference methods are not corrected for departures from the i.i.d. assumption nor from normality.

Tests and confidence intervals in what follows are at the 5% and 95% level. We report empirical rejections over

10000 replications for each parameter. In the results below, R1 is the MKT factor.

The design of the simulation experiment is outlined in Table 1, whereas the results are summarized in

Figures 1-8. In each figure, we report: (i) under the heading “True Model”, the specification used to generate

data, and (ii) under the heading “Empirical Model”, the specification that was considered for estimation and

inference. The true and empirical specifications differ only regarding the treatment of R1, as summarized in

table 1. Figure 7 replicates the design in 1 with a smaller sample size; we do not replicate all designs for space

considerations, so figure 7 aims to broadly illustrates sample size issues. The design underlying figure 8 differs

from the rest in that it assesses our proposed tradability test; further discussions below will clarify the design

and its implications. In all figures, the parameters corresponding to the null hypothesis are identified via a

dashed vertical line. Results can be summarized as follows. In the Supplementary Appendix, we report the

proportion of empty joint confidence sets in the experiments underlying each figure, as well as the unidentified

experiment results.

1. Deviations from normality. In all designs, deviations from normality are not distortive in the following

sense: no over-rejections occur under the null hypothesis when the i.i.d. normal assumption is violated. Recall

that tests rely on the above defined F critical points regardless of the distributions we use to draw simulated

samples. This result is noteworthy given the prevalence of multivariate GARCH or Student-t type assumptions

on disturbances in theoretical and empirical asset pricing work.

We also find that power results with GARCH-based designs dominate the Gaussian based ones which in turn

dominate the Student-t case. On balance, a maximum of around 10% difference in power is observed between

power curves, respectively. Power costs resulting from Student-t errors are expected, since our tests rely on

least-squares. Power results with GARCH deserve discussion. Recall that test sizes are controlled even though

GARCH was not accounted for. We do not advocate hasty conclusions suggesting that GARCH enhances test

performance. Instead, we find that the GARCH case underscores the practical usefulness of our tests in realistic

settings: most likely, GARCH adjusts the scale of left-hand side simulated variates relative to the model’s
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covariates, to better match the considered initializing parameters which rely on observed data here. For further

insight on single equation least-squares based inference in the presence of ARCH, see (Hamilton (2010)). Both

Student-t and GARCH errors do not seem to affect power ranking relative to factor informativeness.

2. Size of tests, and identification. Empirical rejections under the null hypothesis do not exceed 5% in all

cases, including the under-identified case (reported in the supplementary Appendix). To quantify identification

in the baseline design, refer to table 2 [reported in our empirical section below] which summarizes joint factor

significance tests7 and confidence sets for factor loadings, using the last sub-period of our dataset. This is

relevant because these loadings drive the simulated design for our short sample (with T = 120) which we view

as a “stress test” for our methodology. The main point we aim to underscore from this table as it relates to

our simulation design, is the following. While the (unrestricted) intercept is not significant at 5% using the

Hotelling test, all factors are significant at 5%. Nevertheless, all confidence intervals for the SMB beta cover

zero, whereas a small proportion of the intervals for the MKT or HML loadings do not cover zero. Thus factors

are not necessarily redundant, yet joint information may not be strong across portfolios with shorter samples.

This turns out to matter as we will see below.

Although not obvious on first sight, figure 8 contains a size study on our unrestricted test, when applied in

deviation from R1. In this case, the intercept will measure deviations between the risk price of R1 [γ0 = θ MKT]

and the zero beta rate [γc], which will assess the tradable factor assumption. In this design, the null hypothesis

corresponds to γ0 = θ MKT = γc i.e., R1 is tradable. Departures from the null hypotheses vary γc keeping γ0

constant. Since γ0 = θ MKT is kept constant throughout, the curves corresponding to θ MKT describe size and

not power. We thus see that size is well controlled again, a point worth emphasizing since this test is new to the

(identification-robust) literature.

3. Power of tests, general findings. Except with the under-identified case [refer to the Supplementary

Appendix], all tests display good and empirically relevant power. Recall that a joint three (or four) parameter

test is inverted here, which confirms that the benefits of simultaneous inference is not offset by power losses

unless identification fails completely.

Comparing figures 1 and 7, we see that tests are powerful on all parameters even when the sample size

drops from 624 to 120. Strikingly, power curves do not differ much between the large and small samples.

In particular, and though information on other factors suffers to some extent, power on the HML price with

T = 120 almost matches the T = 624 experiment. This leads us to analyze with further detail how power

differs across considered factors; refer to point 4, below.

The unrestricted and partialled-out tests perform exactly the same for inference on risk price, a result

which lines up with the above theory [refer to (3.11)-(3.14)]. The main advantage of our test compared to

the partialled-out one which relates to an asymptotic test proposed by (Kleibergen (2009)) is the information

we provide on the model’s intercept. See in particular figure 4: whereas partialling-out evacuates this parame-

ter, our test provides tremendous power on this fundamental coefficient without sacrificing any information on

the model’s risk price. Further discussion of restricted versus unrestricted testing is discussed in point 5, below.

4. Power of tests, across factors. Broadly, tests are more informative on one of the three factors relative to

the others. Given the historical debate on MKT beta, comparing figures 4 and 5 to figures 1 and 7 is particularly

enlightening. The former imply that the MKT risk is harder to test than the remaining factors. In contrast, tests

on the zero-beta rate as depicted in the latter seem more powerful than those on SMB and HML.

In all four figures true and empirical assumptions on R1 coincide and conformable tests are applied. Thus,

both of these alternative findings may initially appear plausible. However, whereas figures 4 and 5 relax trad-

ability of R1, figures 1 and 7 replicate empirical consensus on R1, i.e. that it is a tradable factor. This under-

7Industry portfolios are used although (unreported) results with size factors convey qualitatively similar information. With reference

to market betas, we assess joint deviations from one since the market factor is assumed tradable in this design, in which case bunching

up at one is more relevant to gauge identification.
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scores the usefulness of our restricted test which is depicted in figures 1 and 7, which in turn leads us to further

analyze the effects of restricting versus assessing the tradable factor assumption; refer to point 5 below.

Figures 1 and 7 also suggest that SMB is the least informative factor. The above comments warning that

confidence sets on the SMB loading all cover zero apply in this case. Relative power ranking are thus clearly

driven by the relative identification strength of SMB in this design, which we emphasize is based on observable

factors.

5. Power of tests, restricted versus unrestricted. Figure 8 (with the exception of results on θ MKT as noted

above) depicts the power of our proposed test which assesses that R1 is tradable, or formally whether γ0 =
θ MKT = γc. Departures from this null hypotheses vary γc keeping γ0 constant. The power on non-market risk

prices is unaffected relative to the previous designs, whereas we find very good power on γc − γ0. Though

ex-ante decisions regarding some factors is possible, most cross-sectional based works in asset pricing tend to

leave the intercept unrestricted. Our approach provides an identification-robust assessment of tradable factor

restrictions, which, to the best of our knowledge, is a new and useful contribution.

Figure 2 documents the consequences of neglecting this assumption when it holds. Comparing power curves

between figure 1 and figure 2, we find that the risk price of R1 bares all the cost as power is much weaker in

figure 2 than in figure 1, which results of course from disregarding a relevant restriction. Our design suggests

that resulting power losses are sizable: the risk price of a tradable factor is harder to pin-down even in identified

contexts when an unrestricted cross-sectional constant is maintained, which quantifies the consequences of an

important “pitfall” raised in particular by Lewellen et al. (2010) and more recently though in a GMM context by

Penaranda and Sentana (2016). In contrast to the traditional literature, our findings are based on methods that

are robust to the identification of all factors which provides new insights into the historical debate surrounding

the role of the MKT factor in multi-factor models.

To further interpret the evidence on intercept tests, note that in the design underlying figure 2, as γc is taken

away from its value under the null hypothesis, γ0 follows conformably since the true model throughout imposes

γ0 = γc (hence the need for figure 8, to assess the test for inference on this discrepancy). So results for γ0 =
γc can be interpreted as size [despite the misspecification], whereas tests on γc confirms the excellent power

properties we noted in commenting on figure 4. Figure 3 illustrates the limitations of partialled-out tests: power

on all coefficients, again, coincides exactly with that of our unrestricted test as depicted in figure 2, which we

noted to be way lower that in figure 1 for inference regarding R1. As an added major cost, partialling-out takes

away all sources of information on the validity of tradability assumptions, whose usefulness we quantified via

figure 8.

Figure 6 illustrates the consequences of imposing the traded factor assumption when it does not hold. Here,

what is indicated as a parameter value under the null is in fact a false null, since the model falsely imposes

a restriction that does not hold. An important contrast with figure 2 in which case we found that inference

regarding R1 is only affected, here results show that spurious inference on all model parameters results, with

notable size distortions as empirical rejections exceed 60%. A important cautionary remark about this figure

(refer to the Supplementary Appendix for further details), the rejections we depict actually correspond to empty

confidence sets in almost all simulations. This means that our companion model checks are conveying evidence

of misspecification, with very good power. This finding leads to clear prescriptions for empirical work: de-

spite the importance of imposing traded factor assumption, their empirical validation remains a must as serious

distortions will result otherwise. This reinforced the usefulness of our proposed intercept test, and more impor-

tantly, the usefulness of our built-in specification checks which will return empty sets when the model deviates

importantly from asset pricing equilibrium relations.

6. Size and power, and empirical results. Taken collectively, our simulation results suggest that the un-

bounded confidence sets we observe empirically as reported in section 4.2 are most likely driven by weak

factors. Inference problems are thus highly likely even outside the high dimensional settings analyzed for ex-
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ample by Harvey et al. (2016) where k is by far larger than 5, the maximum number we consider. Our results

with a small number of commonly used factors also suggest that our confidence sets in which an identifica-

tion check is “hard-wired” are extremely valuable in practice, since they will allow the researcher to qualify

non-rejections. An unbounded confidence set guards the researcher from misreading nonsignificant tests as

evidence in favour of models on which data is not informative. Our analytical projection method thus provides

an invaluable tool because it easily and surely confirms an unbounded solution, in contrast to e.g. numerical

searches that are typically subject to precision, convergence and tractability constraints. On balance, results

with both sample sizes illustrate the worth of our analytical F-based motivation for relying on our proposed

analytical test inversion formula.

4.2 Empirical results

In the following discussion, significance refers to the 5% level and the restricted test refers to treating MKT as

a tradable factor. Our empirical analysis builds on the prescriptions of Lewellen et al. (2010). From a general

standpoint, our results can be summarized as follows.

Risk premiums are better identified with industry portfolios than with size portfolios. This result is not

driven by the number of the portfolios in question. In fact, when the whole set of portfolios is used jointly

following Lewellen et al. (2010, Prescription 1), all considered unconditional models are rejected. Although

noteworthy and consistent with the discussion in Lewellen et al. (2010), the latter test may pose an unconven-

tionally high hurdle for goodness of fit. We thus do not aim to overemphasize these rejections. Instead, we view

these results as confirming the power of our tests as n increases relative to T .

An alternative and more fundamental argument is that stacking portfolios increases dispersion of factor

sensitivities; in contrast, size sorted portfolios yield much more clustered betas than their industry counterparts,

which ill-conditions the rank of the associated beta matrix thus compromising identification of risk price. Sim-

ilar distortive clustering results with value weighted portfolios whether we use industry or size sorting, whereas

size sorted value-weighted portfolios are the least informative in our considered tests. This is illustrated in table

2 which reports confidence sets for factor loading based on inverting Λ(β̄ j) in (3.8), as well as zero-parameter

test based on Λ0 j (3.6) under the heading Hotelling, corresponding to the last sub-period of our dataset with

industry value-weighted portfolios.8 Though all factors seem relevant via significant Hotelling test, a small

number of confidence intervals for MKT excludes one, one of the intervals for HML excludes zero and all in-

tervals for SMB cover zero, which suggests severe clustering. For this purpose, we base the bulk of our analysis

on equally weighted industry portfolios.

The Fama-French five factor model is severely under-identified even via our most informative checks,

namely our restricted test, industry portfolios, and over the whole sample. Since Fama and French (2015)

argue that HML in this model is unidentified, we repeat our analysis excluding this factor.

Analyzed results are reported in six tables; the appendix includes results with value weighted portfolios and

further results with weaker identification evidence for completion.

Results imposing tradable MKT differ importantly from their unrestricted counterparts. Compare for ex-

ample Panel A to Panel B of table 3, and consider first the 1971-1980 and 1991-2000 subperiods in which we

reject the three-factor model via our restricted test (of Panel A). For further reference, these subperiods will

be denoted as the atypical ones, to underscore this rejection. In contrast to the restricted test, our unrestricted

inference (in Panel B) fails to reject the model in these subperiods and confirms that: (i) MKT is priced in both

cases, (2) HML is not priced whereas SMB is priced only in the 90s.

Does it seem reasonable to retain a model that ignores a key property of the market factor? With reference

to Lewellen et al. (2010, Prescription 2), the unrestricted test seems a low hurdle to meet unless (among other

8We discussed these results above as they relate to our simulation design.
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Figure 1: Monte Carlo study: tests imposing tradable market factor

n = 12, T = 624 ri = aiιT +R1bi1 +FbiF +ui

True model ai = γ0(1−bi1)− γ ′
F

biF , γ0 = θ MKT, γF = (θ SMB, θ HML)′

Empirical model ai = γ0(1−bi1)− γ ′
F

biF

RAPT: Inverted Statistic Λ(θ), θ = (γ0, γ ′
F

)′

Note – Dashed vertical lines denotes null parameter values. Empirical rejections pertain to 5% tests associated with 95% confidence

sets: if the 95% set does not cover the null value or is empty, the reported test is considered significant. Parameters are calibrated to

OLS cross-sectional two-pass estimates from a training sample based on industry portfolios, Fama-French factors and monthly data,

1961-2010 hence T = 624. See table 1 for further details on design and inverted tests. When one unicolor curve is depicted whereas

the legend refers to three cases, this implies that all visually coincide.
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Figure 2: Monte Carlo study: joint tests, market factor tradable assumed non-tradable

n = 12, T = 624 ri = aiιT +R1bi1 +FbiF +ui

True model ai = γ0(1−bi1)− γ ′
F

biF , γ0 = θ MKT, γF = (θ SMB, θ HML)′

Empirical model ai = γc − γ0bi1 − γ ′
F

biF

UAPT: Inverted Statistic Λ(θ , φ), θ =
(

γ0, γ ′
F

)′
, φ = γc or (γc − γ0)
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Note – See notes to figure 1 and table 1. Results under the heading γc − γ0 are obtained by executing Λ(θ , φ) on returns in deviation

from R1 in which case tests on risk θ are unchanged and tests on φ provide inference on γc − γ0, which is zero throughout this design

for all “steps” given the considered true model.

explanations) the zero beta rate differs anomalously from the risk-free rate. Our inference on the cross-sectional

intercept can inform in this regard, in contrast to the unrestricted test [adopted in particular by Kleibergen

(2009)] that subtracts this intercept away. Let us thus refer to the upper Panel of table 5. For the subperiods in

question, we find that despite notable estimation uncertain, the confidence set on γ∗c does not cover zero which

confirms that γ0 significantly differs from γc. This discrepancy seems to be driving the rejection of the tradable

MKT model. Interestingly, we are not able to refute a zero γ∗c outside these subperiods.

Results with the Carhart model provide further insights on the above anomalous interpretation. Comparing

the upper to the lower panels of table 4, we find that the unrestricted test is completely uninformative as the

confidence sets are utterly wide. In contrast, with a tradable MKT and again, despite evidence of estimation

uncertainty, we find that MOM is priced only in the 1971-1980 and 1991-2000 sub-periods and these are the

only subperiods in which the restricted three-factors model is rejected whereas γ0 significantly differs from γc.

The MKT risk itself is no longer priced in these subperiods, which stands in sharp contrast with our unrestricted

three-factor based evidence. In addition, SMB is priced in the presence of MOM in both subperiods, whereas

it is priced in our unrestricted three-factor model only in the nineties.

Divergences between restricted and unrestricted inference also arise when the restricted three-factors model

is not rejected. In particular, in the three factors model, the restricted tests confirm that SMB and HML are both

priced in the 1960s whereas the unrestricted tests cover zero. Similarly, HML appears priced via the restricted

test in 1981-90 and not priced using the unrestricted counterpart, and the same holds for SMB in 2000-2010.

Overall, aside from the market and unless the restricted model is rejected, all factors that are priced via the

restricted test are no longer priced when the tradable MKT restriction is relaxed. Referring to the upper Panel

of table 5 reveals no basis to refute γ0 = γc when the restricted model is not rejected, and as emphasized above,

MOM is not priced in these subperiods as may be checked again from the upper Panel of table 4.

The above interpretation of the momentum effect may be qualified as we interpret results of the Fama-

French model with SMB, RMW and CMA over and above the MKT factor. As with the Carhart model, the

unrestricted test is completely uninformative yet the model passes our restricted test over all subperiods. The
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Figure 3: Monte Carlo study: partialled-out tests, market factor tradable assumed non-tradable

n = 12, T = 624 ri = aiιT +R1bi1 +FbiF +ui

True model ai = γ0(1−bi1)− γ ′
F

biF , γ0 = θ MKT, γF = (θ SMB, θ HML)′

Empirical model ai = γc − γ0bi1 − γ ′
F

biF

PAPT: Inverted Statistic Λ(θ) on ri − rn with θ = (γ0, γ ′
F

)′

Note – See notes to figure 1 and table 1. The dashed vertical line denotes the value of the given parameter under the null.
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Figure 4: Monte Carlo study: joints tests, relaxing tradable market factor

n = 12, T = 624 ri = aiιT +R1bi1 +FbiF +ui

True model ai = γc − γ0bi1 − γ ′
F

biF , γ0 = θ MKT, γF = (θ SMB, θ HML)′

Empirical model ai = γc − γ0bi1 − γ ′
F

biF

UAPT: Inverted Statistic Λ(θ , φ), θ =
(

γ0, γ ′
F

)′
, φ = γc

Note – See notes to figure 2.
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Figure 5: Monte Carlo study: partialled-out tests, relaxing tradable market factor

n = 12, T = 624 ri = aiιT +R1bi1 +FbiF +ui

True model ai = γc − γ0bi1 − γ ′
F

biF , γ0 = θ MKT, γF = (θ SMB, θ HML)′

Empirical model ai = γc − γ0bi1 − γ ′
F

biF

PAPT: Inverted Statistic Λ(θ) on ri − rn where θ = (γ0, γ ′
F

)′

Note – See notes to figure 3 and table 1.
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Figure 6: Monte Carlo study: test imposing tradable market factor when non-tradable

n = 12, T = 624 ri = aiιT +R1bi1 +FbiF +ui

True model ai = γc − γ0bi1 − γ ′
F

biF , γ0 = θ MKT, γF = (θ SMB, θ HML)′

Empirical model ai = γ0(1−bi1)− γ ′
F

biF

RAPT: Inverted Statistic Λ(θ), θ = (γ0, γ ′
F

)′

Note – See notes to figure 1.
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Figure 7: Monte Carlo study: tests imposing tradable market factor, performance with 10 years of data

n = 12, T = 120 ri = aiιT +R1bi1 +FbiF +ui

True model ai = γ0(1−bi1)− γ ′
F

biF , γ0 = θ MKT, γF = (θ SMB, θ HML)′

Empirical model ai = γ0(1−bi1)− γ ′
F

biF

RAPT: Inverted Statistic Λ(θ), θ = (γ0, γ ′
F

)′

Note – See notes to figure 1 and table 1. The training sample used to generate simulation parameters is restricted to the last 10 years of

data.
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Figure 8: Monte Carlo study: joint tests, market factor tradable assumed non-tradable

n = 12, T = 624 ri = aiιT +R1bi1 +FbiF +ui

True model ai = γc − γ0bi1 − γ ′
F

biF , γ0 = θ MKT, γF = (θ SMB, θ HML)′

Empirical model ai = γc − γ0bi1 − γ ′
F

biF

UAPT: Inverted Statistic Λ(θ , φ), θ =
(

γ0, γ ′
F

)′
, φ = (γc − γ0)

Note - See notes to figure 1 and table 1. Results are obtained by executing Λ(θ , φ) on returns in deviation from R1. Under the null, we

hold γc = γ0, and under the alternative, γc moves away from the true value, whereas γ0 does not.
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following discussion thus focuses on the restricted model outcomes in table 6. Interestingly, results for the

atypical 70s and 90s stand in sharp contrast with those we obtained using Carhart’s model: MKT and one of the

RMW and CMA factors are priced whereas SMB is not; instead, recall that SMB and MOM are jointly priced

with the Carhart model, whereas the MKT factor was not.

The obvious question is, then, whether observed factors represent risks or anomalies. Yet any interpretation

of our findings in this regard is hasty, given our focus thus far on the atypical subperiods. Outside these

subperiods, interpretations in any direction are severely hampered by the more pernicious identification failures

we observe therein. Indeed, over and above MKT and SMB, the addition of MOM and HML yields completely

uninformative sets (the real line) prior to the 70s and so does the addition of RMW and CMA. In the 80s,

the Carhart model is uninformative whereas MKT and RMW are priced despite unbounded sets. In contrast,

post 2000, SMB is the only priced factor in the Carhart model whereas the four-factor Fama-French model is

completely uninformative.

In sum, four key results are worth emphasizing. First, the three Fama-French factors are confirmed to be

priced concurrently only before 1970. From there on, the factors are either: (i) jointly rejected in the sense

that anomalies remain despite some evidence of pricing, or (ii) are weakly supported, in the following sense:

we find no clear indication on which among the three is priced or not. Second, with regards to the historical

debate on anomalies9, we do not find convincing and uniform evidence favoring any factor relative to MKT.

Third, MOM is not necessarily irrelevant despite its adverse effect on identification broadly, and may possibly

proxy an outstanding anomaly relative to the three-factors model in the 70s and 90s atypical subperiods. Fourth,

heterogeneity is not sufficient to distinguish a priced momentum anomaly from profitability or investment as

presumably non-diversifiable risk drivers.

Size portfolios preserve some of the above findings, though globally, evidence weakens as identification is

visibly weaker. The latter finding reinforces the argument in Lewellen et al. (2010, Footnote 1), namely that

size and book-to-market sorted betas on MKT are close to one, a fact that seems to empirically endure since

Fama and French (1993).

Notwithstanding almost inevitable resulting under-identification, table 7 broadly underscores the following,

relative to industry portfolios. First, the restricted three-factor model is no longer rejected in the 70s and 90s;

in fact it passes our test overall. Interestingly, the three factors are jointly priced in the 70s, whereas in the 90s,

the only priced factor is MKT. Second, in all subperiods expect the 80s and 2000s in which our confidence sets

on MKT risk are the real line, MKT is priced. Third, prior to the 90s, HML is always priced. Fourth, the data

is not informative post-2000s, a result shared to some extent with industry sorts.

The addition of momentum provokes under-identification since almost all confidence sets for risk prices

are the real line, and so does unrestricting the intercept with and without momentum (the latter results are not

reported for space consideration). The same holds when adding RMW and CMA, with and without HML; a

sample of these results is reported in the Appendix.

Further results including conditional models are reported in the supplementary appendix. Results confirm

that the identification problems in this literature are not solved by standard conditioning, which seems instead

to exacerbate complications.

5 Conclusion

One of the key goals of asset pricing is to identify factors that drive asset returns and are associated with risk

premiums. This paper contributes to this literature via an identification-robust methodology to assess pricing,

9See Campbell et al. (1997, Chapters 5 and 6), Fama and French (2004), Perold (2004), Campbell (2003), Sentana (2009) and the

recent insight in Fama and French (2015).
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Table 2: Simultaneous confidence sets for factor loadings

2001-2010, Value-Weighted Industry Portfolios

Eq. Intercept MKT -1 SMB HML

1 [-.0062,.0129] [-.5969,-.1868] [-.4630,.2560] [-.0498,.5577]

2 [-.0214,.0180] [-.0563,.7905] [-.2121,1.2723] [-.0808,1.1737]

3 [-.0079,.0127] [-.0405,.4033] [-.1699,.6082] [-.0701,.5874]

4 [-.0145,.0298] [-.6664,.2849] [-1.0358,.6319] [-.4649,.9445]

5 [-.0063,.0147] [-.4489,.0022] [-.5510,.2397] [-.0700,.5982]

6 [-.0095,.0113] [.1698,.6156] [-.0586,.7223] [-1.2226, -.5623]

7 [-.0147,.0148] [-.2125,.4201] [-.9030,.2062] [-.5811,.3563]

8 [-.0146,.0188] [-.7735,-.0573] [-.7852,.4705] [-.2415,.8196]

9 [-.0102,.0113] [-.4224,.0396] [-.1606,.6493] [-.2435,.4409]

10 [-.0118,.0122] [-.5823,-.0659] [-.8394,.0660] [-0.3373,.4278]

11 [-.0156,.0062] [-.1480,.3206] [-.4751,.3463] [.2860,.9802]

12 [-.0103,.0077] [-.1198,.2679] [-.3047,.3750] [-.0969,.4776]

Hotelling 1.2131 16.9573 5.4253 23.2133

p-value .284 .000 0.000 0.000

Note – See notes to table 3 for the definition of the considered sample. Intervals reported are the 95% joint (across equations) confidence

sets for the coefficients (in turn) of each portfolio regression numbered 1-12. The inverted test in each case is Λ(β̄ j) defined in (3.5)

to test H j (2.20). The Classical Hotelling joint significance test with conforming p-value is reported at the bottom of each column to

assess each of H0 j (2.21). j = 1 provides joint inference on the unrestricted regression intercepts, and as the unrestricted regression

is in deviation from the tradable factor, here MKT, j = 2 provides joint inference on market betas in deviation from one, and j = 3, 4

provide inference, in turn, on SMB and HML betas. Confidence sets in bold are those that do not cover zero.

28



Table 3: Confidence sets for risk price: industry portfolios and three factor model

ri − ιT γ0 = (R1 − ιT γ0)bi1 +(F − ιT γ ′
F

)biF +ui, i = 1, . . . , n

PANEL A θ = (γ0, γ ′
F

)′ = (θ MKT, θ SMB, θ HML)′

MKT SMB HML

×10−4 F θ MKT F θ SMB F θ HML

61-70 38* [-437,-55] 33* [-17,14] 53* [-46,41]

71-80 30 ∅ 43 ∅ 33 ∅

81-90 44*
]−∞, −194]

∪ [ 1156,∞]
-16 R 56*

]−∞, -115]

∪ [ 611,∞[

91-00 103 ∅ 4 ∅ 29 ∅

00-10 14 [-79,245] 57* [-146,3] 40 [-41,178]

ri − ιT γc = (R1 − ιT γ0)bi1 +
(

F − ιT γ ′
F

)

biF +ui, , i = 1, . . . , n

PANEL B θ = (γ0, γ ′
F

) = (θ MKT, θ SMB, θ HML), γc partialled-out

MKT SMB HML

×10−4 F θ MKT F θ SMB F θ HML

61-70 38* [-642, -14] 33 [-11, 83] 53 [-64, 74]

71-80 30* [-621, -54] 43 [-26, 158] 33 [-137, 160]

81-90 44*
]−∞, -198]

∪ [ 807,∞[
-16 R 56 R

91-00 103*
]−∞, -432]

∪ [ 3087,∞[
4*

]−∞, -1499]

∪ [ 97,∞[
29

]−∞, -281]

∪ [ -24,∞[

00-10 14 [-100, 1226] 57 [-1089, 66] 40 [-137, 192]

Note – Sample includes monthly observations from January 1991 to December 2010 on the US. Series include 12 equally weighted

(EW) industry portfolios as well as US factors for market (MKT), size (SMB), book-to-market (HML). Confidence sets are at the 5%

level. F is the factor average over the considered time period; θ captures factor pricing as defined in (2.15). * denotes evidence of

pricing at the 5% significance level interpreted as follows: given the reported confidence sets, each factor is priced if its average is not

covered. In Panel A, the inverted test is Λ(θ) defined in 3.2. This test follows our RAPT approach where R stands for “restricted”

implying that tradable factor constraints are imposed, here on R1, in estimating and testing the model. In Panel B, the inverted test

Λ(θ) is applied on a system on n−1 returns in deviation from rn. This test follows our PAPT approach where P stands for “partialling-

out” implying that all factors are assumed non-tradable but the resulting unrestricted constant is evacuated from the statistical objective

function as it is based on ri − rn, i = 1, . . . , n−1.

29



Table 4: Confidence sets for risk price: industry portfolios and four factor model

ri − ιT γ0 = (R1 − ιT γ0)bi1 +(F − ιT γ ′
F

)biF +ui, i = 1, . . . , n

θ =
(

γ0, γ ′
F

)

=
(

θ MKT, θ SMB, θ HML, θ MOM

)

MKT SMB HML MOM

×10−4 F θ MKT F θ SMB F θ HML F θ MOM

61-70 38 R 33 R 53 R 73 R

71-80 30 [-300, 232] 43* [-62, -17] 33 [-87, 111] 113* [-333, 98]

81-90 44 R -16 R 56 R 66 R

91-00 103 [-617, 123] 4* [-387,-20] 29 [-267,36] 112* [-995, -45]

00-10 14 [-124, 258] 57* [-212,5] 40 [-52, 204] -3 [-554, 129]

ri − ιT γc = (R1 − ιT γ0)bi1 +(F − ιT γ ′
F

)biF +ui, i = 1, . . . , n

PANEL B θ = (γ0, γ ′
F

) = (θ MKT, θ SMB, θ HML, θ MOM), γc partialled-out

MKT SMB HML MOM

×10−4 F θ MKT F θ SMB F θ HML F θ MOM

61-70 38 R 33 R 53 R 73 R

71-80 30 [-654, 316] 43 [-53, 166] 33 [-143, 230] 113 [-499, 286]

81-90 44 R -16 R 56 R 66 R

91-00 103
]−∞, 112]
∪ [ 1959,∞[

4
]−∞, -764]
∪ [ -344,∞[

29 R 112 R

00-10 14 [-148, 1552] 57 [-1502, 75] 40 [-172, 227] - 3 [-1547, 108]

Note – See notes to table 3. The considered model is the four factor case with market (MKT), size (SMB), book-to-market (HML) and

momentum (MOM).

30



Table 5: Industry portfolios, testing the traded factor assumption

ri −R1 = aiιT +R1di +FbiF +ui, i = 1, . . . , n,

ai = γ∗c − γ0di − γ ′
F

biF , di = bi1 −1, γ∗c = γc − γ0

θ = (γ0, γ ′
F

) = (θ MKT, θ SMB, θ HML)

CTE MKT SMB HML MOM

×10−4 γ∗c F θ MKT F θ SMB F θ HML F θ MOM

61-70 [-8, 101] 38* [-777, 9] 33 [-17, 94] 53 [-81, 82] - -

71-80 [5, 217] 30* [-715, -35] 43 [-34, 178] 33 [-179, 173] - -

81-90 R 44*
]−∞, -164]

∪ [ 707,∞[
-16 R 56 R - -

91-00
]−∞, -898]

∪ [ 150,∞[
103*

]−∞, -365]

∪ [ 1950,∞[
4*

]−∞, -964]

∪ [ 58,∞[
29 R - -

00-10 [-1876, 115] 14 [-121, 2768] 57 [-2461, 84] 40 [-254, 245] - -

ri −R1 = aiιT +R1di +FbiF +ui, i = 1, . . . , n,

ai = γ∗c − γ0di − γ ′
F

biF , di = bi1 −1, γ∗c = γc − γ0

θ =
(

γ0, γ ′
F

)

=
(

θ MKT, θ SMB, θ HML, θ MOM

)

CTE MKT SMB HML MOM

×10−4 γ∗c F θ MKT F θ SMB F θ HML F θ MOM

61-70 R 38 R 33 R 53 R 73 R

71-80 [-13, 224] 30 [-803, 430] 43 [-62, 182] 33 [-186, 260] 113 [-586, 375]

81-90 R 44 R -16 R 56 R 66 R

91-00
]−∞, -714]

∪ [ -111,∞[
103

]−∞, 157]

∪ [ 1590,∞[
4

]−∞, -600]

∪ [ -407,∞[
29 R 112 R

00-10 [-3548, 135] 14 [-170, 5023] 57 [-4838, 94] 40 [-398, 323] - 3 [-4568, 129]

Note – See notes to tables 3 and 4. The inverted test is Λ(θ , φ) is defined in (3.1). This test follows our UAPT where U stands for

“unrestricted” implies that factors are assumed non-tradable in estimating and testing the model. The test is applied on ri −R1 so

inference on φ allows to assess whether γc = γ0: the hypothesis that R1 (here, MKT) is traded is rejected at the 5% level when the

confidence set on φ excludes zero.
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Table 6: Confidence sets for risk price: industry portfolios and five-factor model, excluding HML

ri − ιT γ0 = (R1 − ιT γ0)bi1 +(F − ιT γ ′
F

)biF +ui, i = 1, . . . , n

PANEL A θ = (γ0, γ ′
F

)′ = (θ MKT, θ SMB, θ RMW, θ CMA)′

MKT SMB RMW CMA

×10−4 F θ MKT F θ SMB F θ RMW F θ CMA

63-70 28 R 57 R 2 R 22 R

71-80 30*
]−∞, -79]

∪ [ 34937,∞[
54

]−∞, -1511]

∪ [ -79,∞[
5*

]−∞, -20138]

∪ [ 14,∞[
25

]−∞, 210]

∪ [ 14260,∞[

81-90 44*
]−∞, -78]

∪ [ 82,∞[
-20

]−∞, -1]

∪ [ 42,∞[
39*

]−∞, -75]

∪ [ 95,∞[
55

]−∞, -143]

∪ [ -6,∞[

91-00 103* [-1568, 85] 3 [-277, 237] 32 [-118, 362] 30* [-591, -8]

00-10 14 R 65 R 44 R 35 R

ri − ιT γc = (R1 − ιT γ0)bi1 +(F − ιT γ ′
F

)biF +ui, , i = 1, . . . , n

PANEL B θ =
(

γ0, γ ′
F

)

= (θ MKT, θ SMB, θ RMW, θ CMA), γc partialled-out

MKT SMB RMW CMA

×10−4 F θ MKT F θ SMB F θ RMW F θ CMA

63-70 28 R 57 R 2 R 22 R

71-80 30*
]−∞, -26]

∪ [ 1108,∞[
54

]−∞, 167]

∪ [ 282,∞[
5

]−∞, -1041]

∪ [ -118,∞[
25

]−∞, 202]

∪ [ 664,∞[

81-90 44 R -20 R 39 R 55 R

91-00 103
]−∞, 105]

∪ [ 1790,∞[
3

]−∞, -662]

∪ [ -238,∞[
32 R 30 R

00-10 14 R 65 R 44 R 35 R

Note – Sample includes monthly observations from July 1963 to December 2010 on the US. Series include 12 equally weighted (EW)

industry portfolios as well as US factors for market (MKT), size (SMB), profitability (RMW), and investment (CMA). Results in Panel

A rely on our RAPT approach, and those in Panel B or its PAPT counterpart; see notes to notes to table 3 for further definitions.

32



Table 7: Confidence sets for risk price: size portfolios

ri − ιT γ0 = (R1 − ιT γ0)bi1 +(F − ιT γ ′
F

)biF +ui, i = 1, . . . , n

θ = (γ0, γ ′
F

) =
(

θ MKT, θ SMB, θ HML

)

MKT SMB HML MOM

×10−4 F θ MKT F θ SMB F θ HML F θ MOM

61-70 38*
]−∞, -256]

∪ [ 221,∞[
33

]−∞, -87]

∪{[ -71,∞[}
53*

]−∞, -128]

∪ [ 1008,∞[
- -

71-80 30*
]−∞, -229]

∪ [ 25121,∞[
43*

]−∞, -253]

∪ [ 9972,∞[
33*

]−∞, -30714]

∪ [ 639,∞[
- -

81-90 44 R -16 R 56*
]−∞, -881]

∪ [ 975,∞[
- -

91-00 103* [-14492,72] 4 [-732,649] 29 [-3055,886] - -

00-10 14 R 57 R 40 R - -

ri − ιT γ0 = (R1 − ιT γ0)bi1 +
(

F − ιT γ ′
F

)

biF +ui, i = 1, . . . , n

θ =
(

γ0, γ ′
F

)

=
(

θ MKT, θ SMB, θ HML, θ MOM

)

MKT SMB HML MOM

×10−4 F θ MKT F θ SMB F θ HML F θ MOM

61-70 38 R 33 R 53 R 73 R

71-80 30 R 43 R 33 R 113 R

81-90 44 R -16 R 56 R 66 R

91-00 103 R 4 R 29 R 112
]−∞, 3029]

∪ [ 5573,∞[

00-10 14 R 57 R 40 R 3 R

Note – Sample includes monthly observations from January 1991 to December 2010 on the US. Series include 25 size sorted equally

weighted (EW) and value-weighted (VW) portfolios as well as US factors for market (MKT), size (SMB), book-to-market (HML) and

momentum (MOM). See notes to tables 3 and 4 for further definitions and applied inference methods.
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regardless of whether betas are jointly informative or not, or heterogenous enough to identify risk price, i.e.,

to identify factors that represent a non-diversifiable source of risk rather than an idiosyncratic association with

returns.

As with Lewellen et al. (2010), our methodology is applied to models with a given and relatively small

number of popular factors. The motivation [see Lewellen et al. (2010, Footnote 3)] may be traced to Fama

and French (1993) whose main message is that relevant risks can be summarized by a small number of factors.

Since then, the literature does not necessarily dispute this fact, in the sense that more is not necessarily viewed

as better. Instead of a consensus view on a common set of explanatory factors, a plethora of different although

related candidate factors has been proposed, which raises enduring empirical puzzles, statistical concerns and

ultimately, spurious pricing considerations [Harvey et al. (2016)].

The main message in both strands of the literature reflected by Lewellen et al. (2010) (on analyzing models

given a small number of given factors), or Harvey et al. (2016) (on factor searches globally) is that more

stringent practices are needed. Our methodology serves this purpose by robustifying inference on risk price,

controlling for the quality of available betas. Whether practice moves towards more parsimonious ways of

summarizing information on factors, or towards reliance on test assets instead of test portfolios, our message is

that statistical inference on risk price should not take identification for granted.
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Appendix

A Eigenvalue-based confidence sets

Equation (3.21) may be re-expressed as

Σ11 +Σ12ζ = 0, (A.1)

Σ21 +Σ22ζ = 0, (A.2)

and solving (A.2) for ζ leads to (3.22). Substituting ζ̂ into (A.1) yields Σ11 −Σ12Σ−1
22 Σ21 = 0. Assuming that

Σ11 is non-singular, on recalling that Σ11 −Σ12Σ−1
22 Σ21 is a scalar and using the formulae for the determinant of

partitioned matrices

|Σ| = |Σ22|
∣

∣Σ11 −Σ12Σ−1
22 Σ21

∣

∣ = |Σ22|
(

Σ11 −Σ12Σ−1
22 Σ21

)

,

we thus see that if ζ̂ satisfies (A.2) then it satisfies (A.1).

We next summarize the solution of (3.10) from Dufour and Taamouti (2005). Projections based confidence

sets for any linear transformation of ζ of the form ω ′ζ can be obtained as follows. Let Ã = −A−1
22 A′

12, D̃ =
A12A−1

22 A12 −A11. If all the eigenvalues of A22 [as defined in (3.11)] are positive so A22 is positive definite then:

CSα(ω ′ζ ) =

[

ω ′Ã−
√

D̃
(

ω ′A−1
22 ω

)

, ω ′Ã+
√

D̃
(

ω ′A−1
22 ω

)

]

, i f D̃ ≥ 0 , (A.3)

CSα(ω ′ζ ) = ∅, i f D̃ < 0. (A.4)

If A22 is non-singular and has one negative eigenvalue then: (i) if ω ′A−1
22 ω < 0 and D̃ < 0:

CSα(ω ′ζ ) =

]

−∞, ω ′Ã−
√

D̃
(

ω ′A−1
22 ω

)

]

∪

[

ω ′Ã+[D̃
(

ω ′A−1
22 ω

)

]1/2
√

D̃
(

ω ′A−1
22 ω

)

, +∞

[

; (A.5)

(ii) if ω ′A−1
22 ω > 0 or if ω ′A−1

22 ω ≤ 0 and D̃ ≥ 0 then:

CSα(ω ′ζ ) = R; (A.6)

(iii) if ω ′A−1
22 ω = 0 and D̃ < 0 then:

CSα(ω ′ζ ) = R\{ω ′Ã}. (A.7)

The projection is given by (A.6) if A22 is non-singular and has at least two negative eigenvalues.

B Proofs

Proof of Theorem 3.1. Equations (A.3) - - (A.7) applied with A as defined in (3.12) imply that an unbounded

solution to the problem of inverting the test defined by (3.2) and (3.7) would occur if A22 [refer to the partitioning

in (3.11) and (3.13)] is not positive definite. In this case, the diagonal term of A22 is given by DIAG(A22) =
[

F2 · · ·Fk

]′
where

Fi = sk[i]
′B̂Ŝ−1B̂′sk[i]− sk[i]

′(X ′X)−1sk[i]
n fn,τn,α

τn

. (B.1)

Clearly, if any of the Hotelling tests based on Λi, i ∈ {2, . . . , k} [as in (3.5) and using the distribution in (3.7)]

is not significant at level α , then by the definition of Λi and Fi, Λi (τn)/n < fn,τn,α ⇔ Fi < 0, in which case
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A22 cannot be positive definite. On comparing (3.12) and (3.14) we see that Λi (τn−1)/(n− 1) ≥ fn−1,τn−1,α ,

i ∈ {2, . . . , k} holds for the problem of inverting the test defined by (3.1) and (3.7) as a necessary but not

sufficient condition to obtain bounded CSs.�

Proof of the minimum distance computations in Theorems 3.2 and 3.3. minθ Λ(θ) is the minimum root

[denoted ρ̂] of the determinantal equation (3.19) so the minimization problem can be cast as an equation of the

(3.21) where ζ = θ and

Σ = B̂Ŝ−1B̂′− ρ̂(X ′X)−1, (B.2)

Σ11 = â′Ŝ−1â− γ̂x11, Σ12 = Σ′
21 = â′Ŝ−1b̂′− γ̂x12, Σ22 = b̂Ŝ−1b̂′− γ̂x22, using the partitioning (2.10). So θ̂ RAPT

obtains applying (3.22) leading to (3.18).

Turning to Λ(θ , φ), we have

∂Λ(θ , φ)

∂φ
=

−2(1, θ ′)B̂Ŝ−1ιn +2φι ′nŜ−1ιn

(1, θ ′)(X ′X)−1(1, θ ′)′
(B.3)

and the (non-zero) value of φ which sets the latter partial derivative to zero is

φ (θ) =
(1, θ ′)B̂Ŝ−1ιn

ι ′nŜ−1ιn

. (B.4)

Substituting φ (θ) in (B.3) leads to

Λ(θ , φ (θ)) =
(1, θ ′)B̂

[

Ŝ−1 − Ŝ−1ιn

(

ι ′nŜ−1ιn

)−1
ι ′nŜ−1

]

B̂′(1, θ ′)′

(1, θ ′)(X ′X)−1(1, θ ′)′
(B.5)

which proves 3.23. From there on, minθ ,φ Λ(θ , φ) requires one to solve a system of the (3.21) form with ζ = θ ,

and

Σ = B̂
[

Ŝ−1 − Ŝ−1ιn

(

ι ′nŜ−1ιn

)−1
ι ′nŜ−1

]

B̂′− ν̂(X ′X)−1 (B.6)

Σ11 = â′
[

Ŝ−1 − Ŝ−1ιn

(

ι ′nŜ−1ιn

)−1
ι ′nŜ−1

]

â− ν̂x11 (B.7)

Σ12 = Σ′
21 = â′

[

Ŝ−1 − Ŝ−1ιn

(

ι ′nŜ−1ιn

)−1
ι ′nŜ−1

]

b̂′− ν̂x12 (B.8)

Σ22 = b̂
[

Ŝ−1 − Ŝ−1ιn

(

ι ′nŜ−1ιn

)−1
ι ′nŜ−1

]

b̂′− ν̂x22 (B.9)

using the partitionings (2.10) and (2.9). So a point estimate for θ [denoted θ̂ UAPT] obtains applying (3.22)

leading to (3.25) and an point estimate for Φ thus follows using (B.4) leading to (3.26).

Proof of Theorem 3.5. Consider the following decomposition of G′ŜG and S̃0:

G′ŜG = G′JW ′
M [X ]WJ′G , (B.10)

CB̂G−D = C(X ′X)−1X ′
[

XB+WJ′
]

G−D = CBG−D+C(X ′X)−1X ′WJ′G , (B.11)

so under the null hypothesis CB̂G−D = C(X ′X)−1X ′WJ′G and

S (C, G, D)−G′ŜG = G′JW ′
M0[X , C]WJ′G , (B.12)

S (C, G, D) = G′JW ′ (M [X ]+M0[X , C])WJ′G , (B.13)

which implies that (3.38) corresponds to:

|G′JW ′ (M0[X , C])WJ′G−λG′JW ′ (M [X ]+M0[X , C])WJ′G| = 0. (B.14)
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Since J is invertible and G has full column rank, the singular value decomposition of J′G gives

J′G = G ∆1/2Ξ (B.15)

where ∆ is a g-dimensional diagonal matrix which includes the non-zero eigenvalues of J′GG′J, G is the

n× g matrix which includes the corresponding eigenvectors so G ′G = Ig and Ξ is the g-dimensional matrix

Ξ = ∆−1/2G ′J′G so that ΞΞ′ = Ig. Replacing the latter expressions in (B.14) leads to (3.43). In particular,

under assumption (3.27), (3.43) reduces to (3.45) where Z = ZG and in view of (3.29), the rows of ZG are
i.i.d.
∼ N(0, Ig). It follows that the null distribution of all test statistics which depend on the data via the roots of

(3.38) are invariant to B and J. When G = In, (B.14) takes the form

|JW ′ (M0[X , C])WJ′−λJW ′ (M [X ]+M0[X , C])WJ′| = 0 (B.16)

which leads to (3.43) so B and J are evacuated.�

Proof of Theorem 3.4. Given H̃[C, In, D] the sum of squared error ratio simplifies to

|S̃(C, G, D)|/|Ŝ| = |In + Ŝ−1(CB̂−D)′[C(X ′X)−1C′]−1(CB̂−D)|

= |Ic +[C(X ′X)−1C′]−1(CB̂−D)Ŝ−1(CB̂−D)′| (B.17)

using a well known result on determinants, which leads to (3.39).10

10For any n×m matrix S and any m×n matrix U , |In +SU | = |Im +US|; see e.g. Harville (1997, section 18.1, p. 416).
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Arbitrage pricing, weak beta, strong beta:
identification-robust and simultaneous inference

Marie-Claude Beaulieu, Jean-Marie Dufour and Lynda Khalaf

Supplementary Appendix

This appendix reports further details on data, simulations and empirical results, for completion.

S.1 Further details on data

Data on industry portfolios for the US, as in Beaulieu et al. (2013), consists of monthly returns from 1961 to

2010, obtained from the University of Chicago’s Center for Research in Security Prices (CRSP), on standard 12

portfolios of New York Stock Exchange (NYSE) firms grouped by standard two-digit industrial classification

(SIC).11 For each month the industry portfolios include the firms for which the return, price per common share

and number of shares outstanding are recorded by CRSP. Equally and value-weighted portfolios are analyzed.

The size portfolios from Fama and French’s data base are constructed as follows. The portfolios which are

constructed at the end of June are the intersections of five portfolios formed on size (market equity) and five

portfolios formed on the ratio of book equity to market equity. The size breakpoints for year s are the NYSE

market equity quintiles at the end of June of year s. The ratio of book equity to market equity for June of year

s is the book equity for the last fiscal year end in s− 1 divided by market equity for December of year s− 1.

The ratio of book equity to market equity is NYSE quintiles. The portfolios for July of year s to June of year

s + 1 include all NYSE, AMEX, NASDAQ stocks for which market equity data is available for December of

year s−1 and June of year s, and (positive) book equity data for s−1.

Fama and French benchmark factors, SMB, HML, RMW and CMA are constructed from benchmark port-

folios that do not include hold ranges and do not incur transaction costs. The portfolios for these factors are

rebalanced quarterly using two independent sorts, on size (market equity, ME), book-to-market (the ratio of

book equity to market equity, BE/ME), profitability (annual revenues minus cost of goods sold, interest ex-

pense, and selling, general, and administrative expenses, all divided by book equity at the end of fiscal year

s− 1) and investment (the growth of total assets for the fiscal year ending in s-1 divided by total assets at the

end of s− 1). The profitability and investment factors, RMW and CMA, are constructed in the same way as

HML except the second sort is either on operating profitability (robust minus weak) or investment (conservative

minus aggressive). As HML, RMW and CMA can be interpreted as averages of profitability and investment

factors for small and big stocks.

For the construction of the MOM factor, six value-weighted portfolios formed on size and prior (2–12)

returns are used. The portfolios, which are formed monthly, are the intersections of two portfolios formed

on size (market equity, ME) and three portfolios formed on prior (2–12) return. The size breakpoint (which

determines the buy range for the small and big portfolios) is the median NYSE market equity. The BE/ME

breakpoints are the 30th and 70th NYSE percentiles. The monthly prior (2–12) return breakpoints are also the

30th and 70th NYSE percentiles.

11The sectors studied include: (1) petroleum; (2) finance and real estate; (3) consumer durables; (4) basic industries; (5) food and

tobacco; (6) construction; (7) capital goods; (8) transportation; (9) utilities; (10) textile and trade; (11) services; (12) leisure.
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Table S.1: Proportion of empty confidence sets in reported figures

Step

Figure Errors 0 -4 -3 -2 -1 1 2 3 4

1 Normal .0110 .0099 .0098 .0093 .0102 .0112 .0113 .0115 .0121

Student t(5) .0103 .0110 .0112 .0101 .0103 .0098 .0094 .0095 .0098

GARCH .0124 .0124 .0120 .0123 .0127 .0130 .0126 .0122 .0120

2 Normal .0055 .0050 .0049 0042 .0044 .0060 .0065 .0068 .0070

Student t(5) .0051 .0053 .0052 .0055 .0052 .0052 .0052 .0047 .0049

GARCH .0068 .0054 .0060 .0066 .0067 .0062 .0066 .0059 .0064

3 Normal .0100 .0086 .0089 .0091 .0097 .0106 .0105 .0108 .0119

Student t(5) .0084 .0090 .0093 .0086 .0084 .0085 .0084 .0082 .0084

GARCH .0108 .0098 .0103 .0106 .0109 .0110 .0106 .0104 .0106

4 Normal .0055 .0050 .0049 .0042 .0044 .0060 .0065 .0068 .0070

Student t(5) .0053 .0051 .0052 .0055 .0052 .0052 .0052 .0047 .0049

GARCH .0068 .0054 .0060 .0066 .0067 .0062 .0066 .0059 .0064

5 Normal .0100 .0086 .0089 .0091 .0097 .0106 .0105 .0108 .0119

Student t(5) .0084 .0090 .0093 .0086 .0084 .0085 .0084 .0082 .0084

GARCH .0108 .0098 .0103 .0106 .0109 .0110 .0106 .0104 .0106

6 Normal .6683 1.0 1.0 1.0 .9700 .9954 1.0 1.0 1.0

Student t(5) .5854 1.0 1.0 1.0 .9553 .9930 1.0 1.0 1.0

GARCH .7690 1.0 1.0 1.0 .9811 .9973 1.0 1.0 1.0

7 Normal .0095 .0096 .0091 .0091 .0094 .0076 .0073 .0069 .0069

Student t(5) .0051 .0056 .0055 .0054 .0054 .0039 .0037 .0032 .0039

GARCH .0111 .0107 .0106 .0107 .0104 .0093 .0083 .0074 .0084

8 Normal .0055 .0049 .0053 .0050 .0055 .0054 .0060 .0062 .0056

Student t(5) .0051 .0055 .0058 .0056 .0052 .0046 .0047 .0047 .0049

GARCH .0068 .0061 .0070 .0069 .0073 .0066 .0062 .0058 .0055

Note – Numbers reported are the proportion of empty confidence sets which correspond to tests that reject the specification.

S.2 Further details on simulation results

Table S.1 reports the proportion of empty joint confidence sets in the experiments underlying each figure in

the main text. Table S.2 presents the unidentified experiment results. Reported results in the latter table are

restricted to size, since power is expected not to exceed size in this case, a fact we verified. These results confirm

that even when identification fails, the size problems documented in this literature with standard methods are

solved via our proposed tests.

Perhaps equally important here is our finding in table S.1: inverting the test that imposes tradability when

it does not hold produces a very large proportion of empty sets, which implies it successfully detects the false

assumptions. Taken collectively, results reinforce the prescription in Lewellen et al. (2010) regarding tradable

factors particularly because we provide a method to validate this assumption.
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Table S.2: Monte Carlo study: tests in unidentified models

n = 12, T = 624 ri = aiιT +R1bi1 +FbiF +ui

Model ai = γ0(1−bi1)− γ ′
F

biF , γ0 = θ MKT, γF = (θ SMB, θ HML)′

Inverted Statistic Λ(θ) , θ =
(

γ0, γ ′
F

)′

MKT betas = zero MKT betas = one

Errors Normal Student t(5) GARCH Normal Student t(5) GARCH

θ MKT .0199 .0185 .0207 .0199 .0185 .0207

θ SMB .0190 .0198 .0209 .0001 .0004 .0003

θ HML .0203 .0191 .0218 .0003 .0005 .0003

Rejected .0115 .0101 .0124 .0000 .0002 .0002

Model ai = γc − γ0bi1 − γ ′
F

biF , γ0 = θ MKT, γF = (θ SMB, θ HML)′

MKT betas = zero

Inverted Statistic Λ(θ , φ) , θ = (γ0, γ ′
F

)′, φ = γc Λ(θ) on ri − rn , θ = (γ0, γ ′
F

)′

Errors Normal Student t(5) GARCH Normal Student t(5) GARCH

θ MKT .0114 .0103 .0124 .0189 .0163 .0201

θ SMB .0000 .0001 .0000 .0000 .0002 .0001

θ HML .0000 .0002 .0000 .0001 .0003 .0002

φ .0000 .0002 .0002 - - -

Rejected .0000 .0000 .0000 .0000 .0001 .0001

Note – Numbers reported are test sizes, for 5% tests, given models in which identification problems are provoked by setting MKT betas

jointly to zeros or ones. All other model parameters and inverted test are kept as in the original designs. For this design, (unreported)

power curves remain below 5%.

S.3 Further details on empirical results

Here we provide results with value-weighted industry sorts, size sorts, the Fama-French five factor model and

a representative set of results using conditioning information.

We examine conditional models estimated over the full sub-period, using the full set of industry and size

portfolios, and the (standard) conditioning variables as in Beaulieu et al. (2007). Assuming all betas are time

varying returned real lines, the same holds when each set of portfolios was used on its own which is not

surprising, given the number of regressors to add relative to the sample size.

We report a sample of results assuming that the MKT beta varies as a function of the difference between

the one-month lagged returns of a three-month and a one month. This sample is representative is the following

sense: as the conditioning information changes, confidence sets jump from empty to severely unbounded a

result we observed even with a single benchmark conditional model.

Two points are worth emphasizing from tables S.10 and S.11. First, because industry and size sorted

portfolios are used jointly, the advantage of equal or value weights no longer prevail. This reinforces our earlier

findings in this regard. Second, the conditional model in question does not fare well, in view of its rejection

with value-weighted portfolios. Given the extensive instruments search we experimented with leading to these

tables, we do not aim to over-emphasize these results, aside from the following broad yet empirically important
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message. The identification problems in this literature are not restricted to unconditional asset pricing, and

are not solved by standard conditioning which seems instead to exacerbate complications.12 Our findings

thus endorse identification-robust methods for assessing whether candidate factors are associated with risk

premiums.

12For other perspectives on conditioning complications, see e.g. Boguth, Carlson, Fisher and Simutin (2011) and Penaranda and

Sentana (2016).
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Table S.3: Confidence sets for risk price: industry portfolios and three factor model

ri − ιT γ0 = (R1 − ιT γ0)bi1 +(F − ιT γ ′
F

)biF +ui, i = 1, . . . , n

PANEL A θ = (γ0, γ ′
F

)′ = (θ MKT, θ SMB, θ HML)′

VW MKT SMB HML

×10−4 F θ MKT F θ SMB F θ HML

61-70 38* [-612,-77] 33 [10,158] 53 [-27,54]

71-80 30 [-842,286] 43 [-44,302] 33 [-244,133]

81-90 44* [75,259] -16 [-78,0] 56* [-25,24]

91-00 103 [-248, 206] 4* [83, 596] 29 [-8,159]

00-10 14 [-60,260] 57 [-276,105] 40 [-66,85]

ri − ιT γc = (R1 − ιT γ0)bi1 +(F − ιT γ ′
F

)biF +ui, , i = 1, . . . , n

PANEL B θ = (γ0, γ ′
F

) = (θ MKT, θ SMB, θ HML), γc partialled-out

VW MKT SMB HML

×10−4 F θ MKT F θ SMB F θ HML

61-70 38 [-655, 137] 33 [-60, 172] 53 [-18, 166]

71-80 30 [-625, 413] 43 [-83, 244] 33 [-179, 219]

81-90 44 [-454, 204] -16 [-56, 200] 56 [-11, 186]

91-00 103 [-230, 197] 4* [38, 673] 29 [-19,156]

00-10 14 [-73, 284] 57 [-281, 135] 40 [-61, 124]

Note – Sample includes monthly observations from January 1991 to December 2010 on the US. Series include 12 value weighted (VW)

industry portfolios as well as US factors for market (MKT), size (SMB), book-to-market (HML). Confidence sets are at the 5% level.

F is the factor average over the considered time period; θ captures factor pricing. * denotes evidence of pricing at the 5% significance

level interpreted as follows: given the reported confidence sets, each factor is priced if its average is not covered. In Panel A, the

inverted test is Λ(θ). This test follows our RAPT approach where R stands for “restricted” implying that tradable factor constraints

are imposed, here on R1, in estimating and testing the model. In Panel B, the inverted test Λ(θ) is applied on a system on n− 1

returns in deviation from rn. This test follows our PAPT approach where P stands for “partialling-out” implying that all factors are

assumed non-tradable but the resulting unrestricted constant is evacuated from the statistical objective function as it is based on ri − rn,

i = 1, . . . , n−1.
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Table S.4: Confidence sets for risk price: industry portfolios and four factor model

ri − ιT γ0 = (R1 − ιT γ0)bi1 +(F − ιT γ ′
F

)biF +ui, i = 1, . . . , n

θ =
(

γ0, γ ′
F

)

= (θ MKT, θ SMB, θ HML, θ MOM)

VW MKT SMB HML MOM

×10−4 F θ MKT F θ SMB F θ HML F θ MOM

61-70 38 R 33 R 53 R 73 R

71-80 30 [-1933, 657] 43 [-138, 595] 33 [-422, 171] 113 [-175, 594]

81-90 44 [-203, 554] -16 [-258, 81] 56 [-199, 53] 66 [-1030, 81]

91-00 103 [-253, 209] 4* [81, 606] 29 [-37, 174] 112 [-212, 443]

00-10 14 R 57 R 40 R -3 R

ri − ιT γc = (R1 − ιT γ0)bi1 +(F − ιT γ ′
F

)biF +ui, i = 1, . . . , n

PANEL B θ = (γ0, γ ′
F

) = (θ MKT, θ SMB, θ HML, θ MOM), γc partialled-out

VW MKT SMB HML MOM

×10−4 F θ MKT F θ SMB F θ HML F θ MOM

61-70 38 R 33 R 53 R 73 R

71-80 30 [-945, 3459] 43 [-928, 324] 33 [-227, 945] 113 [-1267, 366]

81-90 44 [-3856, 581] -16 [-240, 1333] 56 [-178, 956] 66 [-2194, 70]

91-00 103 R 4 R 29 R 112 R

00-10 14
]−∞, 496]

∪ [ 1223,∞[
57 R 40

]−∞, 136]

∪ [ 273,∞[
-3

]−∞, 734]

∪ [ 2344,∞[

Note – See notes to table S.3. The considered model is the four factor case with market (MKT), size (SMB), book-to-market (HML)

and momentum (MOM).
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Table S.5: Industry portfolios: testing traded factor assumption

ri −R1 = aiιT +R1di +FbiF +ui, i = 1, . . . , n,

ai = γ∗c − γ0di − γ ′
F

biF , di = bi1 −1, γ∗c = γc − γ0

θ = (γ0, γ ′
F

) = (θ MKT, θ SMB, θ HML)

VW CTE MKT SMB HML MOM

×10−4 γ∗c F θ MKT F θ SMB F θ HML F θ MOM

61-70 [-2, 16] 38 [-765, 157] 33 [-61, 193] 53 [-28, 173] - -

71-80 [-7, 16] 30 [-843, 510] 43 [-104, 302] 33 [-251, 250] - -

81-90 [-4, 40] 44 [-707, 274] -16 [-83, 298] 56 [-31, 255] - -

91-00 [-49, 35] 103 [-249, 213] 4* [28, 726] 29 [-24,163] - -

00-10 [-6, 21] 14 [-82, 307] 57 [-315, 146] 40 [-68, 129] - -

ri −R1 = aiιT +R1di +FbiF +ui, i = 1, . . . , n,

ai = γ∗c − γ0di − γ ′
F

biF , di = bi1 −1, γ∗c = γc − γ0

θ = (γ0, γ ′
F

) = (θ MKT, θ SMB, θ HML, θ MOM)

VW CTE MKT SMB HML MOM

×10−4 γ∗c F θ MKT F θ SMB F θ HML F θ MOM

61-70 R 38 R 33 R 53 R 73 R

71-80 R 30 R ] 43 R 33 R 113 R

81-90 [-20, 960] 44 [-19988, 683] -16 [-283, 6831] 56 [-212, 4618] 66 [-12992, 82]

91-00 R 103 R 4 R 29 R 112 R

00-10 R 14 R 57 R 40 R -3 R

Note – See notes to tables S.3 and S.4. The inverted test is Λ(θ , φ). This test follows our UAPT where U stands for “unrestricted”

implies that factors are assumed non-tradable in estimating and testing the model. The test is applied on ri −R1 so inference on φ
allows to assess whether γc = γ0: the hypothesis that R1 (here, MKT) is traded is rejected at the 5% level when the confidence set on

φ excludes zero.
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Table S.6: Confidence sets for risk price: size portfolios

ri − ιT γ0 = (R1 − ιT γ0)bi1 +(F − ιT γ ′
F

)biF +ui, i = 1, . . . , n

θ = (γ0, γ ′
F

) = (θ MKT, θ SMB, θ HML)

VW MKT SMB HML MOM

×10−4 F θ MKT F θ SMB F θ HML F θ MOM

61-70 38*
]−∞, -755]

∪ [ 1716,∞[
33

]−∞, -260]

∪ [ -31,∞[
53*

]−∞, -731]

∪ [ 2599,∞[
- -

71-80 30 R 43 R 33 R - -

81-90 44 R -16 R 56
]−∞, 707]

∪ [ 818,∞[
- -

91-00 103* [-11236, -1030] 4 [-568, 1375] 29 [-5394,730] -

00-10 14*
]−∞, -1788]

∪ [ 1895,∞[
57 R 40 R - -

ri − ιT γ0 = (R1 − ιT γ0)bi1 +(F − ιT γ ′
F

)biF +ui, i = 1, . . . , n

θ = (γ0, γ ′
F

) = (θ MKT, θ SMB, θ HML, θ MOM)

VW MKT SMB HML MOM

×10−4 F θ MKT F θ SMB F θ HML F θ MOM

61-70 38 R 33 R 53 R 73 R

71-80 30 R 43 R 33 R 113 R

81-90 44 R -16 R 56 R 66 R

91-00 103 R 4 R 29
]−∞, 969]

∪ [ 3955,∞[
112

]−∞, 3167]

∪ [ 5035,∞[

00-10 14*
]−∞, -1761]

∪ [ 1261,∞[
57 R 40 R -3 R

Note – Sample includes monthly observations from January 1991 to December 2010 on the US. Series include 25 size sorted value-

weighted (VW) portfolios as well as US factors for market (MKT), size (SMB), book-to-market (HML) and momentum (MOM). See

notes to tables S.3 and S.4 for further definitions and applied inference methods.
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Table S.7: Confidence sets for risk price: industry portfolios and five-factor model

ri − ιT γ0 = (R1 − ιT γ0)bi1 +(F − ιT γ ′
F

)biF +ui, i = 1, . . . , n

PANEL A θ = (γ0, γ ′
F

)′ = (θ MKT, θ SMB, θ HML, θ RMW, θ CMA)′

EW MKT SMB HML RMW CMA

×10−4 F θ MKT F θ SMB F θ HML F θ RMW F θ CMA

63-70 28 R 57 R 41 R 2 R 22 R

71-80 30 R 54 R 33 R 5 R 25 R

81-90 44
]−∞, -53]

∪ [ 9,∞[
-20 R 57

]−∞, -101]

∪ [ 49,∞[
39*

]−∞, -67]

∪ [ 42,∞[
55 R

91-00 103 [-2014, 116] 3 [-389, 255] 27 [-567, 88] 32 [-298, 368] 30* [-927,-3]

00-10 14 R 65 R 41 R 44 R 35 R

Full 45 [-289, 134] 30* [-54, 14] 40 [-132, 79] 26 [15, 326] 34 [-532, 87]

VW MKT SMB HML RMW CMA

×10−4 F θ MKT F θ SMB F θ HML F θ RMW F θ CMA

63-70 28 R 57 R 41 R 2 R 22 R

71-80 30 R 54 R 33 R 5 R 25 R

81-90 44 [-149, 787] -20 [-360, 91] 57 [-76, 123] 39 [-362, 154] 55 [-127, 217]

91-00 103 [-242, 1081] 3* [76, 1641] 27 [-98, 167] 32 [-596, 48] 30 [4, 893]

00-10 14 R 65 R 41 R 44 R 35 R

Full 45 [-92, 546] 30 [-13, 358] 40 [-25, 110] 26 [-446, 31] 34 [-31, 768]

ri − ιT γc = (R1 − ιT γ0)bi1 +(F − ιT γ ′
F

)biF +ui, , i = 1, . . . , n

PANEL B θ = (γ0, γ ′
F

) = (θ MKT, θ SMB, θ HML, θ RMW, θ CMA), γc partialled-out

EW MKT SMB HML RMW CMA

×10−4 F θ MKT F θ SMB F θ HML F θ RMW F θ CMA

63-70 28 R 57 R 41 R 2 R 22 R

71-80 30 R 54 R 33 R 5 R 25 R

81-90 44 R -20 R 57 R 39 R 55 R

91-00 103
]−∞, 134]

∪ [ 1473,∞[
3

]−∞, -434]

∪ [ -337,∞[
27 R 32 R 30 R

00-10 14 R 65 R 41 R 44 R 35 R

Full 45 [-219, 136] 30 [-71, 138] 40 [-103, 243] 26 [-179, 264] 34 [-373, 369]

Note – Sample includes monthly observations from July 1963 to December 2010 on the US. Series include 12 equally weighted (EW)

and value-weighted (VW) industry portfolios as well as US factors for market (MKT), size (SMB), book-to-market (HML), profitability

(RMW), and investment (CMA). Confidence sets are at the 5% level. F is the factor average over the considered time period; θ captures

factor pricing. * denotes evidence of pricing at the 5% significance level interpreted as follows: given the reported confidence sets, each

factor is priced if its average is not covered. The VW sets conformable with Panel B are all R.
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Table S.8: Confidence sets for risk price: industry portfolios and five-factor model, excluding HML

ri − ιT γ0 = (R1 − ιT γ0)bi1 +(F − ιT γ ′
F

)biF +ui, i = 1, . . . , n

PANEL A θ = (γ0, γ ′
F

)′ = (θ MKT, θ SMB, θ RMW, θ CMA)′

VW MKT SMB RMW CMA

×10 F θ MKT F θ SMB F θ RMW F θ CMA

63-70 28 [-126, 400] 57 [-113, 60] 2 [-101, 50] 22 [-50, 62]

71-80 30 R 54 R 5 R 25 R

81-90 44 [-141, 645] -20 [-252, 75] 39 [-220, 126] 55 [-107, 122]

91-00 103 [-236, 594] 3* [78, 1099] 32 [-370, 46] 30 [27, 477]

00-10 14 R 65 R 44 R 35 R

Full 45 [-91, 147] 30 [-13, 152] 26* [-97, 20] 34 [12, 129]

ri − ιT γc = (R1 − ιT γ0)bi1 +(F − ιT γ ′
F

)biF +ui, , i = 1, . . . , n

PANEL B θ = (γ0, γ ′
F

) = (θ MKT, θ SMB, θ RMW, θ CMA), γc partialled-out

VW MKT SMB RMW CMA

×10−4 F θ MKT F θ SMB F θ RMW F θ CMA

63-70 28 [-387, 572] 57 [-131, 285] 2 [-102, 229] 22 [-32, 407]

71-80 30 R 54 R 5 R 25 R

81-90 44 [-3897, 3713] -20 [-1601, 1721] 39 [-1327, 1065] 55 [-1664, 1968]

91-00 103 [-221, 6116] 3* [11, 12025] 32 [-7807, 151] 30 [13, 4639]

00-10 14 R 65 R 44 R 35 R

Full 45 [-104, 145] 30 [-18, 153] 26 [-93, 46] 34 [5, 127]

Note – Sample includes monthly observations from July 1963 to December 2010 on the US. Series include 12 value weighted (VW)

industry portfolios as well as US factors for market (MKT), size (SMB), profitability (RMW), and investment (CMA). Results in Panel

A rely on our RAPT approach, and those in Panel B or its PAPT counterpart; see notes to notes to table S.3 for further definitions.
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Table S.9: Industry portfolios, five-factor model: testing the traded factor assumption

ri −R1 = aiιT +R1di +FbiF +ui, i = 1, . . . , n,

ai = γ∗c − γ0di − γ ′
F

biF , di = bi1 −1, γ∗c = γc − γ0

θ = (γ0, γ ′
F

) = (θ MKT, θ SMB, θ HML, θ RMW, θ CMA)

EW CTE MKT SMB RMW CMA

×10−4 γ∗c F θ MKT F θ SMB F θ RMW F θ CMA

63-70 R 28 R 57 R 2 R 22 R

71-80 R 30 R 54 R 5 R 25 R

81-90 R 44 R -20 R 39 R 55 R

91-00
]−∞, -486]

∪ [ -168,∞[
103

]−∞, 165]

∪ [ 1266,∞[
3 R 32 R 30 R

00-10 R 14 R 65 R 44 R 35 R

VW CTE MKT SMB RMW CMA

×10−4 γ∗c θ MKT θ SMB θ RMW θ CMA

63-70 R R R R R

71-80 R R R R R

81-90 R R R R R

91-00 R R R R R

00-10 R R R R R

ri −R1 = aiιT +R1di +FbiF +ui, i = 1, . . . , n,

ai = γ∗c − γ0di − γ ′
F

biF , di = bi1 −1, γ∗c = γc − γ0

θ = (γ0, γ ′
F

) = (θ MKT, θ SMB, θ RMW, θ CMA)

EW CTE MKT SMB RMW CMA

×10−4 γ∗c θ MKT θ SMB θ RMW θ CMA

63-70 R R R R R

71-80 R
]−∞, 29]

∪ [359,∞[
* R

]−∞, -449]

∪ [ -171,∞[

]−∞, 231]

∪ [ 335,∞[

81-90 R R R R R

91-00
]−∞, -568]

∪ [ -154,∞[

]−∞, 135]

∪ [ 1495,∞[

]−∞, -520]

∪ [ -277,∞[
R R

00-10 R R R R R

VW CTE MKT SMB RMW CMA

×10−4 γ∗c θ MKT θ SMB θ RMW θ CMA

63-70 [-2, 62] [-461, 1094] [-152, 507] [-118, 580] [-50, 863]

71-80 R R R R R

81-90 R R R R R

91-00
]−∞, 47]

∪ [ 465,∞[

]−∞, -2123]

∪ [ -239,∞[

]−∞, -3915]

∪ [ -10,∞[

]−∞, 168]

∪ [ 2722,∞[

]−∞, -1493]

∪ [ 4,∞[

00-10 R R R R R

Note – The inverted test is Λ(θ , φ). This test follows our UAPT where U stands for “unrestricted” implies that factors are assumed

non-tradable in estimating and testing the model. The test is applied on ri −R1 so inference on φ allows to assess whether γc = γ0: the

hypothesis that R1 (here, MKT) is traded is rejected at the 5% level when the confidence set on φ excludes zero. In the upper Panel of

this table, all confidence sets on the HML price are the real line; the lower Panel excludes HML.
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Table S.10: Confidence sets for risk price: industry and size portfolios, five-factor model, instrumenting MKT

with LagTBill31

ri − ιT γ0 = (R1 − ιT γ0)bi1 +(F − ιT γ ′
F

)biF +ui, i = 1, . . . , n

PANEL A θ = (γ0, γ ′
F

)′ = (θ MKT, θ SMB, θ HML, θ RMW, θ CMA)′

EW MKT SMB HML RMW CMA

×10−4 θ MKT θ SMB θ HML θ RMW θ CMA

Full [-1496, 232] [-265, 29]* [-577, 377] [-354, 934] [-2391, 197]

VW MKT SMB HML RMW CMA

×10−4 F θ MKT F θ SMB F θ HML F θ RMW F θ CMA

Full 45 ∅ 30 ∅ 40 ∅ 26 ∅ 34 ∅

ri − ιT γc = (R1 − ιT γ0)bi1 +(F − ιT γ ′
F

)biF +ui, , i = 1, . . . , n

PANEL B θ = (γ0, γ ′
F

) = (θ MKT, θ SMB, θ HML, θ RMW, θ CMA), γc partialled-out

EW MKT SMB HML RMW CMA

×10−4 θ MKT θ SMB θ HML θ RMW θ CMA

Full
]−∞, 268]

∪ [ 7594,∞[

]−∞, 30]

∪ [ 3219,∞[

]−∞, 337]

∪ [ 7422,∞[

]−∞, -10725]

∪ [ -314,∞[

]−∞, 174]

∪ [ 23510,∞[

VW MKT SMB HML RMW CMA

×10−4 F θ MKT F θ SMB F θ HML F θ RMW F θ CMA

Full 45 ∅ 30 ∅ 40 ∅ 26 ∅ 34 ∅

Note – Sample includes monthly observations from July 1963 to December 2010 on the US. Series include 37 equally weighted (EW)

and value-weighted (VW) industry and size portfolios as well as US factors for market (MKT), size (SMB), book-to-market (HML),

profitability (RMW), and investment (CMA).

Table S.11: Industry and size portfolios, five-factor model. Instrumenting MKT with: LagTBill31, Testing

Traded Factor Assumption

ri −R1 = aiιT +R1di +FbiF +ui, i = 1, . . . , n,

ai = γ∗c − γ0di − γ ′
F

biF , di = bi1 −1, γ∗c = γc − γ0

θ = (γ0, γ ′
F

) = (θ MKT, θ SMB, θ HML, θ RMW, θ CMA)

EW CTE MKT SMB HML RMW CMA

×10−4 γ∗c θ MKT θ SMB θ HML θ RMW θ CMA

Full
]−∞, 75]

∪ [ 762,∞[

]−∞, 411]

∪ [ 1775,∞[

]−∞, 37]

∪ [ 923,∞[

]−∞, 378]

∪ [ 2172,∞[

]−∞, -3201]

∪ [ -355,∞[

]−∞, 225]

∪ [ 7036,∞[

VW CTE MKT SMB HML RMW CMA

×10−4 γ∗c F θ MKT F θ SMB F θ HML F θ RMW F θ CMA

Full ∅ 45 ∅ 30 ∅ 40 ∅ 26 ∅ 34 ∅

Note – The inverted test is Λ(θ , φ). This test follows our UAPT where U stands for “unrestricted” implies that factors are assumed

non-tradable in estimating and testing the model. The test is applied on ri −R1 so inference on φ allows to assess whether γc = γ0: the

hypothesis that R1 (here, MKT) is traded is rejected at the 5% level when the confidence set on φ excludes zero.
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