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Abstract In this chapter, we propose exact inference procedures for asset pricing
models that can be formulated in the framework of a multivariate linear
regression (CAPM), allowing for stable error distributions. The normal-
ity assumption on the distribution of stock returns is usually rejected
in empirical studies, due to excess kurtosis and asymmetry. To model
such data, we propose a comprehensive statistical approach which allows
for alternative—possibly asymmetric—heavy tailed distributions with-
out the use of large-sample approximations. The methods suggested are
based on Monte Carlo test techniques. Goodness-of-fit tests are formally
incorporated to ensure that the error distributions considered are em-
pirically sustainable, from which exact confidence sets for the unknown
tail area and asymmetry parameters of the stable error distribution are
derived. Tests for the efficiency of the market portfolio (zero intercepts)
which explicitly allow for the presence of (unknown) nuisance parame-
ter in the stable error distribution are derived. The methods proposed
are applied to monthly returns on 12 portfolios of the New York Stock
Exchange over the period 1926 – 1995 (5 year subperiods). We find that
stable possibly skewed distributions provide statistically significant im-
provement in goodness-of-fit and lead to fewer rejections of the efficiency
hypothesis.

1. Introduction

An important problem in empirical finance consists in testing the ef-
ficiency of a market portfolio by assessing the statistical significance of
the intercepts of a multivariate linear regression (MLR) on asset returns
(the capital asset pricing model (CAPM)); see MacKinlay (1987), Job-
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son and Korkie (1989), Gibbons et al. (1989), Shanken (1996), Campbell
et al. (1997, Chapters 5 and 6), Stewart (1997), and Fama and French
(2003). Traditional statistical theory supplies a reliable distributional
theory mainly in the case where the disturbances in the model follow
a Gaussian distribution; see, for example, Anderson (1984, Chapters 8
and 13) and Rao (1973, Chapter 8). However, in financial data, the
Gaussian assumption is typically inappropriate, because asset returns
often exhibit excess kurtosis and asymmetries; see, for example, Fama
(1965), Baillie and Bollerslev (1989), Beaulieu (1998), and Dufour et
al. (2003). Further, asymptotic approximations aimed at relaxing the
Gaussian assumption tend to be unreliable in multivariate models such
as those considered in CAPM applications, especially when the number
of equations (or assets) is not small; see Campbell et al. (1997, Chap-
ter 5), Gibbons et al. (1989), Shanken (1996, Section 3.4.2), and Dufour
and Khalaf (2002b). Consequently, it is important from an inference
viewpoint that we approach this problem from a finite sample perspec-
tive.1

In recent work (Dufour et al., 2003; Beaulieu et al., 2004), we con-
sidered this problem by developing exact efficiency tests of the market
portfolio in the case where the CAPM disturbances follow t distribu-
tions or normal mixtures. In particular, we observed that: (i) monthly
returns reject multivariate normality conclusively, and (ii) CAPM tests
based on the assumption of elliptical errors yield less rejections than
those based on the (erroneous) normality assumption. The latter result
obtains if the (unknown) parameters underlying the elliptical error dis-
tribution are formally accounted for.2 Indeed, the whole issue centers
on the uncertainty associated with unknown (nuisance) parameters, one
of the main difficulties which complicate the development of exact tests.
This analysis was however restricted to symmetric error distributions.

In the present chapter, we consider distributional models that can
accommodate more pronounced skewness and kurtosis. Specifically, we
study the case where the disturbances in a CAPM regression can follow
stable possibly asymmetric distributions. Our results reveal notable dif-

1For more general discussions of the importance of developing finite-sample statistical pro-
cedures, see Dufour (1997, 2003).
2Concerning normality tests, our procedures achieve size control exactly, so test rejections
cannot be spurious by construction. Concerning tests on intercepts, we formally demonstrate
location-scale invariance of the commonly used procedures for the context at hand. Since
the normal distribution is completely defined by its mean and variance, nuisance parameter-
free test procedures can easily be derived. Non-normal distributions raise further nuisance
parameter problems; examples include the number of degrees of freedom, for a multivariate
Student t distribution, and the probability-of-mixing and scale-ratio parameters for normal
mixtures.
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ferences with respect to the mainstream elliptical framework. Besides
being consistent with optimization arguments underlying the CAPM (see
Samuelson, 1967), the family of stable distributions is entailed by various
central limit arguments in probability theory (as an alternative to the
Gaussian distribution) and has often been suggested as a useful model
for return and price distributions in finance; see, for example, Mandel-
brot (1963), Ibragimov and Linnik (1975), Zolotarev (1986), Cambanis
et al. (1991), Samorodnitsky and Taqqu (1994), Embrechts et al. (1997),
Rachev et al. (1999a,b), Uchaikin and Zolotarev (1999), Adler et al.
(2000), Mittnik et al. (2000), Rachev and Mittnik (2000), and Meer-
schaert and Scheffler (2001). One should note, however, that tests and
confidence sets which have been proposed for inference on such models
are almost always based on asymptotic approximations that can easily
be unreliable. Further, standard regularity conditions and asymptotic
distributional theory may easily not apply to such distributions (for ex-
ample, because of heavy tails).

To obtain finite-sample inference for such models, we combine several
techniques. First, we obtain finite-sample joint confidence sets for the
unknown parameters of the stable distribution (i.e., the tail thickness αs
and the asymmetry βs) through the “inversion” of goodness-of-fit tests
based on multivariate kurtosis and skewness coefficients computed from
model residuals. Second, in view of the complicated distribution of these
statistics, we exploit invariance properties of the goodness-of-fit statis-
tics to implement the corresponding tests as finite-sample Monte Carlo
(MC) tests (as proposed in Dufour et al., 2003). Thirdly, using general
results from Dufour and Khalaf (2002b) on hypothesis testing in multi-
variate linear regressions with non-Gaussian disturbances, we note that
finite-sample standard LR-type efficiency tests can easily be obtained as
soon as the parameters (αs, βs) of the stable error distribution are spec-
ified, again through the application of the MC test technique. Fourth,
we exploit a two-stage confidence technique proposed in Dufour (1990),
Dufour and Kiviet (1996, 1998), and Dufour et al. (1998b) to derive
efficiency tests that formally take into account the uncertainty of the
stable distribution parameters (αs, βs) by maximizing the MC p-values
associated with different nuisance parameter values (αs, βs) over a con-
fidence set for the latter built as described in the first step above (with
an appropriately selected level).

The technique of MC tests— which plays a crucial role in our ap-
proach— is an exact simulation-based inference procedure originally pro-
posed by Dwass (1957) and Barnard (1963). It is related to the para-
metric bootstrap in the sense that the distribution of the test statistic
is simulated under the null hypothesis. When the latter does not in-
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volve unknown nuisance parameters, the MC test method controls the
size of the procedure perfectly, while bootstrap methods are justified
only by asymptotic arguments. The finite-sample theory that underlies
MC tests allows one to implement test statistics with very complicated
distributions (as long as they can be simulated) and does not require es-
tablishing a limit distribution as the sample size goes to infinity (or even
the existence of such a distribution). It is easy to see that this feature
can be quite convenient when dealing with stable distributions under
which standard central limit theorems may not apply. The contrast is
even more important when test statistics involve nuisance parameters.
Here we use extensions of this MC test technique that allow for the pres-
ence of nuisance parameters. The level of the test can be controlled in
finite samples as soon as the null distribution of the test statistic can
be simulated once the values of the nuisance parameters are set.3 This
is clearly not the case in bootstrapping, where bootstrap samples are
drawn after setting the unknown nuisance parameters at some “consis-
tent” estimate. For further discussion of Monte Carlo test methods, see,
for example, Dufour (2002), Dufour and Khalaf (2001, 2002a,b, 2003),
Dufour and Kiviet (1996, 1998), Kiviet and Dufour (1997), Dufour et
al. (1998a, 2004, 2003), and Beaulieu et al. (2004). Since bootstrap-type
procedures are gaining popularity in finance (see, e.g., Li and Maddala,
1996), we emphasize the importance of using such procedures correctly.

We show that the proposed approach is both practical and useful from
an empirical viewpoint by applying it to monthly returns on 12 portfo-
lios of the New York Stock Exchange over the period 1926 – 1995 (5 year
subperiods). Among other things we find that heavy-tailed skewed dis-
tributions provide statistically significant improvement in goodness-of-fit
and lead to fewer rejections of the efficiency hypothesis. Our results show
clearly that the introduction of an asymmetric distribution instead of an
elliptical distribution yields noteworthy changes in the decision regard-
ing the efficiency hypothesis of the market portfolio. In our opinion this
is an important finding since CAPM rejections are often attributed to
the presence of excess kurtosis in stock returns. Further, inference on the
tail thickness parameter αs appears to be more precise than inference
on the asymmetry parameter βs.

The chapter is organized as follows. Section 2 describe the model and
test problem studied. In Section 3, we describe the existing test proce-
dures and we show how extensions allowing for nonnormal distributions

3In nuisance parameter dependent problems, a test is exact at level α if the largest rejection
probability over the nuisance parameter space consistent with the null hypothesis is not
greater than α (see Lehmann, 1986, Sections 3.1 and 3.5).
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are obtained. In Section 4 we report the empirical results. Section 5
concludes and discusses extensions to other asset pricing tests.

2. Framework

The framework we consider here is the same one as in Beaulieu et al.
(2004):

rit = ai + bir̃Mt + uit, t = 1, . . . , T, i = 1, . . . , n, (6.1)

where rit = Rit−RFt , r̃Mt = R̃Mt−RFt , RF is the riskless rate of return,
Rit, i = 1, . . . , n, are returns on n securities for period t, R̃Mt is the
return on the market portfolio, and uit is a random disturbance.4 In
this context, the CAPM entails the following efficiency restrictions:

HCAPM : ai = 0, i = 1, . . . , n, (6.2)

i.e., the intercepts ai are jointly equal to zero (Gibbons et al., 1989).
The above model can be cast in matrix form as a MLR model:

Y = XB + U (6.3)

where Y = [Y1, . . . , Yn] is a T × n matrix of dependent variables, X is a
T × k full-column rank matrix of regressors, and

U = [U1, . . . , Un] = [V1, . . . , VT ]′ (6.4)

is a T × n matrix of random disturbances. Specifically, to get (6.1), we
set:

Y = [r1, . . . , rn], X = [ιT , r̃M], ιT = (1, . . . , 1)′, (6.5)

ri = (r1i, . . . , rT i)
′, r̃M = (r̃1M, . . . , r̃TM)′. (6.6)

Further, in the matrix setup, the mean-variance efficiency restriction
HCAPM belongs to the class of so-called uniform linear (UL) restrictions,
i.e., it has the form

H0 : HB = D (6.7)

where H is an h× k matrix of rank h. HCAPM corresponds to the case
where h = 1, H = (1, 0) and D = 0.

In general, asset pricing models impose further restrictions on the
error distributions. In particular, the standard CAPM obtains assuming
that

V1, . . . , VT
i.i.d.∼ N [0,Σ] (6.8)

4For convenience, we focus here on the single beta case. For some discussion of the multi-beta
CAPM, see Beaulieu et al. (2004).
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or elliptically symmetric (Ingersoll, 1987); for recent references, see
Hodgson et al. (2002), Vorkink (2003), Hodgson and Vorkink (2003),
and the references cited therein. We consider the more general case

Vt = JWt, t = 1, . . . , T, (6.9)

where J is an unknown nonsingular matrix, Wt = (W1t, . . . ,Wnt)
′ is

a n × 1 random vector, and the distribution of w = vec(W1, . . . ,WT )
conditional on X is either: (i) completely specified (hence, free of nui-
sance parameters), or (ii) partially specified up to an unknown nuisance-
parameter. We call w the vector of normalized disturbances and its
distribution the normalized disturbance distribution. When Wt has an
identity covariance matrix, i.e.,

E[WtW
′
t ] = In, (6.10)

the matrix Σ = JJ ′ is the covariance matrix of Vt, so that det(Σ) 6=
0. Note that the assumption (6.10) will not be needed in the sequel.
No further regularity conditions are required for most of the statistical
procedures proposed below, not even the existence of second moments.

In Beaulieu et al. (2004), we focused on multivariate t distributions
and normal mixtures, which we denote F1(W ) and F2(W ) respectively,
and define as follows:

W ∼ F1(W ;κ) ⇐⇒ Wt = Z1t/(Z2t/κ)
1/2, (6.11)

where Z1t is multivariate normal (0, In) and Z2t is a χ2(κ) variate inde-
pendent from Z1t;

W ∼ F2(W ;π, ω) ⇐⇒ Wt = πZ1t + (1 − π)Z3t, (6.12)

where Z3t is multivariate normal (0, ωIn) and is independent from Z1t,
and 0 < π < 1.

In the present chapter, we extend our empirical investigation to asym-
metric stable distributions

W ∼ Fs(W ;αs, βs) ⇐⇒ Wti
i.i.d.∼ S(αs, βs), i = 1, . . . , n, (6.13)

where S(αs, βs) represents the stable distribution with the tail thickness
αs, skewness parameter βs, location parameter zero and scale parameter
one. In view of the presence of a regression model (6.1) and the J
matrix in (6.9), the location and scale parameters of Wt can be set to
zero and one without loss of generality (and for identification purposes).
As it is well known, a simple closed-form expression is not available for
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stable distributions (except in special cases) but there is one for the
characteristic function φ(t) : if S ∼ S(αs, βs),

lnφ(t) = lnE[exp(itS)]

=

{
−|t|αs [1 − iβs sgn(t) tan(παs/2)], for αs 6= 1,

−|t|[1 + iβs(2/π) sgn(t) ln |t|], for αs = 1,

where 0 < αs ≤ 2 and −1 ≤ βs ≤ 1, and sgn(t) is the sign function, i.e.,

sgn(t) =





1, if t > 0,

0, if t = 0,

−1, if t < 0;

(6.14)

see Rachev and Mittnik (2000, Chapter 2), Samorodnitsky and Taqqu
(1994, Chapter 1). Note also that random variables with stable distri-
butions can easily be simulated; see Chambers et al. (1976) and Weron
(1996).

For further reference, we use the following notation:

W ∼ Fi(W ; ν), i = 1, 2, (6.15)

where ν is the vector of nuisance parameters in the distribution of W ,
for example

ν = κ, if Wt satisfies (6.11),

= (π, ω), if Wt satisfies (6.12),

= (αs, βs), if Wt satisfies (6.13).

In the sequel, we shall focus on the third case where ν = (αs, βs) may
be unknown.5

3. Statistical method

As in Gibbons et al. (1989), the statistic we use to test HCAPM in (6.2)
is the Gaussian quasi maximum likelihood (QMLE) based criterion:

LR = T ln(Λ), Λ = |Σ̂CAPM|/|Σ̂|, (6.16)

where Σ̂ = Û ′Û/T , Û = Y −XB̂, B̂ = (X ′X)−1X ′Y and Σ̂CAPM is the
Gaussian QMLE under HCAPM. In Beaulieu et al. (2004), we derive the

5For a theoretical discussion of the CAPM with stable Paretian laws, see Samuelson (1967).
For discussions of the class of return distributions compatible with the CAPM, see Ross
(1978); Chamberlain (1983), Ingersoll (1987, Chapter 4), Nielsen (1990), Allingham (1991),
Berk (1997) and Dachraoui and Dionne (2003).
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exact null distribution of the latter statistic under (6.1) and (6.9). This
result is reproduced here for convenience.

Theorem 6.1 Under (6.1), (6.2) and (6.9), the LR statistic defined by
(6.16) is distributed like

T ln(|W ′MW |/|W ′M0W |), (6.17)

where

M = I −X(X ′X)−1X ′, (6.18)

M0 = M +X(X ′X)−1H ′[H(X ′X)−1H ′]−1H(X ′X)−1X ′, (6.19)

X = [ιT , r̃M], r̃M = (r̃1M, . . . , r̃TM)′, (6.20)

H is the row vector (1, 0), and W = [W1, . . . ,WT ]′ is defined by (6.9).

We exploit two results regarding this distribution, the first one being
a special case of the latter. First, Theorem 6.1 leads to Gibbons et al.’s
(1989) results. Specifically, when errors are Gaussian,

T − s− n

n
(Λ − 1) ∼ F (n, T − s− n),

which yields Hotelling’s T 2 test proposed by MacKinlay (1987) and Gib-
bons et al. (1989). Second, under the general assumption (6.9), the null
distribution of (6.16) does not depend on B and Σ and may thus easily
be simulated if draws from the distribution of W1, . . . ,WT are available.
This entails that a Monte Carlo exact test procedure (Dufour, 2002) may
be easily applied based on LR. The general simulation-based algorithm
which allows to obtain a MC size-correct exact p-value for all hypotheses
conforming with (6.9) and (6.15) is presented in Beaulieu et al. (2004)
and may be summarized as follows.

Given ν in (6.15), generate N i.i.d. draws from the distribution of
W1, . . . ,WT ; on applying (6.17), these yield N simulated values of the
test statistic. The exact Monte Carlo p-value is then calculated from
the rank of the observed LR [denoted by LR0] relative to the simulated
ones:

p̂N (LR0 | ν) =
NĜN (S0) + 1

N + 1
(6.21)

where NĜN (LR0) is the number of simulated criteria not smaller than
LR0.

In Beaulieu et al. (2004) we also consider testing HCAPM (6.2) in the
context of

rit = ai +
s∑

j=1

bjir̃jt + uit, t = 1, . . . , T, i = 1, . . . , n, (6.22)
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where r̃jt = R̃jt−RFt and R̃jt, j = 1, . . . , s, are returns on s benchmark
portfolios. In this case, the null distribution of the statistic defined by
(6.16) obtains as in Theorem 6.1 where

X = [ιT , r̃1, . . . , r̃s], r̃j = (r̃1j , . . . , r̃Tj)
′ (6.23)

and H is the (s+ 1)-dimensional row vector (1, 0, . . . , 0).
Let us now extend the above results to the unknown distributional

parameter case for the error families of interest, namely (6.15). The α-
level procedure adopted in Beaulieu et al. (2004) (based on Dufour 1990
and Dufour and Kiviet 1996) involves two stages: (1) build an exact
confidence set (denoted C(Y )) for ν, with level 1−α1; (2) maximize the
p-value function p̂N (LR0|ν) in (6.21) over-all values of ν in the latter
confidence set; then compare the latter maximal p-value with α2 where
α = α1 +α2.

6 Formally, the test we denote maximized MC (MMC) test,
is significant if

QU (ν) ≤ α2 (6.24)

where
QU (ν) = sup

ν∈C(Y )
p̂N (LR0 | ν). (6.25)

To obtain C(Y ), we proceed by “inverting” a goodness-of-fit (GF) test
for the null hypothesis (6.15) where ν = ν0 for known ν0, as proposed
in Dufour et al. (2003). The GF test statistic is based on the following
excess skewness and kurtosis criteria:

ESK(ν0) = |SK−SK(ν0)|, (6.26)

EKU(ν0) = |KU−KU(ν0)|, (6.27)

where SK and KU are the well known multivariate measures (see Mardia,
1970):

SK =
1

T 2

T∑

t=1

T∑

i=1

d̂3
ii, (6.28)

KU =
1

T

T∑

t=1

d̂2
tt, (6.29)

d̂it are the elements of the matrix D̂ = Û(Û ′Û)−1Û ′ and SK(ν0) and
KU(ν0) are simulation-based estimates of the expected SK and KU given

6In the empirical section, we use α1 = α2 = α/2.
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by (6.15). Given ν0, these may be obtained by drawing N0 samples of T
observations from (6.15), and then computing the corresponding average
measures of skewness and kurtosis.7 Specifically, we use the combined
criterion

CSK = 1 − min
{
p̂
(
ESK(ν0) | ν0), p̂(EKU(ν0) | ν0)

)}
, (6.30)

where p̂N (ESK(ν0) | ν0) and p̂N (EKU(ν0) | ν0) are MC p-values based
on ESK(ν0) and EKU(ν0).

8 The intuition underlying this combined
criterion is to reject the null hypothesis if at least one of the individual
tests is significant; for convenience, we subtract the minimum p-value
from one to obtain a right-sided test. The MC test technique is once
again applied to obtain a test based on the combined statistic; details
of the algorithm can be found in Dufour et al. (2003) and Beaulieu et
al. (2004). For further reference on such combined tests, see Dufour and
Khalaf (2002a) and Dufour et al. (2004).

4. Empirical analysis

Our empirical analysis focuses on testing (6.2) in the context of (6.1)
with different distributional assumptions on stock market returns. We
use nominal monthly returns over the period going from January 1926
to December 1995, obtained from the University of Chicago’s Center for
Research in Security Prices (CRSP). As in Breeden et al. (1989), our data
include 12 portfolios of New York Stock Exchange (NYSE) firms grouped
by standard two-digit industrial classification (SIC). Table 6.1 provides
a list of the different sectors used as well as the SIC codes included in the
analysis.9 For each month the industry portfolios comprise those firms
for which the return, price per common share and number of shares
outstanding are recorded by CRSP. Furthermore, portfolios are value-
weighted in each month. In order to assess the testable implications of
the asset pricing models, we proxy the market return with the value-
weighted NYSE returns, also available from CRSP. The risk-free rate is
proxied by the one-month Treasury Bill rate, also from CRSP.

Our results are summarized in Tables 6.2 – 6.4. All MC tests were
applied with N = 999 replications. As usual in this literature, we es-

7For the Gaussian case, one may use SK = 0 and KU = n(n+ 2); see Mardia (1970).
8In Beaulieu et al. (2004), we demonstrate that these criteria are pivotal, i.e., under (6.15),
their null distribution does not depend on B and Σ and thus may easily be simulated if draws
from the distribution of W1, . . . ,WT are available. Hence the MC p-values p̂N

(
ESK(ν0) | ν0

)

and p̂N

(
EKU(ν0) | ν0

)
can be obtained following the same simulation technique underlying

p̂N (LR0 | ν); see (6.21).
9As in Breeden et al. (1989), firms with SIC code 39 (Miscellaneous manufacturing industries)
are excluded from the dataset for portfolio formation.



6 Multivariate Tests of Asset Pricing Models 141

Table 6.1. Portfolio definitions

Portfolio number Industry Name Two-digit SIC codes

1 Petroleum 13, 29
2 Finance and real estate 60 – 69
3 Consumer durables 25, 30, 36, 37, 50, 55, 57
4 Basic industries 10, 12, 14, 24, 26, 28, 33
5 Food and tobacco 1, 20, 21, 54
6 Construction 15 – 17, 32, 52
7 Capital goods 34, 35, 38
8 Transportation 40 – 42, 44, 45, 47
9 Utilities 46, 48, 49

10 Textile and trade 22, 23, 31, 51, 53, 56, 59
11 Services 72, 73, 75, 80, 82, 89
12 Leisure 27, 58, 70, 78, 79

Note. This table presents portfolios according to their number and sector as well as
the SIC codes included in each portfolio using the same classification as Breeden et
al. (1989).

timate and test the model over intervals of 5 years.10 In columns (1),
(2), (6), (8) and (9) of Table 6.2, we present the LR and its asymptotic
χ2(n) p-value (p∞), and stable errors based on maximal MC p-values
(QU ). For comparison purposes, we also report [in columns (3) – (4)] the
Gaussian based MC p-value pN and the Student t MMC p-value (QU )
from Beaulieu et al. (2004). The confidence sets C(Y ) for the nuisance
parameters appear in columns (5), (7) and (10). To simplify the pre-
sentation, the confidence region is summarized as follows: we present
the confidence sets for αs given βs = 0, and the union of the confidence
sets for αs given βs 6= 0. These results allow one to compare rejection
decisions across different distributional assumptions for the returns of
the 12 portfolios.

Our empirical evidence shows the following. In general, asymptotic
p-values are quite often spuriously significant (e.g., 1941 – 55). Further-
more, non-Gaussian based maximal p-values exceed the Gaussian-based
p-value. Note however that the results of exact goodness-of-fit tests
(available from Dufour et al., 2003) indicate that normality is defini-
tively rejected except in 1961 – 65 and 1991 – 95.

As emphasized in Beaulieu et al. (2004), it is “easier” to reject the
testable implications under normality, and any symmetric error consid-
ered. Indeed, at the 5% significance level, we find ten rejections of the

10Note that we also ran the analysis using ten year subperiods and that our results were not
significantly affected.
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Table 6.2. CAPM tests

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Student t Stable symmetric Stable asymmetric

βs = 0 βs > 0 βs < 0 βs 6= 0

Sample QLR p∞ pN QU C(Y ) QU C(Y ) QU QU C(Y )

1927 – 30 16.10 .187 .364 .357 3 – 12 .367 1.38 – 1.96 .927 .941 1.44 – 1.94
1931 – 35 16.26 .180 .313 .322 3 – 8 .298 1.34 – 1.92 .926 .925 1.42 – 1.92
1936 – 40 16.02 .190 .319 .333 4 – 26 .316 1.56 – 1.98 .737 .764 1.56 – 1.98
1941 – 45 25.87 .011 .045 .049 ≥ 5 .031 1.58 – 1.98 .324 .285 1.56 – 1.98
1946 – 50 37.20 .000 .003 .004 4 – 26 .002 1.56 – 1.98 .108 .082 1.56 – 1.98
1951 – 55 36.51 .000 .004 .005 5 – 31 .001 1.56 – 1.98 .084 .048 1.56 – 1.98
1956 – 60 43.84 .000 .002 .002 ≥ 5 .001 1.56 – 1.98 .032 .014 1.58 – 1.98
1961 – 65 39.10 .000 .002 .002 ≥ 7 .001 1.66 – 2.00 .044 .020 1.20 – 1.99
1966 – 70 36.79 .000 .003 .003 ≥ 5 .001 1.56 – 1.98 .116 .044 1.58 – 1.99
1971 – 75 21.09 .049 .120 .129 4 – 24 .111 1.56 – 1.98 .566 .596 1.56 – 1.98
1976 – 80 28.37 .005 .023 .026 4 – 17 .017 1.50 – 1.98 .425 .329 1.50 – 1.98
1981 – 85 27.19 .007 .033 .035 5 – 34 .023 1.56 – 1.98 .324 .309 1.56 – 1.98
1986 – 90 35.75 .001 .003 .005 ≥ 5 .004 1.62 – 2.00 .086 .058 1.63 – 1.99
1991 – 95 16.75 .159 .299 .305 ≥ 15 .287 1.68 – 2.00 .473 .477 1.70 – 1.99

Note. Column (1) presents the quasi-LR statistic defined in (6.16) to test HCAPM

(see (6.2)); columns (2), (3), (4), (6), (8) and (9) are the associated p-values using,
respectively, the asymptotic χ2(n) distribution, the pivotal statistics based MC test
method imposing multivariate normal regression errors, an MMC confidence set based
method imposing, in turn, multivariate t(κ) errors, symmetric stable and asymmetric
stable errors, which yields the largest MC p-value for all nuisance parameters within
the specified confidence sets. The latter are reported in columns (5), (7) and (10); for
convenience, for the asymmetric stable case, we present the union of the confidence
sets for αs given βs 6= 0. October 1987 and January returns are excluded from the
dataset.

null hypothesis for the asymptotic χ2(11) test, nine for the MC p-values
under normality, eight under a symmetric stable error distribution, and
just two rejections (1956 – 60, 1961 – 65) with left-skewed (negative βs)
asymmetric stable errors; no rejections are noted with right-skewed (pos-
itive βs) asymmetric stable errors. Note that our MC tests under non-
normal errors are joint tests for nuisance parameters consistent with the
data and the efficiency hypothesis. Since we used α1 = 0.025 for the con-
struction of the confidence set, to establish a fair comparison with the
MC p-values under the normality assumption or the asymptotic p-values,
we must refer the p-values for the efficiency tests under the Student and
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Table 6.3. Supremum p-values for various positive skewness measures

βs 0 .3 .4 .5 .6 .7 .9 .99

1927 – 30 .367 .540 .665 .777 .759 .798 .888 .927
1931 – 35 .298 .549 .640 .744 .876 .919 .907 .926
1936 – 40 .316 .395 .456 .521 .538 .639 .688 .737
1941 – 45 .031 .052 .070 .096 .129 .170 .276 .324
1946 – 50 .002 .004 .006 .010 .017 .034 .080 .108
1951 – 55 .001 .003 .004 .007 .018 .030 .058 .084
1956 – 60 .001 .002 .002 .002 .003 .006 .020 .032
1961 – 65 .002 .002 .002 .002 .003 .008 .017 .044
1966 – 70 .001 .002 .009 .010 .021 .034 .080 .116
1971 – 75 .011 .154 .199 .246 .299 .362 .490 .566
1976 – 80 .017 .033 .063 .106 .166 .197 .418 .425
1981 – 85 .023 .043 .052 .079 .116 .164 .277 .324
1986 – 90 .004 .006 .010 .013 .019 .022 .063 .086
1991 – 95 .287 .296 .307 .324 .358 .388 .443 .473

Note. Numbers shown are p-values associated with our efficiency test using an MMC
confidence set based method imposing asymmetric stable errors, which yields, given
the specific βs > 0, the largest MC p-value for all αs within the specified confidence
sets. The latter are reported in Table 6.2. October 1987 and January returns are
excluded from the dataset.

the mixtures of normals distributions to 2.5%.11

An important issue here concerns the effect of asymmetries. Consider
for instance the subperiods 1941 – 45, 1976 – 80 and 1981 – 85. With Stu-
dent t errors, the p-values for these subperiods are not significant since
they exceed 2.5%, yet they remain below 5%. Although we empha-
size the importance of accounting for the joint characteristic of our null
hypothesis, this result remains empirically notable. The results of the
symmetric stable errors are not substantially different from those of the
elliptical distributions. This result is interesting since it is often postu-
lated that extreme kurtosis may affect the CAPM test. However, when
asymmetries are introduced, the p-values are definitively larger and not
significant.

The results for the stable distribution differ in one important aspect
from the case of elliptical errors. Interestingly, we have observed that the
MC p-values increase almost monotonically with βs and decrease almost
monotonically with αs (for βs > 0 and αs < 2); recall that βs = 0

11In this regard, we emphasize that the 2.5% level allotted to the distributional GF pre-test
should not be perceived as an efficiency loss. From an empirical perspective, considering a
distribution which is not supported by the data is clearly uninteresting; consequently, disre-
garding the joint characteristic of the null hypothesis (beside the fact that it is a statistical
error) causes flawed and misleading decisions.
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Table 6.4. Supremum p-values for various negative skewness measures

βs 0 −1 −.3 −.5 −.7 −.9 −.99

1927 – 30 .367 .363 .539 .758 .830 .929 .941
1931 – 35 .298 .330 .517 .761 .906 .918 .925
1936 – 40 .316 .320 .408 .563 .651 .764 .740
1941 – 45 .031 .340 .039 .077 .152 .233 .285
1946 – 50 .002 .002 .002 .006 .026 .050 .082
1951 – 55 .001 .001 .002 .009 .028 .048 .038
1956 – 60 .001 .002 .001 .002 .002 .014 .010
1961 – 65 .001 .002 .002 .002 .004 .012 .020
1966 – 70 .001 .002 .002 .008 .014 .032 .044
1971 – 75 .011 .110 .146 .257 .382 .545 .596
1976 – 80 .017 .017 .024 .073 .149 .281 .329
1981 – 85 .023 .025 .033 .079 .128 .309 .285
1986 – 90 .004 .004 .005 .014 .020 .043 .058
1991 – 95 .287 .283 .297 .346 .355 .405 .477

Note. Numbers shown are p-values associated with our efficiency test using an MMC
confidence set based method imposing asymmetric stable errors, which yields, given
the specific βs < 0, the largest MC p-value for all αs within the specified confidence
sets. The latter are reported in Table 6.2. October 1987 and January returns are
excluded from the dataset.

and αs = 2 lead to the Gaussian distribution. In other words, the MC
test is less likely to reject the no-abnormal returns null hypothesis the
more pronounced skewness and kurtosis are modelled into the underlying
regression errors. Furthermore, quite regularly, throughout our data
set, the maximal p-value corresponds to the error distribution whose
parameters are the smallest αs and the largest βs not rejected by our
GF test. This monotonicity with respect to nuisance parameters (which
we did not observe under elliptical errors) is notable. Of course, it also
emphasizes the importance of our two-step test procedures which allows
to rule out the values of αs and βs not supported by the data.

A simulation study conducted on the power of these GF tests (not
reported here, but available from the authors upon request) reveals that
while αs is well estimated, the precision of the estimation of βs raises
further challenges. To the best of our knowledge however, the inference
procedures we apply in this chapter are the only exact ones available to
date. Here we show that the difficulty in estimating the skewness param-
eter has crucial implications for asset pricing tests. This result provides
motivation to pursue research on exact approaches to the estimation of
stable laws.
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5. Conclusion

In this chapter, we have proposed likelihood based exact asset-pricing
tests allowing for high-dimensional non-Gaussian and nonregular dis-
tributional frameworks. We specifically illustrate how to deal in finite
samples with elliptical and stable errors with possibly unknown param-
eters. The tests suggested were applied to an efficiency problem in a
standard asset pricing model framework with CRSP data.

Our empirical analysis reveals that abnormal returns are less preva-
lent when skewness is empirically allowed for; in addition, the effects of
extreme kurtosis in the errors on test p-values are less marked than the
effects of skewness. We view these results as a motivation for assessing
the skewness corrected versions of the CAPM (introduced by Kraus and
Litzenberger, 1976, among others). The regression model with stable
errors provides an initial framework to assess asset pricing anomalies
by modelling skewness via unobservables. Other skewness-justified ap-
proaches include: (i) extra pricing factors (see Fama and French, 1993,
1995; Harvey and Siddique, 2000) added to the regression, or (ii) the two-
factor regression model of Barone-Adesi (1985) and Barone-Adesi et al.
(2004a,b). To the best of our knowledge, the three-moments CAPM
has been tested with procedures which are only asymptotically valid,
even under normality. Our framework easily allows one to deal with
multi-factor models; however, Barone-Adesi’s (1985) model and its re-
cent modification analyzed by Barone-Adesi et al. (2004a), Barone-Adesi
et al. (2004b) impose nonlinear constraints. The latter empirical tests
have not been reconsidered to date with reliable finite sample techniques.
The development of exact versions of these tests and of alternative ver-
sions which correct for skewness is an appealing idea for future research.
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