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Abstract

This paper studies the sensitivity of Granger causalithh¢oatddition of noise, the introduction of subsampling, dredappli-
cation of causal invertible filters to weakly stationary ggeses. Using canonical spectral factors and Wold decatignss
we give general conditions under which additive noise ceriitig distorts Granger-causal properties by inducingr{eps)
Granger causality, as well as conditions under which it dm¢sFor the errors-in-variables case, we give a contimaisylt,
which implies that: a “small” noise-to-signal ratio engdismall” distortions in Granger causality. On filtering, ge gen-
eral necessary and sufficient conditions under which “spigii causal relations between (vector) time series arenaloicied
by linear transformations of the variables involved. TH&oayields transformations (or filters) which can elimin@eanger
causality from one vector to another one. In a number of cageslarify results in the existing literature, with a numlé
calculations streamlining some existing approaches.

Keywords: Granger causality; Sensitivity; Signal-to-noise ratioidEs-in-variables; Measurement errors; Filtering, Suirs
pling.
MSC code: 62M10
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1 INTRODUCTION 1

1 Introduction

Granger causality is one of the most important conceptsianalysis of the structure of multivariate time seriescokd-
ingly, the original paper of Granger (1969) triggered a samitgal number of publications, seeg. Sims (1972), Pierce and
Haugh (1977), Granger (1980, 1988), Geweke (1982, 498284), Boudjellaba, Dufour and Roy (1992), Dufour and Tessier
(1993), Dufour and Renault (1998), Al-Sadoon (2014) andréfierences therein. Here we deal with an aspect of Granger
causality, namely the sensitivity of Granger causalitatiohs with respect to measurement errors (or errorsHiizlvies) in

the observations. In particular, we study the effect of taklnoise on Granger causality in the context of a generakiye
stationary multivariate model, especially in view of fingiwhen spurious causality could appear, and when propeties
non-causality are unaffected by measurement errors.

The problem of measurement errors is a classical issuetistgtal theory; see.g.the reviews of Fuller (1987), Wansbeek
and Meijer (2000), Carroll, Ruppert, Stefanski and Cragaitu (2006), Gustafson (2003), and Buonaccorsi (2010).edery
except for the early article by Newbold (1978), there is saipgly little work on the effect of errors-in-variables @ranger
causality. In this work, Newbold showed that measuremenreican produce artificial feedback in the noisy seriesneve
though no such feedback is present before noise is supesgdpdNo general characterization of cases where such spurio
causality could appear was however provided. From a widespeetive, several authors have emphasized that the @uditi
of noise to time series (errors-in-variables) can substiynimodify the structure of the series, leading to distors and
identification problems; seeg.the literature reviewed by Maravall (1979), Anderson andsDer (1984), Anderson (1985),
Deistler and Anderson (1989), and Scherrer and Deistl&3§LNote also that measurement errors may give rise toieeldit
“outliers” which may strongly influence the results of estion and testing procedures.

The question of the sensitivity to measurement errors igeglistinct for the effect of aggregation and subsampling, f
these transformations typically considerably reduce ffextve sample size. For work on the latter problems, treles
may consult Tiao and Wei (1976), Wallis (1974), Sims (19%4gi (1982), Hylleberg (1986), Marcellino (1999), Kaiser
and Maravall (2001), Breitung and Swanson (2002), McCrarid Chambers (2006) Barnett and Seth (2011, 2015, 2017),
Smirnov and Bezruchko (2012), Gong, Zhang, 8kbpf, Tao and Geiger (2015), Ghysels, Hill and Motegi (2026id the
references in the survey of Silvestrini and Veredas (2008).

Errors-in-variables can be interpreted as missing vaggblif the noise were observable, it could be included as an
additional variable, and different conclusions can emerge previously observed by several authors [see Hsiao (1982
Litktepohl (1982), Dufour and Renault (1998), Triacca (198800)], causality properties in the sense of Wiener-Geang
depend crucially on the information set considered, whih affect both the sheer presence of causality (or non-kigisa
and causality measures [Geweke (1982), Dufour and TaarftD), Dufour, Garcia and Taamouti (2012)]. Of course, the
central difficulty remains that noise is typically unobseatvIn this paper, we revisit the questions of the effect nbfserved)
additive noise on Granger (non-)causality, and using theedaols, rapidly traverse also issues of the effects ofifiigeand
subsampling.

LetX = (X(t) [t € Z), X(t): Q — RY, be a vector process of dimensidmith finite second moments, wheFerepresents
the integers an@ the real numbers. We assume tiais weakly stationary, centeredd. E[X(t)] = 0) and Gaussian, with
a full-rank rational spectral densityWe postulate that the proceXscan be regarded as a juxtaposition of two subprocesses
X = (X{ Xg)'. The broad question we study is whether the past valué& amprove the prediction 0Kg. To be more
precise, one says th&x does not Granger cau3g if

E[Xg(t) | Xa(s), Xa(s) : s<t] = E[Xg(t) | Xa(s) : s< 1] (@)

or equivalently

Var[Xg(t) | Xa(s), Xs(s) : s< t] = Var[Xg(t) | Xag(s) : s< t]. (2)

HereE[Xg(t) | Xa(s), Xg(S) : s< t] denotes the conditional expectation@f(t) [given the variableXa(s), Xg(s) such thas < t
(and similarly elsewhere)], and Var the variance of the siep-ahead forecast error. If inequality holds in (1) and ¢ge
says thaa (Granger) causesz. Granger (1969) in addition introduced the notion of “imstéaeous causality”, meaning that
the approximation oKg(t) can be more accurately achieveXi{(t) is known:

E[Xg(t) | Xa(t), Xa(s), Xa(8) : s <] # E[Xa(t) [ Xa(S), Xa(s) : s < t]; ®3)

for further discussion of this notion, see Pierce and Hau@Y7) and Granger (1988). The assumption of second-order
stationarity is clearly restrictive, but is standard in G&anger-causality literature. Further, general charaetions of non-
causality are typically little affected when common fornigarms of non-stationarity — such deterministic time trerahd
integration) — are allowed; see, for example, Dufour andaR#r{1998) and Dufour, Pelletier and Renault (2006).

lwithout the Gaussian assumption, the results presenteisipaper continue to hold provided conditional expectatiare replaced by projections onto
the Hilbert space spanned by components of the respectienstey processes.
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Itis clear from the above definitions that Granger causdiyends on the vectdt considered and on the wagis split
into subvectors{ay andXg. Such choices (which are of course finite in number) depenith@mrontext: which variables are
of interest, and the objectives of the analysis. For examfecan represent policy instruments.q, fiscal and monetary
variables) or leading indicators of economic activity, agdeconomic outcome®(g, national income, unemployment, etc.):
the nature of the variables often provides a natural catefor splitting X into subvectors. Clearly, the causal structure of a
time series should in general depend on such choices. Howtheequestion remains whether apparently less fundainenta
features, such as contamination by noise and various lin@asformations, including filtering and subsampling, affect
the causal properties of a time series.

This paper studies the sensitivity of Granger causalith&addition of noise, the application of causal invertibtefs,
and subsampling in weakly stationary processes. We givergeoonditions under which additive noise or filtering tesa
distortions by inducing (spurious) Granger causality, &l &s conditions under which it does not. Even though adliti
noise and filtering can in general produce spurious Grargesality, there is a remarkably wide range of cases wheees d
not. For example, if the “caused variabl¥g is not noisy, noise added to the “causal variabtg”cannot induce spurious
Granger causality fronXa to Xg. This covers cases where lagged valuexofare contaminated by noise, aXg does
Granger-caus¥a. We also give a continuity result which entails a “small” smito-signal ratio in measurement errors entails
“small” distortions in Granger causality. In a number ofesswe clarify results in the existing literature, with a ronenof
calculations streamlining some existing approaches.

We also consider the effects of linear transformationgrfilg and subsampling. In particular, we give general resnrgs
and sufficient conditions under which “spurious” causahtiehs between (vector) time series are not be induced legiin
transformations of the variables involved. This also \selidear transformations (or filters) which can eliminatea@yer
causality from one vector to another one.

Section 2 summarizes a collection of known results avadlédal the characterization of Granger causality, using neab
spectral factors, Wold decompositions and spectra. Ini@ed&, we establish some connections not clearly stateden th
earlier literature, which are useful for studying caugailit the presence of measurement errors. These include : eaajen
lower bound on the conditional variance of the sum of two psses, and some general relations between Granger causalit
and instantaneous causality. In Section 4, we study theteffemeasurement errors on Granger non-causality. Sebtion
provides the continuity result in terms of signal-to-naiago. The effects of linear transformations, filtering autbsampling
are studied in Sections 6 and 7. Section 8 offers some cangluemarks. Proofs appear in the Appendix.

2 Characterizations of Granger causality

In this section, we review some classical characterizat@rGranger causality which will be useful for studying tlfleet of
errors-in-variables. We first record some notational cotiges associated with rational (matrix) transfer funetigseee.g.
Rozanov (1967), Hannan and Deistler (2012)]. We emphak&ede of spectral methods, for which Geweke (1982, 4984
1984%) was an early promoter in the context of analyzing Grangaréf causality.

A rational transfer function is callestableif its poles are outside the unit circle, and it is call®thiphaseor minimum
phasef its zeros are outside the unit circle. If we commence frorateonal spectral densi®xx(z), z< C, which is positive
definite everywhere on the unit circle, there is a spectidbfézation

Dxx(2) =W(z2) QW' (z'1) (4)

in which the spectral factdN(z) is a square real rational, stable and miniphase, transfetiith andQ is positive definite
symmetric; see Rozanov (1967), Hannan and Deistler (2042y) defines a linear filter upon replacizdy the backshift
operatorL [i.e., LX(t) := X(t — 1)]. The notationW(z) allows one to study the properties of lag operators in terfrth®
analytical properties of functions of a complex variable C. Under the normalizatioW/(0) = l4, W(z) andQ are unique.
We also consider the following assumption.

Assumption 1. (Full rank stationary process with no spectral zero on the unit circle) X = (X{ Xg ) ' is a real full-rank
stationary stochastic processItf, with rational spectrunbyx(z) having no zero on the unit circle, such th{#@) is satisfied,
W(0) = Ig, and

_ [ Wai(z) Wix(2) [ Qu Qw2
W@ = Wo1(2) \/\/22(2)}’ Q_[Q21 sz} ®)

are partitioned conformably with X (XJ Xg)'.

The above assumption entails tigt) has both a moving average (Wold) representation

X(t) =W(L)e() (6)
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and an autoregressive representation
M(L)X(t) = &(t) (7

where deW(z)] # 0 and deff(z)] # 0 for |2 < 1, M(2) = W(2)~%, ande(t) = [ea(t) " ea(t)"]" represents the innovations
of the process, partitioned conformably with= (X, Xg ). The following theorems provide characterizations of @emn
causality; see Sims (1972), Pierce and Haugh (1977), Ge(&ig2, 1984, 198%), Boudjellaba et al. (1992), Dufour and
Tessier (1993), Dufour and Renault (1998). The first one s&a@n the structure of the spectral factor matvifz).

Theorem 1. (Canonical spectral factor characterization of Granger causality) Suppose Assumption 1 holds. Then the
following two conditions are equivalent:

1. Xa does not Granger causgsX
2. Wyi1(z) =0.
The following conditions are also equivalent:
1. Xa neither Granger causesgXnor does it cause glinstantaneously;
2. We1(2) = 0and Q is block diagonali.e. Q2 = Q;, =0).

The intuition behind the above claim is the following. Legtimnovation process be denoteddiy) = [ea(t) eg(t) ] T
with €4 andeg two independent white noise processes. WWet(z) = 0, we have::

Xa(t) Wi1(L)ea(t) +Wao(L)es(t), ®)
XB(t) = VV22(L)SB(t).

It is intuitively reasonable to conclude from these equetithat knowledge of th&a process up till timg — 1 will not be
of help in determining theg process and thus thés process. Spectral approaches for Granger causality amalgse
emphasized in the seminal work of Geweke (1982, 898984).

For completeness, we note a further characterization afig&acausality, which follows from the above.

Theorem 2. (AR characterization of Granger causality) Suppose Assumption 1 holds, and has the(possibly infinite
autoregressive representation

- - A1 Az 211 212
X(t) = iX(t—1)+&(t i = Varle(t)] = 9
= FAXE-De). A= | A% vare) - | T3 ©
where the Aand the covariance matri¥ar[e(t)] of the innovations sequenegt) are partitioned conformably with X
(XAT XBT)T. Then >4 does not Granger causgsXf and only if Ap1 = 0for alli > 1. In addition, X neither Granger causes
Xg, nor does it cause instantaneously if and only ifi& = Oforalli > 1andX;, = z;l =0.

Theorems 1 and 2 give characterizations of the absence sdlitytbased on the spectral factor and infinite AR represent
tions (the latter is obtained from the inverse of the spéfdror). Sims (1972) gave an additional characterizafiond = 2),
based on Wiener filtering ideas, where no factorizationgsiired. Let the spectral densidyxx be partitioned conformably
with X = (X, X3 )" as

Dy — [ ®an Pag ] .
®pp Pgp

Then we have the following spectral characterization of-oaunsality.

(10)

Theorem 3. (Transfer function characterization of Granger causality) Suppose Assumption 1 holds, anddstx be
partitioned as in(10). Then, the following conditions are equivalent :

1. Xa does not Granger causesX

2. Dap(2)®gi(2) is a stable transfer function.
The following conditions are also equivalent:

1. Xa neither Granger causesphor does it cause glinstantaneously;

2. Dap(2)®Pgi(2) is a stable transfer function assuming the vallet z= 0.
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Remark 1 The above theorem can be viewed as an extension of the condisg theorem given by Sims (1972, Theorem
2) in the special case whete= 2. Theorem 3 allows fod > 2, and covers instantaneous causality as waNe are not
contending that the characterization of this theorem igsearily attractive from a computational point of view. Al parts

of the paper show though, the result is of theoretical irstern that it can be applied to give rapid derivations of thesitivity
properties associated with Granger causality.

Remark 2 The transfer functio®ag(z)®g(2) is the transfer function of the optimum two-sided Wieneefilior approxi-
mating the proces¥, from the proces¥g; the two-sided aspect refers both to the fact that the tearfighction has a Laurent
series expansion with both negative and positive powers afid to the related fact thaa(t) is being approximated from
Xg(s), —0 < s< oo, i.e. from the past and future ofg. If the two-sided transfer function in a particular caseasisally
one-sided, then future valuesX are irrelevant in approximating current values<af This will be the case if past values of
Xa do not affect present or future valuesXy.

Remark 3 Itis important to note that the characterizations giverhia section hold for series in discrete time observed at a
given frequency. They are directly applicable to contirsitme series, and modifications arise typically when theesere
transformed or filtered. The effect of such transformatiwiisbe considered in sections 6 and 7 below.

3 Directions of Granger causality

In the literature, one finds remarkable similarity betweenditions said to captureXa does not caus¥g” and “Xg causes
Xa” and similar pairings. To study the effect of errors-iniadtes on causality, we establish in this section some atiiomes
not clearly stated in the earlier literature. We start wité tollowing preliminary result.

Lemma 1. Let X and Y be two independent stationary stochastic presesgth spectral densities. LetZX +Y. Then
the covariance matrix of the one step prediction error in @pgmating Zt + 1) from Z(s), s<t is bounded from below
by the sum of the covariance matrices of the one step predietiror in approximating Xt + 1) from X(s), s<t and in
approximating Yt 4 1) from Y(s), s<t:

Var[Z(t) | Z(s) : s<t] > Var[X(t)| X(s) : s<t]+ VarY(t)|Y(s) : s< 1]. (11)
Now we spell out the following relations between Grangersadity and instantaneous causality.

Theorem 4. Adopt the same hypothesis as in Theorem 1. Suppesoes not Granger causegXor does it cause K
instantaneously. Then either the two processes are indigmenor X% Granger causes X Further, suppose alternatively
that X5 does not causegX Then, either the two processes are independent,goGkanger causes x4 or Xg causes X
instantaneously.

Note that neither claim of the theorem goes in the reversetiim. This is because it is possible that b¥thGranger
causesXg and simultaneousl)g Granger causesa. Such a situation will generally arise when the canonicatsal factor
W is not triangular (or diagonal), as in the following example

Xa(t) = EA(t) +X(t 1), Xe(t) = 2Xa(t— 1)+ £a(t). (12)
Here,ea, €g are independent white noise processes with variaQae®g. One can verify that
368 e 4] 20
Xg(t) 1+(1/2)L2 | (/2L 1 es(t)

and the transfer function matrix is easily verified to be Eand minimum phase, assuming the valughenz= 0. Itis

easily checked that Va%a(t) | Xa(s), Xa(s), s < t] = Qa, Var[Xg(t) | Xg(s), Xa(s), s < t] = Qg while Var{Xa(t) | Xa(s),s < t] >
Qa, Var[Xa(t) | Xs(s), s < t] > Qg by a similar argument to that used in the proof of Theorem 4.

4  Additive noise and Granger causality

In this section, we consider the effect of additive noise oar@er causality [compare with Anderson and Deistler () 984l

Anderson (1985)]. Our starting point, again, is the fultkatationary process = [X,;r Xg | T with rational spectral density.
Suppose thaXa does not Granger cau¥g. Suppose further that the proces¥gsXg are both contaminated by stationary

colored additive noise processBg, Ng with rational spectral densities, which are independentaxth other and of the

2There may be a proof in the literature fbe> 2, but we are not aware of it. For completeness, a proof appetrs appendix.
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processe¥a, Xg. Then one can ask whether it is now true that the pro¥gss Xa + Na does not Granger cause the process
Xg = Xg + Ng. Perhaps of equal if not greater interest is the associatestipn : suppose thai, Xg are regarded as noisy
measurements of underlying procesx¥gsXg and that analysis of measurement data revealsthdbes not causig. Can
one conclude then thady does not Granger cau3g?

In the next subsection, we will construct an example showiraj the answer to the first question is generally no, a
conclusion that is perhaps not counterintuitive since caasality corresponds to zero restrictions. In the folfapsubsection,
we show how the Sims (1972) characterization of the abseifGeamger causality summarized in Theorem 3 reveals that the
claim remains valid if the contaminating noilslg is zero, and this is generically a necessary condition ferctaim to hold.
There is no similar requirement on the noldg In a paper of Solo (2007), several important questionsased about the
sensitivity of Granger causality (or its absence) to changehe underlying assumptions. In this section, we comside of
these, namely the effect of additive noise. Our resultedffiom those obtained in Solo (2007)Ve first study the stationary
full-rank vector procesX = {X(t) :t € Z} such thatX(t) = [Xa(t)" Xg(t)"]" can be regarded as the juxtaposition of two
subprocesse¥a andXg. Suppose thaXa does not Granger cau¥g nor does it caus¥g instantaneously.

4.1 Noise-induced Granger causality

We will now introduce the promised example. To define XaeXg processes whengy does not Granger cau3g nor does
it causeXg instantaneously, following Theorem 1 we shall choose areupjangular canonical spectral factor. The two
processes are scalar, and we assume

[1+3z 2
W(z) = [ 0 1+3z (14)
and we further assume the innovations covarig@dgthe identity matrix. An easy calculation delivers
[ Paa ®as | _ [ §+32+320 $+2
Prx = [ ®pa Ppg | +zt S+iz+izt |- (15)

Now assume that additive noise with a white spectrum of 'ﬂ:itger% is added toXg, to produce a new proceg, while no

noise is added tXa. The cross spectrum betwekr andXg is unaffected. So the new joint spectral matrix is
Dan Ppg 2+iz+31 14z

Doe — — | aT2472 2 16

> { Psn Pgg J+zl 2+3z+37t (16)

If it were true thatXa does not Granger cau¥g, nor causeg instantaneously, then this matrix would need to have a daabn
spectral factoWV(z) say, which likeW(z) is upper triangular withV(0) = I, and an associated innovations covariance matrix
which is diagonal. In order to derive a contradiction, leessume this to be the case and fii¢z). The upper triangularity
implies that the2, 2) termWa, of W(z) must satisfyj\b,(0) = | and

Pag(2) = Waa(2)QaWar(z 1) , 17)

which means thatk,(2) itself is a canonical spectral factor, f®5(z). One can easily verify that

1 1 V3 z zt
2+ 2z+ -7 =1+ )1+ 1+ : 18
S0 we see that /3
- z — 3
2)=1+_—r, =1+— 19
Weo(2) =14 5=z Q=1+ (19)
Now consider thé1, 2) entry®,5(z) of the spectrum. From the fact that whak{z) is triangular, we have that
®p5(2) = Wh2(2) QoW (z ) (20)
from which we obtain /3 .
1 — 3 z
- +z=Wi(2)(1+ —)(1+ . 21
= h2(2)(1+5) (14 5——) (21)

Itis easy to see th&lti,(z) has a pole at-1/(2+/3), which is inside the unit circle. This is a contradictionhe requirement
on the poles of a canonical spectral factor that they shdllig autside the unit circle.

3Solo in a private communication has indicated that an erramstap in his proof leads to the discrepancy between his ansuits.
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4.2 Spectral characterization of noise-induced Granger assality

It is now straightforward to understand the effect of addmaise to the processe&, Xg on the property thaks does not
Granger caus&g. Suppose as before thi, Ns are two processes, independent@f Xg and each other, and added to
Xa, Xg to yield new processesy = Xa + Na, Xg = Xg + Ng. The outcome is that

Prg = Pag, Pgg = P+ PrgNg - (22)

The absence of Granger causality will carry over, Xa will not Granger caus&g if and only if (by Theorem 3)Pz5 5—517
is a stable transfer function. If there is noise on the peasbut not the procesXg, the result is immediate that absence
of causality continues to hold; the same transfer functiantfon in fact arises, fonDABCDEBl = qJ,;ngE‘;Bl. On the other hand,
if there is noise on the proce¥g, for “almost all” spectra ofPn,ng, including certainly a white spectrum, unle®gg is
itself white, the zeros ofPgg + Pngng Will differ from those of ®gg and not be the same as the polesbgfy = Pag. Sothe
cancellation of unstable pole-zero pairs in forming thectian will no longer occurand the absence of Granger causality will
then be lost. o _
_ Now let us postulate that processés Xg are measured and found to have the property Xaadoes not Granger cause
Xg; these processes are assumed to be noisy versions of LinggatpcesseXa, Xg, with the additive noise processes being
independent of each other and the underlyiagXg processes. Ultimate interest lies in saying whether onfaoGranger
causesXg. Then the above argument shows that if we knew that there wamise perturbing{g, processing of the noisy
measurements would allow answering of the question. On tier diand, if there is noise perturbing, one could not
infer from the presence or absence of a causality properohiing Xa, Xg the corresponding property fofa, Xg. The noise
procesNg would need to have a specialized spectrum for absence odldgua the noisy case to imply it in the noiseless
case. Note that there is no adjustment to the conclusionshwerises in the special case of the noise problgdseing white.
The results above are summed up in the following theorem.

Theorem 5. Adopt the same hypothesis as in Theorem 1. ey be two stationary processes with rational spectra, with
the same dimensions ag Xg respectively, where XNa, Ng mutually independent, and € = Xa + Na, Xg = Xg + Ng.

1. If Ng =0, then B B
Xa does not Granger causgsXf and only if Xa does not Granger causés.

2. If Ng # O and not all the unstable zeros ®kg + Pngng Cancel (unstable) zeros diag, we have the following implica-
tions:
(a) if Xa does not Granger causesXthenX, Granger causeXGg;
(b) if Xa does not Granger causgs, then X Granger causes K

Remark If Xgis not noisy Ng = 0], noise associated with the “causal variabtg’cannot induce spurious Granger causality
from Xa to Xg, despite possibly complicated dynamics on béthandXg. Another special case of interest is provided by the
situation where the two processes are actually indepentibeh®g = 0, and so the relevant transfer functi@ngq)gé with

or without noise added remains zero and there is no caugatibduced through the addition of noise.

We comment that our conclusions are at variance with thosgotd (2007), who asserts that addition of both noise
sequencesla, Ng to Xa, Xg whereXa does not Granger causg means thaX, does not Granger cau3g. There appears
to be an unjustified assumption in his work (as confirmed ivgpei communication) where he constructs a triangular sglect
factor for theX process but does not ensure that the off diagonal term isigtesd to be stable—stability is simply assumed
automatically. Such stability would be a necessary comlifior asserting thaXa does not Granger cau3g.

5 Signal-to-noise ratio and Granger causality

In this section, we argue a form of continuity result. If theés additive noise perturbing an arrangement where there is
absence of causality, then although generically absencausfality will be lost, we shall show that in a certain senselen
more precise below, the introduced degree of non-caussiiyall. The practical effect of this result is that smallcamts of
noise in a particular situation may well be tolerable.

Our starting point is the following observation.

Lemma 2. Consider a complex matrix function (i), analytic inp < |z < p~%, 0 < p < 1 with M(z) = MT(z'1), and
positive definite ofz] = 1. Suppose

M@= 5 mZ, m=m}ecRr (23)

ji=—o00
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and define the causal and anticausal parts by

1 o 1 R
M+(z):§mo+lzlmz' and I\/L(z)zérrbfz mZz. (24)

j=—o00

Then the matrix function(z) := | + eM(z) is analytic inp < |z| < p~%, with L(z) = LT (z'1), and positive definite ofz| = 1.
Further to first order ine > 0, there holds

L=1+eM~(I+eM;)(l +eM) (25)

with | + &M, stable and miniphase.

We remark that the terminology “to first orderéfiis shorthand for saying that the norm of the error betweeln above
and the approximation of it on the right hand side of (25)] ital\(z), is of ordere?. The square of thik, norm can be
computed with the aid of an integration of around the unitleiras tracg}rf[A(exp(j w))]?dw or by taking the squared sum

of the coefficients in the Laurent series of the errer, Y, tr[3;3; .

We will use this result to show that small perturbations ipacsrum give small perturbations in the associated sgectra
factors, and thence conclude that Granger causality isémsescontinuously dependent on the noise spectrum, it besent
when there is no noise. Accordingly we consider the arramgestudied in the previous section, with the introductiba o
scaling parameter on the noise : thas= [X{ Xg | andXa does not Granger cau¥g nor does it causig instantaneously.
The canonical factdV(z) for the noise-free spectrufx x(z) is upper block triangular and the innovations covariancgima
Qis block diagonal, and they obey the fundamental specteabfization equation (4). Assume thelt2Ng for somee > 0 is
a noise process additively perturbiKg, thus

Xg = Xg + £/°Ng, Pgg = P+ EPNgN -

(We have effectively previously dealt with the effect of hmya noise proceds, perturbingXa—the noisy proces¥a + Na is
known to inherit the property of not Granger causig and so no further consideration is givenNg and for convenience
we take it as zero).

Now note that

Pyx = Pxx + EDPNN- (26)
The spectrun®yyx gives rise to a canonical spectral factor, calT/i(tz) and an associated covariance matrix, caﬁ,isatisfying
Dgx(2) =W(R)QW ' (z ). (27)

Our first result follows.

Theorem 6. Adopt the same hypothesis as in Theorem 1 andddié\a stationary process with rational spectrum, with the
same dimension agX and with X Ng independent. For fixed positie defineXg = Xg + £1/?Ng s0 that®g = Pxx + Py
where the(1, 1), (1,2), (2,1) blocks ofdny are zero, and thé2,2) block is Pngng. Let W(2), Q with W(z) upper block
triangular and Q block diagonal anw/(z), Q define canonical spectral factorizations®fx(z) and ®yx(z) as in(4) and
(27) respectively. Then

1. W(2) —W(2) is O(¢) on |z = 1;

2. Q—-QisQe);

3. DpgPz2— PapPgg is O(€) on |z = 1, and the anticausal part 6b,g®zL is O(e) on |z = 1;
4. for suitably smalk, VT/zz(z) is minimum phase.

We remark that the first and third bounds imply bounds oritheorms of the quantities which are al®g¢). Evidently,
the X process is “close to” a process in whi¥l does not caus¥g in two senses: the canonical spectral factor is close to
upper block triangular with the innovations covariancenrdieing block diagonal, and (separately), the anti-chpaet of
the two-sided Wiener filter associated with predictifygfrom Xg has small magnitude de| = 1 and inL, norm.

In the above theorem, we focused on the changes to transfetidons and to the innovations covariance caused by the
introduction of noise. Itis also relevant to compare thelfmtgon error variances whexu(s), s<t, Xg(s), s<t andXa(s),s<
t, Xg(s), s <t are used to predictg andXg respectively. The results are summarized in the followireptem. It shows that
the prediction error “measure” of Granger causalit){g?).
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Theorem 7. Adopt the same hypothesis as in Theorem 6 and assume th&is sufficiently small that\b, is minimum
phase. Then there exist positiveRRof O(£?) for which there hold the upper and lower bounds

Var [Xg(t) — E[_%B(t) |>ZB(_5) rs<t]] >R+ 623—(5}2(5{11(512
= R+ Var[Xg(t) — E[Xg(t) | Xa(t), Xa(s), Xa(s) : s < t]] (28)

and

Var[Xa(t) - E[Xe(t) | Xa(s) : < 1]] < (1+ R)Var[Xa(t) — E[Xa(t) | Xa(t), Xa(s), Xa(s) :s< 1] (29)

6 Effect of filtering on Granger causality

Consider a stationary full-rank process= [X, Xg|'. Instead of observing processés Xg, we observe the process

Xat) | Xa(t) [ TalL) Tas(L)
{XB('[)}_T(L)[XB(U}’ T<L>'—[TBA<L> Te(l) |° (30)

whereT (L) is a causal transfer function, partitioned conformablyhviit, Xg |". We consider the question : ¥ does not
Granger caus&g, will Xa not Granger caus¥g? Conversely, and on occasions more importantly, if onerobsethatXa
does not Granger cau¥g, can one conclude thiy does not Granger cau3g? Questions of this type go back some time,
seee.g. Pierce and Haugh (1977), Solo (2007, 2016), Florin, Grofesfd?, Fink and Timmermann (2013), Barnett and Seth
(2011), and Seth, Chorley and Barnett (2013). B _

In the following theorem, we give a general necessary anficerft condition forXa not to causexg in the sense of
Granger.

Theorem 8. Suppose Assumption 1 hoIds,_aan\E (t) Xg (1)) be defined by30) where T(L) is a causal stable miniphase
transfer function such that (D) = I4. Then,Xa does not Granger causgs if and only if

Mo1(L)TAL) 4+ MNa(L)TBAL) =0 (31)

where
1| ML) Mol TA(L) TAB(L)

) _
n(L) :W(L) B |-|21(L) HZZ(L) :| and T(L) t= |: TBA(L) TB(L)

(32)

are partitioned conformably witfX, Xg ]".

Providedrl»2(2) is miniphase, condition (31) shows it is generally possiblehoose the filteT (L) so thatXa does not
Granger caus#g, irrespective of the causal relation betweg@nandXg. Filtering can make Granger causality invisible. In
general, Granger causality frola to Xg is not invariant to the application of a multivariate causal miniphase filtex (t).
When condition (31) holdsXa does not Granger cau3g even ifXa does Granger causg. Conversely, iffl12(L) = 0, so
Xa does not Granger cau3g, (31) does not hold if we havd,,(L) TBA(L) # 0 : Xa does not Granger cau¥g, andXa does
Granger causig. For example, for a bivariate systech 2), the latter situation happens when

ML) =1, and T(L)= [ il 1 } : (33)
hereX(t) = &(t) and
Xa(t) = Xa(t) = €a(t), Xa(t) = (0.5)Xa(t — 1)+ Xg(t) = (0.5)Xa(t — 1) + £5(t) . (34)

Barnett and Seth (2011, Abstract, Sections 1 and 3) claim“@aausality for a stationary vector autoregressive (YAR
process is fully invariant under the application of an adnit invertible filter”. The above counterexample showsudiethis
claim should be qualified. Conditions under which this typaeariance hold are given by Theorem 8.

In the following corollary, we consider the important cageeneT (L) has a block triangular form.

Corollary 1. Under the assumptions of Theorem 8, the following equicaehold. If Ea(L) =0,
Xa does not Granger causesXf and only if Xy does not Granger causés. (35)

If Tag(L) =0, B B
Xa does not Granger causés if and only ifM21(L) = Mao(L)Ta(L) 1 Tga(L). (36)
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Remark 1: (35) in Theorem 8 means that Granger causality fiXyrto Xg is unaffected by linear causal filtering as long
asXg(t) only depends on current and past valueXg(ft). The filtered serieXa(t) can involve lagged values of boka(t)
andXg(t). Further, the fact that (35) is an equivalence means thataasality between the filtered series does allow one to
conclude that the unfiltered series have the same propeatty.(8016) recently considered the special case wigsd ) =0
andTga(L) = 0, and showed only sufficienc)f does not Granger cau3g implies thatXa does not Granger cau3g); see
also Florin et al. (2013), Barnett and Seth (2011) and Sedh é2013) for related results.

Remark 2: (36) of Theorem 8 gives a general condition under which Gearcausality fromXa to Xg can be suppressed
through filtering. In particular, if121(z) is miniphase, we can always chodkg.) so thatXa does not Granger cau¥g. For
example, this is achieved by takifig(L) invertible and

Tea(L) = Ta(L)M22(L) M2y (L). (37)
In particular, by takinglg(L) = | andTga(L) = M22(L)*M51(L), we find that the filter

I 0

| ML) x(L) | (38)

T(L)
eliminates Granger causality froka to Xg: Xg is “orthogonal” toXa in the Granger sense.
Remark 3: The assumption tha¥(L) is miniphase entails that bothiy(L) andWg(L) are miniphase wheWga(L) = 0, for
then dejW(z)] = defWa(z)]defWs(2)]. There is a heuristic explanation of why the introductiomaofon miniphase but stable
Wg(z) might produce causality where previously it did not hold pSoseXa does not caus¥g, but Xg does caus&a. For
a specific example, suppose that(t) = Xg(t — 2) + €a(t), Xg(t) = €a(t), with €a, €g independent white noise sequences.
Now suppose thaXg is subject to processing by a filter which delays it. It is weltlerstood in signal processing theory that
any non-minimum phase filter introduces a delay; a partibukvident example is the filter with transfer functiafy which
produces a delay gb units. Suppos@ is say 3. TherXa(t) = Xg(t + 1) + €a(t), so future values oXg are correlated with

past values oKa, which means precisely thXj does caus&s.

Remark 4:. Consider the case whera defines a filter which is simply a delay. Then the theorem dagsit X does not
Granger caus¥g, the same will be true X, is replaced by a delayed version of itself. This can of cobesargued from first
principles also.

7 Effect of subsampling on Granger causality

A further question raised in the work of Solo (2007) dealshvgitibsampling. Suppose that a proc¥gsioes not Granger
causeXg nor does it caus&g instantaneously. Suppose the two processes are subsanilktdhe absence of Granger
causality continue to hold for the subprocesses?

As we show here, again appealing to Theorem 3, absence of@raausality may be lost, and Granger causality may
arise in the subsampled processes.

By way of brief comment, we note a refinement of the questiarbs&mpling of two processes at the same rate may not
occur synchronously. Thus, for example, sampleXofvith even time index might be considered along with sampteszo
with odd time index. Also, subsampling may occur at diffénetes. In fact, it could be tha¢a is not subsampled, whil&g
is. We will not consider these variants in this section.

We first note a very easily established theorem on the tramsfiton of spectra under subsampling [see Hannan (1970)].

Theorem 9. Let ®xx(z) denote the spectrum of a process X, and suppose the procssjiged (synchronously in the case
of a multivariate process) every M time units for some pasiinteger M, to generate a proceXs defined for time instants
...,—M;0,M,2M, .... Then the spectrum of, defined using covariance data with lags which are integeitipies of M as

@)= T PREX(OXT(—kM) (39)
k=—00
is expressible as
1 M-1 .
() =y 3 Pxx(@2) (40)

wherew = exp(v/—121/M).

4The relation between Granger causality and subsamplingiasb be studied by postulating a deeper structural modeh as a continuous-time
model; for some earlier work on continuous-time Granger cétysaée Florens and Foage (1996) and Comte and Renault (1996). We focus here on the
standard discrete-time second-order stationary modelidesgidn sections 1 - 2.
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The proof is an immediate consequence of the fact that

Dy x(w'z) = i (W' 2)*E[X(0)X " (—K)] (41)
k=—00

and the addition of these equationsifet0,...,M — 1.
In our counterexample, we shall takb= 2. This means thabyx(z) = Pxx(z) + Pxx(—2). In detail, consider a process
X defined by a unit matrix for the innovations covariance, andraonical spectral factor given by

* % ok 172[
W(z) = .
2

0 3

(42)

with the particular expression for tfi&, 1) entry not being provided, since it turns out to be irrelevarihe calculation. From
this expression, it follows that thd, 2) and(2, 2) entries of®xx are:

. 1—5\/} z—%
Dpp(2) = 2) = 2 , 43
AB() (17%)(1_2;21) %—%(Z—szl) ( )
1-2  1-z> 3 l(z4z1
Dag(2) = 2 V2 ) _ 2 V2 (44)
T ) T e
Based on the formula for subsampled spectra, we now have:
() z— % —z- (1-325)+7 s
T L2427 24d(z4zY)  B-Liz+z VB4 iz )
- s Stz [B-V2- 5(Z+770)
Pgs(Z) = 5% 1 5, 1 1, 51 5, 1 ENE (46)
1 2@+ Z+s(tzt) 33+ [+ 5z )]
hence 5 s
(PO — (1-5%) +2 B Z+(1- z—ﬁ)z2 )
AB BB %5_\/7_%(22_’_272) _%244'_(%5_\/2)22_%

The denominator polynomial has four zeros on the unit cifate-0.81+ 0.58,/—1) and there are no cancellations with the
zeros of the numerator polynomial (at®)+0.876/—1). (The presence of unit circle zeros rather than zerodenie unit
circle is not of particular note. One can also verify thahi€ {2, 2) term of the spectral factor in the example is changed to
be (1— %)(1— %)%, then the denominator polynomial has two zeros inside awdautside the unit circle, at1.382 and
+0.869.) So in both cases the transfer function is not caufhls means that the downsampling destroys the absence of
Granger causality

This result is not consistent with the claim of Solo (2007wauld appear that in seeking to construct a canonical sgect
factorization for the subsampled process, he forces tulanity (which is needed to conclude absence of Grangeratiay)s
but in the process cannot assure that the proposed spexdttat femains stablége. the simultaneous requirements on the
spectral factor for it to be triangular and stable cannadt betmet. The fact that an underlying process may have untatirel
Granger causality, while a time aggregated version of ib(enfof subsampling) has bidirectional Granger causalég, &lso
been observed in Chambers and McCrorie (2004).

8 Conclusion

In this paper, we have sought to explain how intuition can aading in determining the effect of certain changes ntade
underlying model on the Granger causality properties aatamtwith that model. For the important case of additivesapive
have established general conditions under which additigerdoes not affect non-causality properties, as well aditions
under which noise induces spurious Granger causality. dteiar from these that additive noise generally distortssahu
relations, even though there are interesting cases whdoe# not. For example, in the case of measurement errogg,isf
not noisy, noise oXa does not induce spurious Granger causality fdnto Xg. In order to derive our results, we mostly rely
on generating function methods, canonical spectral facWbld decompositions and spectra. These approachesiecaisly
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simplify many proofs. Besides rigorous demonstrations fimalings extend and qualify the early results of Newbold7@?9
which focused on special cases. Further, in our discusgianise, we have drawn attention to the usefulness of thinkin
an “amount” of causality : if noise is “low”, the distortion the predictability and Granger causal properties of thegss is
also “low”.

We have also revisited the effects of linear transformatidittering and subsampling on Granger causality propertie
These results include general necessary and sufficienttmoredunder which “spurious” causal relations betweeretsaries
are not induced by linear transformations of the varialbdeslved. This characterization also yields linear tranmsfations
(or filters) which can eliminate Granger causality from oeeter to another one. The various results presented alletmn
correct some erroneous statements in the earlier liter§asrin Solo (2007) and Barnett and Seth (2011)] on Grangesadisy
in the presence of measurement errors and variable transfions.

The fact that additive noise can distort Granger causalgtions means that empirical findings on such propertiesrbe
more delicate to interpret. Indeed, inferences on “noigyaldes” remain perfectly valid as long the causal propsraire
ascribed to observed variables. If we have no theory (suah asonomic or a physical model) that can lead one to disshgu
between a “true” latent variable and a “measured” variathlere is no error-in-variables problem. Otherwise, onetrbas
aware that the causal structure of the original “uncontateid’ variables can be different. In this context, it is guitteresting
to observe that no “spurious” causality can arise when naidg affects the output variable (see Theorem 5). Furtheerw
the signal-to-noise ratio is large, distortions on appiacansality will also be small (see Theorem 6).

Similarly, the fact that aggregation and subsampling catodi dynamic relations has been widely discussed; see Tiao
and Wei (1976), Wallis (1974), Sims (1974), Wei (1982), ldpkrg (1986), Marcellino (1999), Kaiser and Maravall (2001
Breitung and Swanson (2002), Gong et al. (2015), and theemdes in the survey of Silvestrini and Veredas (2008). For
a specific example showing that causal relations are modiffechanging observation frequency, see Dufour et al. (2012)
However, Theorem 8 and Corollary 1 give general necessarguaificient conditions under which “spurious” causal rielas
between (vector) time series will not be induced by lineansformations of the variables involved. This also yieldedr
transformations (or filters) which can eliminate Grangersedity from one vector to another one.

Unaddressed to this point is a corresponding result on sytdgay. It is well known that a continuous-time band-lindte
process and a sampled version of it with sampling frequen@xcess of twice the approximate “cut-off” frequency of the
continuous-time process have more or less the same infiemathis would suggest that Granger causality propertfes o
continuous-time band-limited processes would be “almpstserved if they were sampled frequently enough,in these
circumstances the loss of Granger causality would be sfalla possible avenue in this direction, see Pollock (2012).

Due to dependence on an information set, Granger causedipegies are not generally invariant to observation fesmpy.

In contrast with contamination by “noise” — which is typilygbroblematic — non-invariance to observation frequenay mot
be a “problem”. Indeed, it can have considerable practiedmng and usefulness: different mechanisms may mattehtt
and long-run predictability as well as decisions, in the savay that different “laws” apply to micro-phenomena and roac
phenomena in physics. For economic and financial decisghsi-run and long-decisions may depend on different facto
and require different rules. High-frequency decisionsunegprediction for data observed at high frequency, wtoleger-
run decisions require predictability for data observecduat frequencies. Granger causality analysis at differeseokation
frequencies can provide information on this. It would ciefftabe of interest to develop a systematic framework forlesipg
and exploiting such features. The use of mixed frequeny [@atproposed in Ghysels et al. (2016)] could also be retéwan
this context. But these problems clearly go beyond the sobtiee present paper.

A different area worthy of examination is that of networkgdtems. The underlying structure could be viewed using
a directed graph, An edge from verteto vertex j would mean that procesdss caused by procegs One could begin by
examining whether, in a path graph with vertex §et, v2,...,w} and edge sefei, €3, ..., gn-_1)n ), Granger causality
properties of nonadjacent nodes could be predicted frorndhesponding properties of adjacent nodes.

The results given in this paper rely on the common assumpatigeecond-order) stationarity. Even though there is no
reason to think distortions induced by measurement errotddisuddenly stop to exist in nonstationary setups, it wdng
of interest to extend our results to nonstationarity setegsthrough Hilbert space techniques, especially to evaluatether
non-stationarity tends to increase or decrease the distsrtNote that nonstationary models are explicitly alldweDufour
and Renault (1998) and Dufour et al. (2006); for other paparish apply Hilbert space methods to Granger causality, see
Hosoya (1977), Florens and Mouchart (1982, 1985), Flondosichart and Rolin (1993), Florens and Feug (1996), Triacca
(1998, 2000), Al-Sadoon (2014). In order to study measuntem@ors, careful consideration of the type of nonstatiiies is
needed, and different proof methods may be required. Anpthesibly more general approach to incorporate non-siatity
would consist in working with the underlying probability amires, along the lines suggested by Mykland (1986). Weleav
such extensions to future work.
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A Appendix
Proof of Lemma 1 Notice first that

E[ZU)[X(s),Y(g):s<t] = EX{E)+Y([)[X(s),Y(s):s<1]
E[X(t)[X(8), Y(s) : s <t +E[Y(t) | X(8), Y(5) : s <]
= EX@®[X(s):s<t]+E[N({t)[Y(s):s<t] (48)

xX X

Accordingly, using the fact that the space spanneds) = X(s) +Y(s) for s<t is a subspace of the space spanned by
X(s),Y(s) for s<t, we have

Var[Z(t)|Z(s) :s<t] > Var[X(t)+Y(t)|X(s),Y(s):s<t]
= Var[X(t)|X(s) :s<t]+Var[Y(t)|Y(s):s<] (49)

as claimed. Of course the independence of the procésaess used at the second last step.

Proof of Theorem 3 First, consider the question of absence of Granger caysald instantaneous causality and assume
that condition 2 of Theorem 1 holds. Using (4), (10) and tlet flaat\s1 = O, it is easily checked that

CDABCDEé = W12W231 . (50)

Also, the triangular structure &/ and its minimum phase character imply tmgél is stable. Henc@ABngé is also stable.
It also assumes the value 0zt 0 because of the normalization conditd{0) = 1.

To prove the converse, consider a canonical spectral faatmm of the type of (4) (with no a priori restriction on the
block triangular structure o). Suppose thaDABCI>§é :=T(z) is stable and zero at= 0. We first assert that this will imply
the condition\,1 = 0 in the minimum phase, stable spectral factor normalizdzktoat z= 0. To see this, suppose first that
Vg(2) is a minimum phase, stable transfer function Wwiglfeo) = | andRg is a positive definite matrix such that

Dpp(2) = Ve(2)RaVg (2 1). (51)

Define
VaB(2) = Pag(2)Pp3(2)Ve(2).- (52)
Note thatVag(z) is then stable and zero at= 0. Note also that the last two equations yield

CDAB(Z) = VAB(Z) RBVBT (Zﬁl) . (53)

By the fact thatPxx is positive definite for alz = el® it follows that®aa — CDAgmgéd)BA is also positive definite for all
z=¢e!?, and accordingly, we can define a minimum phase, stablefénaiumnctionVa(z) with Va(0) = | and a positive definite
Ra such that

®an(2) — Pas(2) Pa5(2) Pea(2) = Va(DRaVA (2 1). (54)
Observe that
Dap(2) P () Pea(2) = Pas(2) a5 (2)[Va(2)ReVs (2 1)]Pg3(2)Pea(2) = Vas(2)ReVag(Z ) (55)
or equivalently
®an(2) = Vap(2)ReVap(Z ) +Va(@RaVa (1) (56)
Now from equations (56), (53) and (51), we have
Daa(z) Pag(2) } _ [ Va(2) Vas(2) } [ Ra 0 ] { V4 (z7h) 0 ] (57)
CDBA(Z) CDBB(Z) 0 VB(Z) 0 Rs VTB(Z_]') VBT(Z_:L) '
Now make the definitions v v 0
vig - | D Ve [ 2] (58)
and observe that(z) is stable, minimum phase and hag) = |. Accordingly,V (z) is the unique miniphase stable spectral

factor withV (0) = I, and condition 2 of Theorem 1 is evidently fulfilled.
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The argument for Granger causality only is similar but nenitical, and so we present the details. Assume then there is
an absence of Granger causality, which means that thergec#al factorization with canonical spectral fadtéfz) and not
necessarily block diagonal innovations covariance matbke form

Wi1(2) Wia(2) Qu Q W (z ) 0
Pxx@=| 07 Wwou(z) } [ o QZHWE(Zl) Wz |- (59)

It then follows that
PagPga = (Wa1Q12 +WioQo2) Wy, (60)

and this is evidently stable.

For the converse, we follow the proof applying for the casemstihe aim was to conclude an absence of Granger causality
and instantaneous causality. The proof applies with thedirange tha¥/ag(z) is no longer guaranteed to be zerazat 0.
Equation (57) holds, including the fact tHais block diagonal, bu¥ («) # I, due to the generally nonzero naturé/ag(0).

Now by setting

W) = { L Vsl }wz) (61)

equation (59) arises, and Granger causality is then proved.

Proof of Theorem 4  For the first claim, le¥\1(z), Wi2(2), Wo2(2), Q11, Q12 andQy, be the matrices of the canonical spectral
factor description of the joint spectrum ¥f, Xg. If Wi2 = 0, then it is evident that the two processes are indepen8ente
must prove that itV # 0, thenXg Granger causesa. This is equivalent to showing that

Var[Xa(t) | Xa(s), Xa(s) : s < t] < Var[Xa(t) | Xa(s) : s< t] (62)

and the two conditional covariance matrices are unequalv bloserve that from the canonical factorization of the joint
processXa, Xg, we have immediately

Var[Xa(t) | Xs(t), Xa(s), Xa(s) : s< t] = Q11. (63)

Further, we know thaXa(t) =Wi1(L)ea(t) + Wia(L)ep(t). This expresseXa as a sum of two independent processes and the
lemma above applies. Note that the variance of the one stegdgbrediction for the proce¥¥1(L)ea(t) is preciselyQs,
sinceW;1(2) is a canonical spectral factor. Hence the claim (62) is éistedl.

For the second part, we are required to show that whetloes not causkg, either the processes are independent or

Var[Xa(t) | Xa(t), Xa(s), Xg(s) : s<t] < Var[Xa(t) | Xa(s) : s< ] (64)

where equality does not hold. L&k, be the(1, 2) block of the matrixQ in the canonical spectral factorization; in general, it
is not zero. Then it is easily seen that

Var[Xa(t) | Xa(t), Xa(s), Xa(s) : s < t] = Qu1— Q12Q5, Q1. (65)

Next observe that
Xa(t) = Wiz (L)[ea(t) — Q12Qp7€r(t)] + Wit (L)Q12Q5 +Wia(L)]€x(t) .- (66)

This expresseXp as the sum of two independent processes, sén¢e — Q12Q521£B(t) andeg(t) are independent. In the
additive decomposition, the second process will evandésaalionly ifWj»(z) = 0, Q12 = 0, i.e. the two processeXa, Xg are
independent. The first process is in fact the proe@gs) — E[Xa(t) | Xg(t), Xa(s), Xa(s) : s< t], as is easily checked. Hence
once again the lemma applies to yield the result (64) as redui

Proof of Theorem 6 The fact thaibygy satisfies (26) implies that
Dy = WQH?[l + £QY2W Loy \W QY2 QY2W* . (67)

Now identify M in Lemma 2 withQ~Y2W~1dyyW*Q /2 to conclude that a stable and miniphase spectral factoreof th
noise perturbed spectrufiy is (to first order ing, corresponding to a low noise situation),

W =WQ2[l +&(Q YW oW *Q 1/2),] (68)

in the sense that

Ogx(2) =W(W' (2 ). (69)
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Note thatW(z) is not canonical because the requirem&ti0) = | is not fulfilled. DefineJ to be the value of
(I +e(Q YW toywW Q7 Y/2),] (70)

atz= 0. Note that this is precisely+ €K, where X is necessarily nonnegative beifity2rm) times the integral around the
unit circle of Q~/2W~1dyyW*Q %2 and note thatl — | (which is €K) and thusJ~* — | areO(g). Then the canonical
spectral factor will be

W(2) =W(z2)d QY2 (71)
since this assures that (27) will hold where we can identify
- { Q#l Q12 ] — QY232qQ1/2. (72)
12 Q22

From the calculations immediately preceding the last twee¢iqns, it is easy to see that the differei¢éz) — W(z) will be
O(g), as willQ12 andQ — Q. _

Next we consider the claim concerning the two-sided Wietlter fior estimatingXa from Xg. It is easily seen using (67) that
Ppa(2)Pga(2) differs for each fixed = exp(jw) from d)gA(z)mg—%(z) by an amount bounded (¢) ase goes to zero, and
hence the anticausal part will have the same property. $ivecanticausal part GbBA(z)dbgé(z) is actually zero, this means
the anticausal part @bga(z) g3 (2) will have anL, norm that isO(&).

To prove the final claim, observe that becaWsg) is block upper triangular and canonical, the submaatix(z) is minimum
phase. Now the right side ¥f,,'(2)Wez(2) = | + Wi, (2)Wba(2) —Weo(2)] represents a perturbation of | by a stable matrix
whose norm is bounded (&) on the unit circle, and accordingly it is minimum phase. Hetite product witWsa(2) is
also minimum phase.e. Wx,(z) is minimum phase. This completes the proof of the theorem.

Proof of Theorem 7 We start by expressingg as a sum of two independent processes. Thus observe thanvexpaess

Xg as

Xa(t) = Waz(L)QLQr +Waa(L) [EA(t) +Wao(L) E8(t) — Q12Qr1 EA(t)] (73)

in obvious notation. Note that the two processgét) and €g(t) = €g(t) — sz(ills_A(t) are orthogonal, with covariance
matrix Ea) _
EA) | [z /) 2T Qu 0

E{| = eat)eg(t) |} = ~ ~ <1~ |- 74

{{ s(t) } SOEO]) { 0 Qu-QLQAQuw 7

Let R denotes the error variance in estimating the value at tilmieM/zg(L)@Izéjll +Was(L)]Ea(t) from values fors < t.
Recall also that\b,(z) is minimum phase, and must satisfg>(0) = |. Accordingly, it is a canonical spectral factor of the

spectrum of\a(L)[€g(t) —VT/lTZQIfs_A(t)]. Hence the prediction error covariance associated witmeting the value at time
t of Wap(L)Zg(t) from values fors < t is preciselyQzz — Q{,Q;1Qi2. We can now use Lemma 1 as we did in the proof of
Theorem 4 to conclude that

Var([Xg(t) — E[Xa(t) | Xa(s) : s< t]] > R+Qa2— Q{,Q;1Qu. (75)
From the canonical factorization fdrgy we have that the second term on the right in the above equatgiven by
Var[Xg(t) — E[Xa(t)| Xa(t), Xa(s), Xe(s) : S < t] = Q22— Q{,Q;7 Q1. (76)

We now turn to establishing the bound 81 Xg(t) from Xa(s),s <t,Xg(s),s < t. This is, as is well known, precisely
Qo2 — QIzQillle That for predictingXg(t) from Xg(s) is more complicated. To make progress observe that Coniider
transfer function acting oaa in (73). From Theorem 812 andWs1(z) areO(€) and so the transfer function multiplyirag,

is of ordere. Hence we see th&, being the prediction error variance in estimating a vdeiathose spectrum is proportional
to £2 must itself be proportional te2. Hence the increase in prediction error covariance wheneases to be available for
estimatingXg is bounded from belowy a quantity proportional te?.

We now derive the overbound of the same order. Choose a cof$tso that for allz= exp( jw), there holds

RWo2(2) [Q22 — Q15Q; 1 Qu2Won(Z 1) > Mba(2)Q2Qy 1 +Wai(2)] Qua[Q  QuWoh(z 1) +Wai (2 1) (77)

This is possible since for ali= exp(jw) the left side is positive definite. Since the right sid©ig?), it is clear thatR can
be taken also a®(£2). Now Xg is written in (73) as the sum of two orthogonal processes.celene spectrum ofg will be
the sum of the spectra of these two procesises,

Wa2(2)[Qzz2 — Q12Q1 £ QuaWoi(Z 1) + Mbo(2) Q1,Q 1 +Woi(2)]Qua[Qr 1 QuaWoh(z ) + W) ()]
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for z= exp(jw) and this is overbounded by a spectrum, cadii:(z), with
ec(?) = (R -+ DWea(2)[Qzz —~ Q1xQu QuaMbs(z ) (78)

again forz = exp(jw). Hence there exists a process, caki, which is independent oXg, for which Xz = Xg + Xp and
whose spectrum i©cc(z) — Pyxx(2). By Lemma 1, the variance of the one step prediction estimsitey its own past of the
processXc with spectrum ofPcc overbounds the sum of the variances of the one step prediesiimates of each oz and
Xp. A fortiori it overbounds the variance of the one step prediction estioiaXg : thus

(R +1)[Qz2 —~ Qf2Q; Q2] = Var([Xg(t) — E[Xa(t) | Xa(s) :s<t]] . (79)
Equivalently, we can write
Var[Xg(t) — E[Xg(t) | Xa(s) : s< t]] < (R +1)Var[Xa(t) — E[Xa(t) | Xa(t), Xa(s), Xa(s) : s< t]] . (80)
This completes the proof of the theorem.

Proof of Theorem 8 Since the process has an autoregressive representaticanweite :

M(L)X(t) = I'I(L)T(L)’lT(L)X(t) = I'I_(L)X(t) =£(t) (81)
where AL) = Maa(L) Maz(L) ] _ { Mi(L) Miz(L) } [ TAL)  TR8(L) ] g(t) = [ ealt) } (82)
o |_|21(L) ﬂzz(L) o |_|21(L) ﬂzz(L) TBA(L) TB(L) ’ o SB(t) ’
In particular,
Maa(L) = Mag(L)TAL) + Maa(L)TBAL). (83)

Sincee(t) is uncorrelated with the pai(t), hence also of the past Xft), it follows from Proposition 1 in Boudjellaba et al.
(1992) that Xa does not Granger cau¥g if and only if [M»1(L) = 0.
Proof of Corollary 1 If Tga(L) = 0, it follows from standard results on the inversion of gantied matrices that
T(L) = Tall) TasL) 7 [ TalL)™? —Ta) TasL)Te(L) 2] [ TAL) TAB(L) (84)
“| 0  Ts(L) N 0 Te(L)t T TBAL)  TB(L)

see Harville (2008, Chapter 8, Theorem 8.5.4). Then, thelition takes the fornfl,; (L) Ta(L) ™t = 0, which in view of the
invertibility of Ta(L) is equivalent td121(L) = 0. By Proposition 1 in Boudjellaba et al. (199%), does not Granger cause
Xg if and only if M51(L) = 0, so that

Xa does not Granger caudg if and only if Xa does not Granger cau¥g . (85)
If Tag(L) =0, we have
0= ) o | - | T B ) = 1D T (89)
so thatTA(L) = Ta(L) "t andTBA(L) = —Tg(L)~*Tea(L)Ta(L) "%, and condition (31) takes the form
Ma1(L)TAL) + M22(L) TPAL) = Maa(L) Ta(L) = Ma2(L)Ta(L) *Tea(L)Ta(L) * =0 (87)
or, equivalently,
Ma1(L) = Mao(L)Ta(L) *Teal(L). (88)

Thus,Xa does not Granger cau3g if and only if Ma1(L) = Mo2(L) Ta(L) 1 Tga(L).
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