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Abstract

This paper studies the sensitivity of Granger causality to the addition of noise, the introduction of subsampling, and the appli-
cation of causal invertible filters to weakly stationary processes. Using canonical spectral factors and Wold decompositions,
we give general conditions under which additive noise or filtering distorts Granger-causal properties by inducing (spurious)
Granger causality, as well as conditions under which it doesnot. For the errors-in-variables case, we give a continuityresult,
which implies that: a “small” noise-to-signal ratio entails “small” distortions in Granger causality. On filtering, wegive gen-
eral necessary and sufficient conditions under which “spurious” causal relations between (vector) time series are not induced
by linear transformations of the variables involved. This also yields transformations (or filters) which can eliminateGranger
causality from one vector to another one. In a number of cases, we clarify results in the existing literature, with a number of
calculations streamlining some existing approaches.

Keywords: Granger causality; Sensitivity; Signal-to-noise ratio; Errors-in-variables; Measurement errors; Filtering, Subsam-
pling.
MSC code: 62M10
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1 INTRODUCTION 1

1 Introduction

Granger causality is one of the most important concepts for the analysis of the structure of multivariate time series. Accord-
ingly, the original paper of Granger (1969) triggered a substantial number of publications, seee.g. Sims (1972), Pierce and
Haugh (1977), Granger (1980, 1988), Geweke (1982, 1984a, 1984b), Boudjellaba, Dufour and Roy (1992), Dufour and Tessier
(1993), Dufour and Renault (1998), Al-Sadoon (2014) and thereferences therein. Here we deal with an aspect of Granger
causality, namely the sensitivity of Granger causality relations with respect to measurement errors (or errors-in-variables) in
the observations. In particular, we study the effect of additive noise on Granger causality in the context of a general weakly
stationary multivariate model, especially in view of finding when spurious causality could appear, and when propertiesof
non-causality are unaffected by measurement errors.

The problem of measurement errors is a classical issue in statistical theory; seee.g.the reviews of Fuller (1987), Wansbeek
and Meijer (2000), Carroll, Ruppert, Stefanski and Crainiceanu (2006), Gustafson (2003), and Buonaccorsi (2010). However,
except for the early article by Newbold (1978), there is surprisingly little work on the effect of errors-in-variables on Granger
causality. In this work, Newbold showed that measurement errors can produce artificial feedback in the noisy series, even
though no such feedback is present before noise is superimposed. No general characterization of cases where such spurious
causality could appear was however provided. From a wider perspective, several authors have emphasized that the addition
of noise to time series (errors-in-variables) can substantially modify the structure of the series, leading to distortions and
identification problems; seee.g. the literature reviewed by Maravall (1979), Anderson and Deistler (1984), Anderson (1985),
Deistler and Anderson (1989), and Scherrer and Deistler (1998). Note also that measurement errors may give rise to additive
“outliers” which may strongly influence the results of estimation and testing procedures.

The question of the sensitivity to measurement errors is quite distinct for the effect of aggregation and subsampling, for
these transformations typically considerably reduce the effective sample size. For work on the latter problems, the reader
may consult Tiao and Wei (1976), Wallis (1974), Sims (1974),Wei (1982), Hylleberg (1986), Marcellino (1999), Kaiser
and Maravall (2001), Breitung and Swanson (2002), McCrorieand Chambers (2006) Barnett and Seth (2011, 2015, 2017),
Smirnov and Bezruchko (2012), Gong, Zhang, Schlökopf, Tao and Geiger (2015), Ghysels, Hill and Motegi (2016), and the
references in the survey of Silvestrini and Veredas (2008).

Errors-in-variables can be interpreted as missing variables : if the noise were observable, it could be included as an
additional variable, and different conclusions can emerge. As previously observed by several authors [see Hsiao (1982),
Lütktepohl (1982), Dufour and Renault (1998), Triacca (1998, 2000)], causality properties in the sense of Wiener-Granger
depend crucially on the information set considered, which can affect both the sheer presence of causality (or non-causality)
and causality measures [Geweke (1982), Dufour and Taamouti(2010), Dufour, Garcia and Taamouti (2012)]. Of course, the
central difficulty remains that noise is typically unobserved. In this paper, we revisit the questions of the effect of (unobserved)
additive noise on Granger (non-)causality, and using the same tools, rapidly traverse also issues of the effects of filtering and
subsampling.

Let X = (X(t) | t ∈Z), X(t) : Ω →R
d, be a vector process of dimensiond with finite second moments, whereZ represents

the integers andR the real numbers. We assume thatX is weakly stationary, centered (i.e. E[X(t)] = 0) and Gaussian, with
a full-rank rational spectral density.1 We postulate that the processX can be regarded as a juxtaposition of two subprocesses
X = (X⊤

A X⊤
B )⊤. The broad question we study is whether the past values ofXA improve the prediction ofXB. To be more

precise, one says thatXA does not Granger causeXB if

E[XB(t) |XA(s), XB(s) : s< t] = E[XB(t) |XB(s) : s< t] (1)

or equivalently
Var[XB(t) |XA(s), XB(s) : s< t] = Var[XB(t) |XB(s) : s< t] . (2)

HereE[XB(t) |XA(s), XB(s) : s< t] denotes the conditional expectation ofXB(t) [given the variablesXA(s), XB(s) such thats< t
(and similarly elsewhere)], and Var the variance of the one-step-ahead forecast error. If inequality holds in (1) and (2), one
says thatXA (Granger) causesXB. Granger (1969) in addition introduced the notion of “instantaneous causality”, meaning that
the approximation ofXB(t) can be more accurately achieved ifXA(t) is known:

E[XB(t) |XA(t), XA(s), XB(s) : s< t] 6= E[XB(t) |XA(s), XB(s) : s< t] ; (3)

for further discussion of this notion, see Pierce and Haugh (1977) and Granger (1988). The assumption of second-order
stationarity is clearly restrictive, but is standard in theGranger-causality literature. Further, general characterizations of non-
causality are typically little affected when common forms of forms of non-stationarity – such deterministic time trends and
integration) – are allowed; see, for example, Dufour and Renault (1998) and Dufour, Pelletier and Renault (2006).

1Without the Gaussian assumption, the results presented in this paper continue to hold provided conditional expectations are replaced by projections onto
the Hilbert space spanned by components of the respective stationary processes.
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It is clear from the above definitions that Granger causalitydepends on the vectorX considered and on the wayX is split
into subvectorsXA andXB. Such choices (which are of course finite in number) depend onthe context: which variables are
of interest, and the objectives of the analysis. For example, XA can represent policy instruments (e.g., fiscal and monetary
variables) or leading indicators of economic activity, andXB economic outcomes (e.g., national income, unemployment, etc.):
the nature of the variables often provides a natural criterion for splittingX into subvectors. Clearly, the causal structure of a
time series should in general depend on such choices. However, the question remains whether apparently less fundamental
features, such as contamination by noise and various lineartransformations, including filtering and subsampling, canaffect
the causal properties of a time series.

This paper studies the sensitivity of Granger causality to the addition of noise, the application of causal invertible filters,
and subsampling in weakly stationary processes. We give general conditions under which additive noise or filtering creates
distortions by inducing (spurious) Granger causality, as well as conditions under which it does not. Even though additive
noise and filtering can in general produce spurious Granger causality, there is a remarkably wide range of cases where it does
not. For example, if the “caused variable”XB is not noisy, noise added to the “causal variable”XA cannot induce spurious
Granger causality fromXA to XB. This covers cases where lagged values ofXA are contaminated by noise, andXB does
Granger-causeXA. We also give a continuity result which entails a “small” noise-to-signal ratio in measurement errors entails
“small” distortions in Granger causality. In a number of cases, we clarify results in the existing literature, with a number of
calculations streamlining some existing approaches.

We also consider the effects of linear transformations, filtering and subsampling. In particular, we give general necessary
and sufficient conditions under which “spurious” causal relations between (vector) time series are not be induced by linear
transformations of the variables involved. This also yields linear transformations (or filters) which can eliminate Granger
causality from one vector to another one.

Section 2 summarizes a collection of known results available for the characterization of Granger causality, using canonical
spectral factors, Wold decompositions and spectra. In Section 3, we establish some connections not clearly stated in the
earlier literature, which are useful for studying causality in the presence of measurement errors. These include : a general
lower bound on the conditional variance of the sum of two processes, and some general relations between Granger causality
and instantaneous causality. In Section 4, we study the effect of measurement errors on Granger non-causality. Section5
provides the continuity result in terms of signal-to-noiseratio. The effects of linear transformations, filtering andsubsampling
are studied in Sections 6 and 7. Section 8 offers some concluding remarks. Proofs appear in the Appendix.

2 Characterizations of Granger causality

In this section, we review some classical characterizations of Granger causality which will be useful for studying the effect of
errors-in-variables. We first record some notational conventions associated with rational (matrix) transfer functions [seee.g.
Rozanov (1967), Hannan and Deistler (2012)]. We emphasize the use of spectral methods, for which Geweke (1982, 1984a,
1984b) was an early promoter in the context of analyzing Granger-Wiener causality.

A rational transfer function is calledstableif its poles are outside the unit circle, and it is calledminiphaseor minimum
phaseif its zeros are outside the unit circle. If we commence from arational spectral densityΦXX(z), z∈ C, which is positive
definite everywhere on the unit circle, there is a spectral factorization

ΦXX(z) = W(z)QW⊤(z−1) (4)

in which the spectral factorW(z) is a square real rational, stable and miniphase, transfer function andQ is positive definite
symmetric; see Rozanov (1967), Hannan and Deistler (2012).W(z) defines a linear filter upon replacingz by the backshift
operatorL [i.e., LX(t) := X(t − 1)]. The notationW(z) allows one to study the properties of lag operators in terms of the
analytical properties of functions of a complex variablez∈ C. Under the normalizationW(0) = Id, W(z) andQ are unique.
We also consider the following assumption.

Assumption 1. (Full rank stationary process with no spectral zero on the unit circle) X = (X⊤
A X⊤

B )⊤ is a real full-rank
stationary stochastic process inRd, with rational spectrumΦXX(z) having no zero on the unit circle, such that(4) is satisfied,
W(0) = Id, and

W(z) =

[

W11(z) W12(z)
W21(z) W22(z)

]

, Q =

[

Q11 Q12

Q21 Q22

]

(5)

are partitioned conformably with X= (X⊤
A X⊤

B )⊤.

The above assumption entails thatX(t) has both a moving average (Wold) representation

X(t) = W(L)ε(t) (6)
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and an autoregressive representation
Π(L)X(t) = ε(t) (7)

where det[W(z)] 6= 0 and det[Π(z)] 6= 0 for |z| < 1, Π(z) = W(z)−1, andε(t) = [εA(t)⊤ εB(t)⊤]⊤ represents the innovations
of the process, partitioned conformably withX = (X⊤

A X⊤
B )⊤. The following theorems provide characterizations of Granger

causality; see Sims (1972), Pierce and Haugh (1977), Geweke(1982, 1984a, 1984b), Boudjellaba et al. (1992), Dufour and
Tessier (1993), Dufour and Renault (1998). The first one is based on the structure of the spectral factor matrixW(z).

Theorem 1. (Canonical spectral factor characterization of Granger causality) Suppose Assumption 1 holds. Then the
following two conditions are equivalent:

1. XA does not Granger cause XB;

2. W21(z) = 0.

The following conditions are also equivalent:

1. XA neither Granger causes XB, nor does it cause XB instantaneously;

2. W21(z) = 0 and Q is block diagonal(i.e. Q12 = Q⊤
21 = 0).

The intuition behind the above claim is the following. Let the innovation process be denoted byε(t) = [εA(t)⊤ εB(t)⊤]⊤

with εA andεB two independent white noise processes. WhenW21(z) = 0, we have :

XA(t) = W11(L)εA(t)+W12(L)εB(t) , (8)

XB(t) = W22(L)εB(t) .

It is intuitively reasonable to conclude from these equations that knowledge of theXA process up till timet −1 will not be
of help in determining theεB process and thus theXB process. Spectral approaches for Granger causality analysis were
emphasized in the seminal work of Geweke (1982, 1984a, 1984b).

For completeness, we note a further characterization of Granger causality, which follows from the above.

Theorem 2. (AR characterization of Granger causality) Suppose Assumption 1 holds, and X(t) has the(possibly infinite)
autoregressive representation

X(t) =
∞

∑
i=1

AiX(t − i)+ ε(t) , Ai =

[

Ai11 Ai12

Ai21 Ai22

]

, Var[ε(t)] =

[

Σ11 Σ12

Σ21 Σ22

]

(9)

where the Ai and the covariance matrixVar[ε(t)] of the innovations sequenceε(t) are partitioned conformably with X=
(X⊤

A X⊤
B )⊤. Then XA does not Granger cause XB if and only if Ai21 = 0 for all i ≥ 1. In addition, XA neither Granger causes

XB, nor does it cause XB instantaneously if and only if Ai21 = 0 for all i ≥ 1 andΣ12 = Σ⊤
21 = 0.

Theorems 1 and 2 give characterizations of the absence of causality based on the spectral factor and infinite AR representa-
tions (the latter is obtained from the inverse of the spectral factor). Sims (1972) gave an additional characterization(for d = 2),
based on Wiener filtering ideas, where no factorization is required. Let the spectral densityΦXX be partitioned conformably
with X = (X⊤

A X⊤
B )⊤ as

ΦXX =

[

ΦAA ΦAB

ΦBA ΦBB

]

. (10)

Then we have the following spectral characterization of non-causality.

Theorem 3. (Transfer function characterization of Granger causality) Suppose Assumption 1 holds, and letΦXX be
partitioned as in(10). Then, the following conditions are equivalent :

1. XA does not Granger cause XB ;

2. ΦAB(z)Φ−1
BB(z) is a stable transfer function.

The following conditions are also equivalent:

1. XA neither Granger causes XB nor does it cause XB instantaneously;

2. ΦAB(z)Φ−1
BB(z) is a stable transfer function assuming the value0 at z= 0.
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Remark 1 The above theorem can be viewed as an extension of the corresponding theorem given by Sims (1972, Theorem
2) in the special case whered = 2. Theorem 3 allows ford ≥ 2, and covers instantaneous causality as well.2 We are not
contending that the characterization of this theorem is necessarily attractive from a computational point of view. As later parts
of the paper show though, the result is of theoretical interest, in that it can be applied to give rapid derivations of the sensitivity
properties associated with Granger causality.
Remark 2 The transfer functionΦAB(z)Φ−1

BB(z) is the transfer function of the optimum two-sided Wiener filter for approxi-
mating the processXA from the processXB; the two-sided aspect refers both to the fact that the transfer function has a Laurent
series expansion with both negative and positive powers ofz, and to the related fact thatXA(t) is being approximated from
XB(s),−∞ < s < ∞, i.e. from the past and future ofXB. If the two-sided transfer function in a particular case is causally
one-sided, then future values ofXB are irrelevant in approximating current values ofXA. This will be the case if past values of
XA do not affect present or future values ofXB.
Remark 3 It is important to note that the characterizations given in this section hold for series in discrete time observed at a
given frequency. They are directly applicable to continuous time series, and modifications arise typically when the series are
transformed or filtered. The effect of such transformationswill be considered in sections 6 and 7 below.

3 Directions of Granger causality

In the literature, one finds remarkable similarity between conditions said to capture “XA does not causeXB” and “XB causes
XA” and similar pairings. To study the effect of errors-in-variables on causality, we establish in this section some connections
not clearly stated in the earlier literature. We start with the following preliminary result.

Lemma 1. Let X and Y be two independent stationary stochastic processes with spectral densities. Let Z= X +Y. Then
the covariance matrix of the one step prediction error in approximating Z(t + 1) from Z(s), s≤ t is bounded from below
by the sum of the covariance matrices of the one step prediction error in approximating X(t + 1) from X(s), s≤ t and in
approximating Y(t +1) from Y(s), s≤ t :

Var[Z(t) |Z(s) : s< t] ≥ Var[X(t) |X(s) : s< t]+Var[Y(t) |Y(s) : s< t] . (11)

Now we spell out the following relations between Granger causality and instantaneous causality.

Theorem 4. Adopt the same hypothesis as in Theorem 1. Suppose XA does not Granger cause XB nor does it cause XB
instantaneously. Then either the two processes are independent, or XB Granger causes XA. Further, suppose alternatively
that XA does not cause XB. Then, either the two processes are independent, or XB Granger causes XA, or XB causes XA
instantaneously.

Note that neither claim of the theorem goes in the reverse direction. This is because it is possible that bothXA Granger
causesXB and simultaneouslyXB Granger causesXA. Such a situation will generally arise when the canonical spectral factor
W is not triangular (or diagonal), as in the following example:

XA(t) = εA(t)+XB(t −1) , XB(t) =
1
2

XA(t −1)+ εB(t) . (12)

Here,εA, εB are independent white noise processes with variancesQA, QB. One can verify that
[

XA(t)
XB(t)

]

=
1

1+(1/2)L2

[

1 L
(1/2)L 1

][

εA(t)
εB(t)

]

(13)

and the transfer function matrix is easily verified to be stable and minimum phase, assuming the valueI whenz= 0. It is
easily checked that Var[XA(t) |XA(s), XB(s), s< t] = QA, Var[XB(t) |XB(s), XA(s), s< t] = QB while Var[XA(t) |XA(s), s< t] >
QA, Var[XB(t) |XB(s), s< t] > QB by a similar argument to that used in the proof of Theorem 4.

4 Additive noise and Granger causality

In this section, we consider the effect of additive noise on Granger causality [compare with Anderson and Deistler (1984) and
Anderson (1985)]. Our starting point, again, is the full-rank stationary processX = [X⊤

A X⊤
B ]⊤ with rational spectral density.

Suppose thatXA does not Granger causeXB. Suppose further that the processesXA, XB are both contaminated by stationary
colored additive noise processesNA, NB with rational spectral densities, which are independent ofeach other and of the

2There may be a proof in the literature ford ≥ 2, but we are not aware of it. For completeness, a proof appearsin the appendix.
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processesXA, XB. Then one can ask whether it is now true that the processX̄A = XA +NA does not Granger cause the process
X̄B = XB + NB. Perhaps of equal if not greater interest is the associated question : suppose that̄XA, X̄B are regarded as noisy
measurements of underlying processesXA, XB and that analysis of measurement data reveals thatX̄A does not causēXB. Can
one conclude then thatXA does not Granger causeXB?

In the next subsection, we will construct an example showingthat the answer to the first question is generally no, a
conclusion that is perhaps not counterintuitive since non-causality corresponds to zero restrictions. In the following subsection,
we show how the Sims (1972) characterization of the absence of Granger causality summarized in Theorem 3 reveals that the
claim remains valid if the contaminating noiseNB is zero, and this is generically a necessary condition for the claim to hold.
There is no similar requirement on the noiseNA. In a paper of Solo (2007), several important questions are raised about the
sensitivity of Granger causality (or its absence) to changes in the underlying assumptions. In this section, we consider one of
these, namely the effect of additive noise. Our results differ from those obtained in Solo (2007).3 We first study the stationary
full-rank vector processX = {X(t) : t ∈ Z} such thatX(t) = [XA(t)⊤ XB(t)⊤]⊤ can be regarded as the juxtaposition of two
subprocessesXA andXB. Suppose thatXA does not Granger causeXB nor does it causeXB instantaneously.

4.1 Noise-induced Granger causality

We will now introduce the promised example. To define theXA, XB processes whereXA does not Granger causeXB nor does
it causeXB instantaneously, following Theorem 1 we shall choose an upper triangular canonical spectral factor. The two
processes are scalar, and we assume

W(z) =

[

1+ 1
2z z

0 1+ 1
2z

]

(14)

and we further assume the innovations covarianceQ is the identity matrix. An easy calculation delivers

ΦXX =

[

ΦAA ΦAB

ΦBA ΦBB

]

=

[ 9
4 + 1

2z+ 1
2z−1 1

2 +z
1
2 +z−1 5

4 + 1
2z+ 1

2z−1

]

. (15)

Now assume that additive noise with a white spectrum of intensity 3
4 is added toXB, to produce a new process̄XB, while no

noise is added toXA. The cross spectrum betweenXA andXB is unaffected. So the new joint spectral matrix is

ΦX̄X̄ =

[

ΦAA ΦAB̄
ΦB̄A ΦB̄B̄

]

=

[ 9
4 + 1

2z+ 1
2z−1 1

2 +z
1
2 +z−1 2+ 1

2z+ 1
2z−1

]

. (16)

If it were true thatX̄A does not Granger causēXB, nor causēXB instantaneously, then this matrix would need to have a canonical
spectral factorW̄(z) say, which likeW(z) is upper triangular withW̄(0) = I , and an associated innovations covariance matrix
which is diagonal. In order to derive a contradiction, let usassume this to be the case and findW̄(z). The upper triangularity
implies that the(2, 2) termW̄22 of W̄(z) must satisfyW̄22(0) = I and

ΦB̄B̄(z) = W̄22(z)Q̄2W̄22(z
−1) , (17)

which means that̄W22(z) itself is a canonical spectral factor, forΦB̄B̄(z). One can easily verify that

2+
1
2

z+
1
2

z−1 = (1+

√
3

2
)(1+

z

2+
√

3
)(1+

z−1

2+
√

3
) , (18)

so we see that

W̄22(z) = 1+
z

2+
√

3
, Q̄2 = 1+

√
3

2
(19)

Now consider the(1, 2) entryΦAB̄(z) of the spectrum. From the fact that when̄W(z) is triangular, we have that

ΦAB̄(z) = W̄12(z)Q̄2W̄22(z
−1) (20)

from which we obtain
1
2

+z= W̄12(z)(1+

√
3

2
)(1+

z−1

2+
√

3
) . (21)

It is easy to see that̄W12(z) has a pole at−1/(2+
√

3), which is inside the unit circle. This is a contradiction to the requirement
on the poles of a canonical spectral factor that they should all lie outside the unit circle.

3Solo in a private communication has indicated that an erroneous step in his proof leads to the discrepancy between his and our results.
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4.2 Spectral characterization of noise-induced Granger causality

It is now straightforward to understand the effect of addingnoise to the processesXA, XB on the property thatXA does not
Granger causeXB. Suppose as before thatNA, NB are two processes, independent ofXA, XB and each other, and added to
XA, XB to yield new processes̄XA = XA +NA, X̄B = XB +NB. The outcome is that

ΦĀB̄ = ΦAB, ΦB̄B̄ = ΦBB+ΦNBNB . (22)

The absence of Granger causality will carry over,i.e. X̄A will not Granger causēXB if and only if (by Theorem 3),ΦĀB̄Φ−1
B̄B̄

is a stable transfer function. If there is noise on the process XA but not the processXB, the result is immediate that absence
of causality continues to hold; the same transfer function fraction in fact arises, forΦABΦ−1

BB = ΦĀB̄Φ−1
B̄B̄

. On the other hand,
if there is noise on the processXB, for “almost all” spectra ofΦNBNB, including certainly a white spectrum, unlessΦBB is
itself white, the zeros ofΦBB+ ΦNBNB will differ from those ofΦBB and not be the same as the poles ofΦĀB̄ = ΦAB. Sothe
cancellation of unstable pole-zero pairs in forming the fraction will no longer occurand the absence of Granger causality will
then be lost.

Now let us postulate that processesX̄A, X̄B are measured and found to have the property thatX̄A does not Granger cause
X̄B; these processes are assumed to be noisy versions of underlying processesXA, XB, with the additive noise processes being
independent of each other and the underlyingXA, XB processes. Ultimate interest lies in saying whether or notXA Granger
causesXB. Then the above argument shows that if we knew that there was no noise perturbingXB, processing of the noisy
measurements would allow answering of the question. On the other hand, if there is noise perturbingXB, one could not
infer from the presence or absence of a causality property involving X̄A, X̄B the corresponding property forXA, XB. The noise
processNB would need to have a specialized spectrum for absence of causality in the noisy case to imply it in the noiseless
case. Note that there is no adjustment to the conclusions which arises in the special case of the noise processNB being white.

The results above are summed up in the following theorem.

Theorem 5. Adopt the same hypothesis as in Theorem 1. Let NA, NB be two stationary processes with rational spectra, with
the same dimensions as XA, XB respectively, where X, NA, NB mutually independent, and set̄XA = XA +NA, X̄B = XB +NB.

1. If NB = 0, then
XA does not Granger cause XB if and only ifX̄A does not Granger causēXB.

2. If NB 6= 0 and not all the unstable zeros ofΦBB+ΦNBNB cancel (unstable) zeros ofΦAB, we have the following implica-
tions:
(a) if XA does not Granger cause XB, thenX̄A Granger causes̄XB;
(b) if X̄A does not Granger causēXB, then XA Granger causes XB.

Remark If XB is not noisy [NB = 0], noise associated with the “causal variable”XA cannot induce spurious Granger causality
from XA to XB, despite possibly complicated dynamics on bothXA andXB. Another special case of interest is provided by the
situation where the two processes are actually independent. ThenΦAB = 0, and so the relevant transfer functionΦABΦ−1

BB with
or without noise added remains zero and there is no causalityintroduced through the addition of noise.

We comment that our conclusions are at variance with those ofSolo (2007), who asserts that addition of both noise
sequencesNA, NB to XA, XB whereXA does not Granger causeXB means that̄XA does not Granger causēXB. There appears
to be an unjustified assumption in his work (as confirmed in private communication) where he constructs a triangular spectral
factor for theX̄ process but does not ensure that the off diagonal term is guaranteed to be stable–stability is simply assumed
automatically. Such stability would be a necessary condition for asserting that̄XA does not Granger causēXB.

5 Signal-to-noise ratio and Granger causality

In this section, we argue a form of continuity result. If there is additive noise perturbing an arrangement where there is
absence of causality, then although generically absence ofcausality will be lost, we shall show that in a certain sense made
more precise below, the introduced degree of non-causalityis small. The practical effect of this result is that small amounts of
noise in a particular situation may well be tolerable.

Our starting point is the following observation.

Lemma 2. Consider a complex matrix function M(z), analytic in ρ < |z| < ρ−1, 0 < ρ < 1 with M(z) = M⊤(z−1), and
positive definite on|z| = 1. Suppose

M(z) =
∞

∑
i=−∞

miz
i , mi = m⊤

−i ∈ R
d×d (23)
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and define the causal and anticausal parts by

M+(z) =
1
2

m0+
∞

∑
i=1

miz
i and M−(z) =

1
2

m0 +
−1

∑
i=−∞

miz
i . (24)

Then the matrix function L(z) := I +εM(z) is analytic inρ < |z|< ρ−1, with L(z) = L⊤(z−1), and positive definite on|z| = 1.
Further to first order inε > 0, there holds

L = I + εM ≈ (I + εM+)(I + εM−) (25)

with I + εM+ stable and miniphase.

We remark that the terminology “to first order inε” is shorthand for saying that theL2 norm of the error betweenL above
and the approximation of it on the right hand side of (25), call it ∆(z), is of orderε2. The square of thisL2 norm can be
computed with the aid of an integration of around the unit circle, as trace12π

∫

[∆(exp( jω))]2dω or by taking the squared sum

of the coefficients in the Laurent series of the error,i.e. ∑∞
−∞ tr[δ iδ⊤

i ].
We will use this result to show that small perturbations in a spectrum give small perturbations in the associated spectral

factors, and thence conclude that Granger causality is in a sense continuously dependent on the noise spectrum, it beingabsent
when there is no noise. Accordingly we consider the arrangement studied in the previous section, with the introduction of a
scaling parameter on the noise : thusX = [X⊤

A X⊤
B ]⊤ andXA does not Granger causeXB nor does it causeXB instantaneously.

The canonical factorW(z) for the noise-free spectrumΦXX(z) is upper block triangular and the innovations covariance matrix
Q is block diagonal, and they obey the fundamental spectral factorization equation (4). Assume thatε1/2NB for someε > 0 is
a noise process additively perturbingXB, thus

X̄B = XB + ε1/2NB, ΦB̄B̄ = ΦBB+ εΦNBNB .

(We have effectively previously dealt with the effect of having a noise processNA perturbingXA–the noisy processXA +NA is
known to inherit the property of not Granger causingXB, and so no further consideration is given toNA and for convenience
we take it as zero).

Now note that
ΦX̄X̄ = ΦXX + εΦNN . (26)

The spectrumΦX̄X̄ gives rise to a canonical spectral factor, call itW̄(z) and an associated covariance matrix, call itQ̄, satisfying

ΦX̄X̄(z) = W̄(z)Q̄W̄⊤(z−1) . (27)

Our first result follows.

Theorem 6. Adopt the same hypothesis as in Theorem 1 and let NB be a stationary process with rational spectrum, with the
same dimension as XB , and with X, NB independent. For fixed positiveε, defineX̄B = XB+ε1/2NB so thatΦX̄X̄ = ΦXX +εΦNN

where the(1, 1), (1, 2), (2, 1) blocks ofΦNN are zero, and the(2, 2) block isΦNBNB. Let W(z), Q with W(z) upper block
triangular and Q block diagonal and̄W(z), Q̄ define canonical spectral factorizations ofΦXX(z) and ΦX̄X̄(z) as in (4) and
(27) respectively. Then

1. W̄(z)−W(z) is O(ε) on |z| = 1;

2. Q̄−Q is O(ε);

3. ΦAB̄ Φ−1
B̄B̄

−ΦABΦ−1
BB is O(ε) on |z| = 1, and the anticausal part ofΦAB̄ Φ−1

B̄B̄
is O(ε) on |z| = 1;

4. for suitably smallε, W̄22(z) is minimum phase.

We remark that the first and third bounds imply bounds on theL2 norms of the quantities which are alsoO(ε). Evidently,
the X̄ process is “close to” a process in whichXA does not causēXB in two senses : the canonical spectral factor is close to
upper block triangular with the innovations covariance matrix being block diagonal, and (separately), the anti-causal part of
the two-sided Wiener filter associated with predictingXA from X̄B has small magnitude on|z| = 1 and inL2 norm.

In the above theorem, we focused on the changes to transfer functions and to the innovations covariance caused by the
introduction of noise. It is also relevant to compare the prediction error variances whenXA(s), s≤ t, XB(s), s< t andXA(s), s≤
t, XB̄(s), s< t are used to predictXB andX̄B respectively. The results are summarized in the following theorem. It shows that
the prediction error “measure” of Granger causality isO(ε2).



6 EFFECT OF FILTERING ON GRANGER CAUSALITY 8

Theorem 7. Adopt the same hypothesis as in Theorem 6 and assume thatε > 0 is sufficiently small that̄W22 is minimum
phase. Then there exist positive R, R′ of O(ε2) for which there hold the upper and lower bounds:

Var[X̄B(t)−E[X̄B(t) | X̄B(s) : s< t]] ≥ R+ Q̄22− Q̄⊤
12Q̄

−1
11 Q̄12

= R+Var[X̄B(t)−E[X̄B(t) |XA(t), XA(s), X̄B(s) : s< t]] (28)

and
Var[X̄B(t)−E[X̄B(t) | X̄B(s) : s< t]] ≤ (1+R′)Var[X̄B(t)−E[X̄B(t) |XA(t), XA(s), X̄B(s) : s< t]] . (29)

6 Effect of filtering on Granger causality

Consider a stationary full-rank processX = [X⊤
A X⊤

B ]⊤. Instead of observing processesXA, XB, we observe the process
[

X̄A(t)
X̄B(t)

]

= T(L)

[

XA(t)
XB(t)

]

, T(L) :=

[

TA(L) TAB(L)
TBA(L) TB(L)

]

, (30)

whereT(L) is a causal transfer function, partitioned conformably with [X⊤
A X⊤

B ]⊤. We consider the question : ifXA does not
Granger causeXB, will X̄A not Granger causēXB? Conversely, and on occasions more importantly, if one observes thatX̄A

does not Granger causēXB, can one conclude thatXA does not Granger causeXB? Questions of this type go back some time,
seee.g.Pierce and Haugh (1977), Solo (2007, 2016), Florin, Gross, Pfeifer, Fink and Timmermann (2013), Barnett and Seth
(2011), and Seth, Chorley and Barnett (2013).

In the following theorem, we give a general necessary and sufficient condition forX̄A not to causeX̄B in the sense of
Granger.

Theorem 8. Suppose Assumption 1 holds, and let[X̄⊤
A (t) X̄⊤

B (t)]⊤ be defined by(30) where T(L) is a causal stable miniphase
transfer function such that T(0) = Id. Then,X̄A does not Granger causēXB if and only if

Π21(L)TA(L)+Π22(L)TBA(L) = 0 (31)

where

Π(L) = W(L)−1 =

[

Π11(L) Π12(L)
Π21(L) Π22(L)

]

and T(L)−1 =

[

TA(L) TAB(L)
TBA(L) TB(L)

]

(32)

are partitioned conformably with[X⊤
A X⊤

B ]⊤.

ProvidedΠ22(z) is miniphase, condition (31) shows it is generally possibleto choose the filterT(L) so thatX̄A does not
Granger causēXB, irrespective of the causal relation betweenXA andXB. Filtering can make Granger causality invisible. In
general, Granger causality fromXA to XB is not invariant to the application of a multivariate causal miniphase filterto X(t).
When condition (31) holds,̄XA does not Granger causēXB even ifXA does Granger causeXB. Conversely, ifΠ12(L) = 0, so
XA does not Granger causeXB, (31) does not hold if we haveΠ22(L)TBA(L) 6= 0 : XA does not Granger causeXB, andX̄A does
Granger causēXB. For example, for a bivariate system (d = 2), the latter situation happens when

Π(L) = I2 and T(L) =

[

1 0
0.5L 1

]

; (33)

hereX(t) = ε(t) and

X̄A(t) = XA(t) = εA(t) , X̄B(t) = (0.5)XA(t −1)+XB(t) = (0.5)X̄A(t −1)+ εB(t) . (34)

Barnett and Seth (2011, Abstract, Sections 1 and 3) claim that “G-causality for a stationary vector autoregressive (VAR)
process is fully invariant under the application of an arbitrary invertible filter”. The above counterexample shows clearly this
claim should be qualified. Conditions under which this type of invariance hold are given by Theorem 8.

In the following corollary, we consider the important case whereT(L) has a block triangular form.

Corollary 1. Under the assumptions of Theorem 8, the following equivalences hold. If TBA(L) = 0,

XA does not Granger cause XB if and only ifX̄A does not Granger causēXB. (35)

If TAB(L) = 0,
X̄A does not Granger causēXB if and only ifΠ21(L) = Π22(L)TB(L)−1TBA(L) . (36)
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Remark 1 : (35) in Theorem 8 means that Granger causality fromXA to XB is unaffected by linear causal filtering as long
asX̄B(t) only depends on current and past values ofXB(t). The filtered series̄XA(t) can involve lagged values of bothXA(t)
andXB(t). Further, the fact that (35) is an equivalence means that non-causality between the filtered series does allow one to
conclude that the unfiltered series have the same property. Solo (2016) recently considered the special case whereTAB(L) = 0
andTBA(L) = 0, and showed only sufficiency (XA does not Granger causeXB implies thatX̄A does not Granger causēXB); see
also Florin et al. (2013), Barnett and Seth (2011) and Seth etal. (2013) for related results.
Remark 2 : (36) of Theorem 8 gives a general condition under which Granger causality fromXA to XB can be suppressed
through filtering. In particular, ifΠ21(z) is miniphase, we can always chooseT(L) so thatX̄A does not Granger causēXB. For
example, this is achieved by takingTB(L) invertible and

TBA(L) = TB(L)Π22(L)−1Π21(L) . (37)

In particular, by takingTB(L) = I andTBA(L) = Π22(L)−1Π21(L), we find that the filter

T(L) =

[

I 0
Π22(L)−1Π21(L) I

]

(38)

eliminates Granger causality fromXA to X̄B: X̄B is “orthogonal” toXA in the Granger sense.
Remark 3 : The assumption thatW(L) is miniphase entails that bothWA(L) andWB(L) are miniphase whenWBA(L) = 0, for
then det[W(z)] = det[WA(z)]det[WB(z)]. There is a heuristic explanation of why the introduction ofa non miniphase but stable
WB(z) might produce causality where previously it did not hold. SupposeXA does not causeXB, but XB does causeXA. For
a specific example, suppose thatXA(t) = XB(t −2)+ εA(t), XB(t) = εB(t), with εA, εB independent white noise sequences.
Now suppose thatXB is subject to processing by a filter which delays it. It is wellunderstood in signal processing theory that
any non-minimum phase filter introduces a delay; a particularly evident example is the filter with transfer functionzp, which
produces a delay ofp units. Supposep is say 3. ThenXA(t) = X̄B(t + 1)+ εA(t), so future values of̄XB are correlated with

past values ofXA, which means precisely thatXA does causēXB.
Remark 4:. Consider the case whereXA defines a filter which is simply a delay. Then the theorem says that if XA does not
Granger causeXB, the same will be true ifXA is replaced by a delayed version of itself. This can of coursebe argued from first
principles also.

7 Effect of subsampling on Granger causality

A further question raised in the work of Solo (2007) deals with subsampling. Suppose that a processXA does not Granger
causeXB nor does it causeXB instantaneously. Suppose the two processes are subsampled. Will the absence of Granger
causality continue to hold for the subprocesses?

As we show here, again appealing to Theorem 3, absence of Granger causality may be lost, and Granger causality may
arise in the subsampled processes.

By way of brief comment, we note a refinement of the question. Subsampling of two processes at the same rate may not
occur synchronously. Thus, for example, samples ofXA with even time index might be considered along with samples of XB

with odd time index. Also, subsampling may occur at different rates. In fact, it could be thatXA is not subsampled, whileXB

is. We will not consider these variants in this section.
We first note a very easily established theorem on the transformation of spectra under subsampling [see Hannan (1970)].4

Theorem 9. Let ΦXX(z) denote the spectrum of a process X, and suppose the process issampled (synchronously in the case
of a multivariate process) every M time units for some positive integer M, to generate a process̄X, defined for time instants
. . . , −M, 0, M, 2M, . . . . Then the spectrum of̄X, defined using covariance data with lags which are integer multiples of M as

ΦX̄X̄(zM) =
∞

∑
k=−∞

zMk
E[X(0)X⊤(−kM)] (39)

is expressible as

ΦX̄X̄(zM) =
1
M

M−1

∑
i=0

ΦXX(ω iz) (40)

whereω = exp(
√
−12π/M).

4The relation between Granger causality and subsampling could also be studied by postulating a deeper structural model, such as a continuous-time
model; for some earlier work on continuous-time Granger causality, see Florens and Fougère (1996) and Comte and Renault (1996). We focus here on the
standard discrete-time second-order stationary model described in sections 1 - 2.
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The proof is an immediate consequence of the fact that

ΦXX(ω iz) =
∞

∑
k=−∞

(ω iz)k
E[X(0)X⊤(−k)] (41)

and the addition of these equations fori = 0, . . . , M−1.
In our counterexample, we shall takeM = 2. This means thatΦX̄X̄(z) = ΦXX(z)+ΦXX(−z). In detail, consider a process

X defined by a unit matrix for the innovations covariance, and acanonical spectral factor given by

W(z) =





∗∗∗ z
1− z

2

0
1− z√

2
1− z

2



 (42)

with the particular expression for the(1, 1) entry not being provided, since it turns out to be irrelevantto the calculation. From
this expression, it follows that the(1, 2) and(2, 2) entries ofΦXX are :

ΦAB(z) =
( z

1− z
2

)(

1− z−1√
2

1− z−1

2

)

=
z− 1√

2
5
4 − 1

2(z+z−1)
, (43)

ΦBB(z) =
(

1− z√
2

(1− z
2)

)(

1− z−1√
2

(1− z−1

2 )

)

=

3
2 − 1√

2
(z+z−1)

5
4 − 1

2(z+z−1)
. (44)

Based on the formula for subsampled spectra, we now have:

ΦĀB̄(z2) =
z− 1√

2
5
4 − 1

2(z+z−1)
+

−z− 1√
2

5
4 + 1

2(z+z−1)
=

(1− 5
2
√

2
)+z2

[5
4 − 1

2(z+z−1)][5
4 + 1

2(z+z−1)]
, (45)

ΦB̄B̄(z2) =

3
2 − 1√

2
(z+z−1)

5
4 − 1

2(z+z−1)
+

3
2 + 1√

2
(z+z−1)

5
4 + 1

2(z+z−1)
=

[15
8 −

√
2− 1√

2
(z2 +z−2)]

[5
4 − 1

2(z+z−1)][5
4 + 1

2(z+z−1)]
, (46)

hence

ΦĀB̄(z2)Φ−1
B̄B̄(z2) =

(1− 5
2
√

2
)+z2

15
8 −

√
2− 1√

2
(z2 +z−2)

=
z4 +(1− 5

2
√

2
)z2

− 1√
2
z4 +(15

8 −
√

2)z2− 1√
2

. (47)

The denominator polynomial has four zeros on the unit circle(at±0.81±0.58
√
−1) and there are no cancellations with the

zeros of the numerator polynomial (at 0, 0,±0.876
√
−1). (The presence of unit circle zeros rather than zeros inside the unit

circle is not of particular note. One can also verify that if the (2, 2) term of the spectral factor in the example is changed to
be (1− z

3)(1− z
2)−1, then the denominator polynomial has two zeros inside and two outside the unit circle, at±1.382 and

±0.869.) So in both cases the transfer function is not causal.This means that the downsampling destroys the absence of
Granger causality.

This result is not consistent with the claim of Solo (2007). It would appear that in seeking to construct a canonical spectral
factorization for the subsampled process, he forces triangularity (which is needed to conclude absence of Granger causality)
but in the process cannot assure that the proposed spectral factor remains stable,i.e. the simultaneous requirements on the
spectral factor for it to be triangular and stable cannot both be met. The fact that an underlying process may have unidirectional
Granger causality, while a time aggregated version of it (a form of subsampling) has bidirectional Granger causality, has also
been observed in Chambers and McCrorie (2004).

8 Conclusion

In this paper, we have sought to explain how intuition can be misleading in determining the effect of certain changes madeto an
underlying model on the Granger causality properties associated with that model. For the important case of additive noise, we
have established general conditions under which additive noise does not affect non-causality properties, as well as conditions
under which noise induces spurious Granger causality. It isclear from these that additive noise generally distorts causal
relations, even though there are interesting cases where itdoes not. For example, in the case of measurement errors, ifXB is
not noisy, noise onXA does not induce spurious Granger causality fromXA to XB. In order to derive our results, we mostly rely
on generating function methods, canonical spectral factors, Wold decompositions and spectra. These approaches considerably
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simplify many proofs. Besides rigorous demonstrations, our findings extend and qualify the early results of Newbold (1978),
which focused on special cases. Further, in our discussion of noise, we have drawn attention to the usefulness of thinking of
an “amount” of causality : if noise is “low”, the distortion to the predictability and Granger causal properties of the process is
also “low”.

We have also revisited the effects of linear transformations, filtering and subsampling on Granger causality properties.
These results include general necessary and sufficient conditions under which “spurious” causal relations between time series
are not induced by linear transformations of the variables involved. This characterization also yields linear transformations
(or filters) which can eliminate Granger causality from one vector to another one. The various results presented allow one to
correct some erroneous statements in the earlier literature [as in Solo (2007) and Barnett and Seth (2011)] on Granger causality
in the presence of measurement errors and variable transformations.

The fact that additive noise can distort Granger causality relations means that empirical findings on such properties become
more delicate to interpret. Indeed, inferences on “noisy variables” remain perfectly valid as long the causal properties are
ascribed to observed variables. If we have no theory (such asan economic or a physical model) that can lead one to distinguish
between a “true” latent variable and a “measured” variable,there is no error-in-variables problem. Otherwise, one must be
aware that the causal structure of the original “uncontaminated” variables can be different. In this context, it is quite interesting
to observe that no “spurious” causality can arise when noiseonly affects the output variable (see Theorem 5). Further, when
the signal-to-noise ratio is large, distortions on apparent causality will also be small (see Theorem 6).

Similarly, the fact that aggregation and subsampling can distort dynamic relations has been widely discussed; see Tiao
and Wei (1976), Wallis (1974), Sims (1974), Wei (1982), Hylleberg (1986), Marcellino (1999), Kaiser and Maravall (2001),
Breitung and Swanson (2002), Gong et al. (2015), and the references in the survey of Silvestrini and Veredas (2008). For
a specific example showing that causal relations are modifiedby changing observation frequency, see Dufour et al. (2012).
However, Theorem 8 and Corollary 1 give general necessary and sufficient conditions under which “spurious” causal relations
between (vector) time series will not be induced by linear transformations of the variables involved. This also yields linear
transformations (or filters) which can eliminate Granger causality from one vector to another one.

Unaddressed to this point is a corresponding result on subsampling. It is well known that a continuous-time band-limited
process and a sampled version of it with sampling frequency in excess of twice the approximate “cut-off” frequency of the
continuous-time process have more or less the same information. This would suggest that Granger causality properties of
continuous-time band-limited processes would be “almost”preserved if they were sampled frequently enough,i.e. in these
circumstances the loss of Granger causality would be small.On a possible avenue in this direction, see Pollock (2012).

Due to dependence on an information set, Granger causality properties are not generally invariant to observation frequency.
In contrast with contamination by “noise” – which is typically problematic – non-invariance to observation frequency may not
be a “problem”. Indeed, it can have considerable practical meaning and usefulness: different mechanisms may matter forshort
and long-run predictability as well as decisions, in the same way that different “laws” apply to micro-phenomena and macro-
phenomena in physics. For economic and financial decisions,short-run and long-decisions may depend on different factors
and require different rules. High-frequency decisions require prediction for data observed at high frequency, while longer-
run decisions require predictability for data observed at low frequencies. Granger causality analysis at different observation
frequencies can provide information on this. It would certainly be of interest to develop a systematic framework for exploring
and exploiting such features. The use of mixed frequency data [as proposed in Ghysels et al. (2016)] could also be relevant in
this context. But these problems clearly go beyond the scopeof the present paper.

A different area worthy of examination is that of networked systems. The underlying structure could be viewed using
a directed graph, An edge from vertexi to vertex j would mean that processi is caused by processj. One could begin by
examining whether, in a path graph with vertex set{v1, v2, . . . , vN} and edge set{e12, e23, . . . , e(N−1)N}, Granger causality
properties of nonadjacent nodes could be predicted from thecorresponding properties of adjacent nodes.

The results given in this paper rely on the common assumptionof (second-order) stationarity. Even though there is no
reason to think distortions induced by measurement errors would suddenly stop to exist in nonstationary setups, it would be
of interest to extend our results to nonstationarity setups, e.g.through Hilbert space techniques, especially to evaluate whether
non-stationarity tends to increase or decrease the distortions. Note that nonstationary models are explicitly allowed in Dufour
and Renault (1998) and Dufour et al. (2006); for other paperswhich apply Hilbert space methods to Granger causality, see
Hosoya (1977), Florens and Mouchart (1982, 1985), Florens,Mouchart and Rolin (1993), Florens and Fougère (1996), Triacca
(1998, 2000), Al-Sadoon (2014). In order to study measurement errors, careful consideration of the type of nonstationarities is
needed, and different proof methods may be required. Another possibly more general approach to incorporate non-stationarity
would consist in working with the underlying probability measures, along the lines suggested by Mykland (1986). We leave
such extensions to future work.
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A Appendix

Proof of Lemma 1 Notice first that

E[Z(t) |X(s), Y(s) : s< t] = E[X(t)+Y(t) | X(s), Y(s) : s< t]

= E[X(t) |X(s), Y(s) : s< t]+E[Y(t) |X(s), Y(s) : s< t]

= E[X(t) |X(s) : s< t]+E[Y(t) |Y(s) : s< t] (48)

Accordingly, using the fact that the space spanned byZ(s) = X(s) +Y(s) for s < t is a subspace of the space spanned by
X(s),Y(s) for s< t, we have

Var[Z(t) |Z(s) : s< t] ≥ Var[X(t)+Y(t) |X(s), Y(s) : s< t]

= Var[X(t) |X(s) : s< t]+Var[Y(t) |Y(s) : s< t] (49)

as claimed. Of course the independence of the processesX,Y is used at the second last step.

Proof of Theorem 3 First, consider the question of absence of Granger causality and instantaneous causality and assume
that condition 2 of Theorem 1 holds. Using (4), (10) and the fact thatW21 = 0, it is easily checked that

ΦABΦ−1
BB = W12W

−1
22 . (50)

Also, the triangular structure ofW and its minimum phase character imply thatW−1
22 is stable. HenceΦABΦ−1

BB is also stable.
It also assumes the value 0 atz= 0 because of the normalization conditionW(0) = I .

To prove the converse, consider a canonical spectral factorization of the type of (4) (with no a priori restriction on the
block triangular structure ofW). Suppose thatΦABΦ−1

BB := T(z) is stable and zero atz= 0. We first assert that this will imply
the conditionW21 = 0 in the minimum phase, stable spectral factor normalized tobe I at z= 0. To see this, suppose first that
VB(z) is a minimum phase, stable transfer function withVB(∞) = I andRB is a positive definite matrix such that

ΦBB(z) = VB(z)RBV⊤
B (z−1) . (51)

Define
VAB(z) = ΦAB(z)Φ−1

BB(z)VB(z) . (52)

Note thatVAB(z) is then stable and zero atz= 0. Note also that the last two equations yield

ΦAB(z) = VAB(z)RBV⊤
B (z−1) . (53)

By the fact thatΦXX is positive definite for allz= ejω , it follows thatΦAA−ΦABΦ−1
BBΦBA is also positive definite for all

z= ejω , and accordingly, we can define a minimum phase, stable transfer functionVA(z) with VA(0) = I and a positive definite
RA such that

ΦAA(z)−ΦAB(z)Φ−1
BB(z)ΦBA(z) = VA(z)RAV⊤

A (z−1) . (54)

Observe that

ΦAB(z)Φ−1
BB(z)ΦBA(z) = ΦAB(z)Φ−1

BB(z)[VB(z)RBV⊤
B (z−1)]Φ−1

BB(z)ΦBA(z) = VAB(z)RBV⊤
AB(z

−1) (55)

or equivalently
ΦAA(z) = VAB(z)RBV⊤

AB(z
−1)+VA(z)RAV⊤

A (z−1) . (56)

Now from equations (56), (53) and (51), we have
[

ΦAA(z) ΦAB(z)
ΦBA(z) ΦBB(z)

]

=

[

VA(z) VAB(z)
0 VB(z)

][

RA 0
0 RB

][

V⊤
A (z−1) 0

V⊤
AB(z

−1) V⊤
B (z−1)

]

. (57)

Now make the definitions

V(z) =

[

VAA(z) VAB(z)
0 VBB(z)

]

, R=

[

RA 0
0 RB

]

, (58)

and observe thatV(z) is stable, minimum phase and hasV(0) = I . Accordingly,V(z) is the unique miniphase stable spectral
factor withV(0) = I , and condition 2 of Theorem 1 is evidently fulfilled.
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The argument for Granger causality only is similar but not identical, and so we present the details. Assume then there is
an absence of Granger causality, which means that there is a spectral factorization with canonical spectral factorW(z) and not
necessarily block diagonal innovations covariance matrixof the form

ΦXX(z) =

[

W11(z) W12(z)
0 W22(z)

][

Q11 Q12

Q⊤
12 Q22

][

W⊤
11(z

−1) 0
W⊤

12(z
−1) W⊤

22(z
−1)

]

. (59)

It then follows that
ΦABΦ−1

BB = (W11Q12+W12Q22)W
−1
22 (60)

and this is evidently stable.
For the converse, we follow the proof applying for the case where the aim was to conclude an absence of Granger causality

and instantaneous causality. The proof applies with the first change thatVAB(z) is no longer guaranteed to be zero atz= 0.
Equation (57) holds, including the fact thatR is block diagonal, butV(∞) 6= I , due to the generally nonzero nature ofVAB(0).
Now by setting

W(z) =

[

I −VAB(0)
0 I

]

V(z) (61)

equation (59) arises, and Granger causality is then proved.

Proof of Theorem 4 For the first claim, letW11(z),W12(z),W22(z), Q11, Q12 andQ22 be the matrices of the canonical spectral
factor description of the joint spectrum ofXA, XB. If W12 = 0, then it is evident that the two processes are independent.So we
must prove that ifW12 6= 0, thenXB Granger causesXA. This is equivalent to showing that

Var[XA(t) |XA(s), XB(s) : s< t] ≤ Var[XA(t) |XA(s) : s< t] (62)

and the two conditional covariance matrices are unequal. Now observe that from the canonical factorization of the joint
processXA, XB, we have immediately

Var[XA(t) |XB(t), XA(s), XB(s) : s< t] = Q11. (63)

Further, we know thatXA(t) = W11(L)εA(t)+W12(L)εB(t). This expressesXA as a sum of two independent processes and the
lemma above applies. Note that the variance of the one step ahead prediction for the processW11(L)εA(t) is preciselyQ1,
sinceW11(z) is a canonical spectral factor. Hence the claim (62) is established.
For the second part, we are required to show that whenXA does not causeXB, either the processes are independent or

Var[XA(t) |XB(t), XA(s), XB(s) : s< t] ≤ Var[XA(t) |XA(s) : s< t] (64)

where equality does not hold. LetQ12 be the(1, 2) block of the matrixQ in the canonical spectral factorization; in general, it
is not zero. Then it is easily seen that

Var[XA(t) |XB(t), XA(s), XB(s) : s< t] = Q11−Q12Q
−1
22 Q⊤

12. (65)

Next observe that
XA(t) = W11(L)[εA(t)−Q12Q

−1
22 εB(t)]+ [W11(L)Q12Q

−1
22 +W12(L)]εB(t) . (66)

This expressesXA as the sum of two independent processes, sinceεA(t)−Q12Q
−1
22 εB(t) andεB(t) are independent. In the

additive decomposition, the second process will evanesce if and only ifW12(z) = 0, Q12 = 0, i.e. the two processesXA, XB are
independent. The first process is in fact the processXA(t)−E[XA(t) |XB(t), XA(s), XB(s) : s< t], as is easily checked. Hence
once again the lemma applies to yield the result (64) as required.

Proof of Theorem 6 The fact thatΦX̄X̄ satisfies (26) implies that

ΦX̄X̄ = WQ1/2[I + εQ−1/2W−1ΦNNW−∗Q−1/2]Q1/2W∗ . (67)

Now identify M in Lemma 2 withQ−1/2W−1ΦNNW−∗Q−1/2 to conclude that a stable and miniphase spectral factor of the
noise perturbed spectrumΦX̄X̄ is (to first order inε, corresponding to a low noise situation),

W̃ = WQ1/2[I + ε(Q−1/2W−1ΦNNW−∗Q−1/2)+] (68)

in the sense that
ΦX̄X̄(z) = W̃(z)W̃⊤(z−1) . (69)
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Note thatW̃(z) is not canonical because the requirementW̃(0) = I is not fulfilled. DefineJ to be the value of

[I + ε(Q−1/2W−1ΦNNW−∗Q−1/2)+] (70)

at z= 0. Note that this is preciselyI + εK, where 2K is necessarily nonnegative being(1/2π) times the integral around the
unit circle of Q−1/2W−1ΦNNW−∗Q−1/2 and note thatJ− I (which is εK) and thusJ−1 − I areO(ε). Then the canonical
spectral factor will be

W̄(z) = W̃(z)J−1Q−1/2 (71)

since this assures that (27) will hold where we can identify

Q̄ =

[

Q̄11 Q̄12

Q̄⊤
12 Q̄22

]

= Q1/2J2Q1/2 . (72)

From the calculations immediately preceding the last two equations, it is easy to see that the differenceW̄(z)−W(z) will be
O(ε), as will Q̄12 andQ− Q̄.
Next we consider the claim concerning the two-sided Wiener filter for estimatingXA from X̄B. It is easily seen using (67) that
ΦBA(z)Φ−1

BB(z) differs for each fixedz= exp( jω) from ΦB̄A(z)Φ
−1
B̄B̄

(z) by an amount bounded byO(ε) asε goes to zero, and

hence the anticausal part will have the same property. Sincethe anticausal part ofΦBA(z)Φ−1
BB(z) is actually zero, this means

the anticausal part ofΦBA(z)Φ−1
BB(z) will have anL2 norm that isO(ε).

To prove the final claim, observe that becauseW(z) is block upper triangular and canonical, the submatrixW22(z) is minimum
phase. Now the right side ofW−1

22 (z)W̄22(z) = I +W−1
22 (z)[W̄22(z)−W22(z)] represents a perturbation of I by a stable matrix

whose norm is bounded byO(ε) on the unit circle, and accordingly it is minimum phase. Hence the product withW22(z) is
also minimum phase,i.e. W̄22(z) is minimum phase. This completes the proof of the theorem.

Proof of Theorem 7 We start by expressinḡXB as a sum of two independent processes. Thus observe that we can express
X̄B as

X̄B(t) = [W̄22(L)Q̄⊤
12Q̄

−1
11 +W̄21(L)]ε̄A(t)+W̄22(L)[ε̄B(t)− Q̄⊤

12Q̄
−1
11 ε̄A(t)] (73)

in obvious notation. Note that the two processesε̄A(t) and ε̃B(t) = ε̄B(t)− Q̄⊤
12Q̄

−1
11 ε̄A(t) are orthogonal, with covariance

matrix

E{
[

ε̄A(t)
ε̃B(t)

]

[

ε̄⊤A (t) ε̃⊤B (t)
]

} =

[

Q̄11 0
0 Q̄22− Q̄⊤

12Q̄
−1
11 Q̄12

]

. (74)

Let R denotes the error variance in estimating the value at timet of [W̄22(L)Q̄⊤
12Q̄

−1
11 +W̄21(L)]ε̄A(t) from values fors < t.

Recall also thatW̄22(z) is minimum phase, and must satisfȳW22(0) = I . Accordingly, it is a canonical spectral factor of the
spectrum ofW̄22(L)[ε̄B(t)−W̄⊤

12Q̄
−1
11 ε̄A(t)]. Hence the prediction error covariance associated with estimating the value at time

t of W̄22(L)ε̃B(t) from values fors< t is preciselyQ̄22− Q̄⊤
12Q̄

−1
11 Q̄12. We can now use Lemma 1 as we did in the proof of

Theorem 4 to conclude that

Var
[

X̄B(t)−E[X̄B(t) | X̄B(s) : s< t]
]

≥ R+ Q̄22− Q̄⊤
12Q̄

−1
11 Q̄12. (75)

From the canonical factorization forΦX̄X̄ we have that the second term on the right in the above equationis given by

Var
[

X̄B(t)−E[X̄B(t) |XA(t), XA(s), X̄B(s) : s< t
]

= Q̄22− Q̄⊤
12Q̄

−1
11 Q̄12. (76)

We now turn to establishing the bound onR. X̄B(t) from X̄A(s), s≤ t, X̄B(s), s < t. This is, as is well known, precisely
Q̄22− Q̄⊤

12Q̄
−1
11 Q̄12. That for predictingX̄B(t) from X̄B(s) is more complicated. To make progress observe that Considerthe

transfer function acting on̄εA in (73). From Theorem 6,̄Q12 andW̄21(z) areO(ε) and so the transfer function multiplyinḡεA

is of orderε. Hence we see thatR, being the prediction error variance in estimating a variable whose spectrum is proportional
to ε2 must itself be proportional toε2. Hence the increase in prediction error covariance whenX̄A ceases to be available for
estimatingX̄B is bounded from belowby a quantity proportional toε2.
We now derive the overbound of the same order. Choose a constant R′ so that for allz= exp( jω), there holds

R′W̄22(z)[Q̄22− Q̄⊤
12Q̄

−1
11 Q̄12]W̄

⊤
22(z

−1) ≥ [W̄22(z)Q̄
⊤
12Q̄

−1
11 +W̄21(z)]Q̄11[Q̄

−1
11 Q̄12W̄

⊤
22(z

−1)+W̄⊤
21(z

−1)] . (77)

This is possible since for allz= exp( jω) the left side is positive definite. Since the right side isO(ε2), it is clear thatR′ can
be taken also asO(ε2). Now X̄B is written in (73) as the sum of two orthogonal processes. Hence the spectrum of̄XB will be
the sum of the spectra of these two processes,i.e.

W̄22(z)[Q̄22− Q̄⊤
12Q̄

−1
11 Q̄12]W̄

⊤
22(z

−1)+ [W̄22(z)Q̄
⊤
12Q̄

−1
11 +W̄21(z)]Q̄11[Q̄

−1
11 Q̄12W̄

⊤
22(z

−1)+W̄⊤
21(z

−1)]
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for z= exp( jω) and this is overbounded by a spectrum, call itΦCC(z), with

ΦCC(z) = (R′ +1)W̄22(z)[Q̄22− Q̄⊤
12Q̄

−1
11 Q̄12]W̄

⊤
22(z

−1) (78)

again forz= exp( jω). Hence there exists a process, call itXD, which is independent of̄XB, for which XC = X̄B + XD and
whose spectrum isΦCC(z)−ΦX̄X̄(z). By Lemma 1, the variance of the one step prediction estimateusing its own past of the
processXC with spectrum ofΦCC overbounds the sum of the variances of the one step prediction estimates of each of̄XB and
XD. A fortiori it overbounds the variance of the one step prediction estimate of X̄B : thus

(R′ +1)[Q̄22− Q̄⊤
12Q̄

−1
11 Q̄12] ≥ Var[X̄B(t)−E[X̄B(t) | X̄B(s) : s< t]] . (79)

Equivalently, we can write

Var[X̄B(t)−E[X̄B(t) | X̄B(s) : s< t]] ≤ (R′ +1)Var[X̄B(t)−E[X̄B(t) |XA(t), XA(s), X̄B(s) : s< t]] . (80)

This completes the proof of the theorem.

Proof of Theorem 8 Since the process has an autoregressive representation, wecan write :

Π(L)X(t) = Π(L)T(L)−1T(L)X(t) = Π̄(L)X̄(t) = ε(t) (81)

where

Π̄(L) =

[

Π̄11(L) Π̄12(L)
Π̄21(L) Π̄22(L)

]

=

[

Π11(L) Π12(L)
Π21(L) Π22(L)

][

TA(L) TAB(L)
TBA(L) TB(L)

]

, ε(t) =

[

εA(t)
εB(t)

]

. (82)

In particular,
Π̄21(L) = Π21(L)TA(L)+Π22(L)TBA(L) . (83)

Sinceε(t) is uncorrelated with the pastX(t), hence also of the past of̄X(t), it follows from Proposition 1 in Boudjellaba et al.
(1992) that :X̄A does not Granger causēXB if and only if Π̄21(L) = 0.
Proof of Corollary 1 If TBA(L) = 0, it follows from standard results on the inversion of partitioned matrices that

T(L)−1 =

[

TA(L) TAB(L)
0 TB(L)

]−1

=

[

TA(L)−1 −TA(L)−1TAB(L)TB(L)−1

0 TB(L)−1

]

=

[

TA(L) TAB(L)
TBA(L) TB(L)

]

; (84)

see Harville (2008, Chapter 8, Theorem 8.5.4). Then, the condition takes the formΠ21(L)TA(L)−1 = 0, which in view of the
invertibility of TA(L) is equivalent toΠ21(L) = 0. By Proposition 1 in Boudjellaba et al. (1992),XA does not Granger cause
XB if and only if Π21(L) = 0, so that

X̄A does not Granger causēXB if and only if XA does not Granger causeXB . (85)

If TAB(L) = 0, we have

T(L)−1 =

[

TA(L) 0
TBA(L) TB(L)

]−1

=

[

TA(L)−1 0
−TB(L)−1TBA(L)TA(L)−1 TB(L)−1

]

=

[

TA(L) TAB(L)
TBA(L) TB(L)

]

(86)

so thatTA(L) = TA(L)−1 andTBA(L) = −TB(L)−1TBA(L)TA(L)−1, and condition (31) takes the form

Π21(L)TA(L)+Π22(L)TBA(L) = Π21(L)TA(L)−1−Π22(L)TB(L)−1TBA(L)TA(L)−1 = 0 (87)

or, equivalently,
Π21(L) = Π22(L)TB(L)−1TBA(L) . (88)

Thus,X̄A does not Granger causēXB if and only if Π21(L) = Π22(L)TB(L)−1TBA(L).
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